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Preface

This book is an accessible introduction to complexity theory and cryptology, two
closely related areas in theoretical computer science. Based on courses taught at
Heinrich-Heine-Universität Düsseldorf and Friedrich-Schiller-Universität Jena since
1996, this textbook is written mainly for undergraduate and graduate students in
computer science, mathematics, and engineering. Researchers, teachers, and practi-
tioners working in these fields will also find this book a comprehensive, up-to-date,
research-focused guide to central topics in cryptocomplexity.

Chapter 1 provides more details about this book, including suggestions for how
to use it and a brief outline of its chapters.
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Königstein, Berthold Nöckel, Marga Potthoff, Janus Tomaschewski, and Lutz Voigt.
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1

Introduction to Cryptocomplexity

About This Book

This book is an introduction to two areas, complexity theory and cryptology, which
are closely related but have developed rather independently of each other. Modern
cryptology employs mathematically rigorous concepts and methods of complexity
theory. Conversely, current research in complexity theory is often motivated by ques-
tions and problems arising in cryptology. This book takes account of this trend, and
therefore its subject is what may be dubbed “cryptocomplexity,” some kind of sym-
biosis of these two areas.

Erich

Fig. 1.1. A typical cryptographic scenario (the design of Alice and Bob is due to Crépeau)

Figure 1.1 shows a typical scenario in cryptography. Alice and Bob wish to ex-
change messages over an insecure channel such as a public telephone line on which
Erich is an eavesdropper. That is why Alice encrypts her messages to Bob in such a
way that Bob can easily decrypt them, but Erich cannot. Cryptography is the art and
science of designing secure cryptosystems. Alice and Bob use cryptosystems and
cryptographic techniques to protect their private data and keep it secret, to electron-
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ically sign their messages so that their signatures cannot be forged, for authentica-
tion, for the protection of copyrights, to make secure use of computer networks, to
exchange information and do business over the internet in a secure way.

Their adversary is Erich, angry that he can intercept or eavesdrop their mes-
sages alright, but to no avail for himself. He aims at unauthorized decryption of their
ciphertexts, he wants to get his hands at their decryption keys to break their cryp-
tosystem. Cryptanalysis is the art and science of breaking cryptosystems. Cryptology
comprises both these fields, cryptography and cryptanalysis.

Cryptography and cryptanalysis have fought an ongoing war against each other
since ancient times. When our ancestors learned to think and speak and write, they
not only sought to convey their thoughts and messages but also to protect them from
unauthorized recipients, i.e., to keep them secret. Even Gaius Julius Caesar, dictator
perpetuus of Rome, made use of a simple (and easy-to-break) cryptosystem.

Battle after battle has been fought between these two opposing worlds ever since:
As soon as the cryptographers have designed a new cryptosystem, the cryptanalysts
do not rest before they have broken it, whereupon better cryptosystems are devel-
oped, and so forth. The phrases “war” and “battle” can be taken literally here. During
World War II, the struggle of the Allied codebreakers against the infamous encryp-
tion machine Enigma used by the Deutsche Wehrmacht was a matter of life and
death. The Enigma, considered unbreakable at first, was eventually broken by the
British codebreakers from Bletchley Park, aided by previous work of Polish mathe-
maticians and the cooperation of a German spy. Their achievement was decisive—if
not for the war then for a number of battles, especially for the big sea battles and the
destruction of the German submarine fleet. Singh [Sin99] and Bauer [Bau00a] elabo-
rately tell the thrilling story of this struggle between the German cryptographers and
the Allied cryptanalysts. The success of breaking the Enigma is attributed to Alan
Turing among others. His brilliance as a cryptanalyst is surpassed only by his inge-
nious, fundamental achievements in theoretical computer science. By inventing the
Turing machine, which is named after him, Turing laid the foundations of recursive
function and computability theory, the mother of complexity theory.

That efficient algorithms have useful applications in practice is obvious. In con-
trast, complexity theory aims at proving that certain problems are not efficiently solv-
able. It provides the means and methods for classifying problems with respect to their
inherent computational complexity. It also provides useful tools and techniques for
comparing the relative complexity of two given problems via reductions.

In cryptographic settings, provable inefficiency means security: The security of
current cryptosystems is based on the assumption that certain problems cannot be
solved efficiently. The problem of breaking a cryptosystem can be linked via re-
ductions to suitable problems widely believed to be intractable. Cryptography thus
requires and utilizes the computational intractability of problems. In short, cryptog-
raphy needs and motivates complexity-theoretic notions, models, methods, and re-
sults. In particular, the notions of one-way functions, interactive proof systems, and
zero-knowledge protocols are central both in cryptology and in complexity theory,
which demonstrates the mutual pervasion of these two fields. This book introduces
both cryptology and complexity theory, with a particular focus on their interrelation.
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How to Use This Book

This book is based on the author’s lectures held at Heinrich-Heine-Universität
Düsseldorf and Friedrich-Schiller-Universität Jena since 1996. Written mainly for
undergraduate and graduate students in computer science, mathematics, and engi-
neering, it is a valuable source also for researchers, university teachers, and practi-
tioners working in these fields.

This textbook can be used for teaching in more ways than one. On the one hand,
it can be used for introductory courses in cryptology from a complexity-theoretic
perspective. On the other hand, it can be used for introductory courses in complexity
theory, emphasizing potential applications in cryptology. In both regards, this book
provides a comprehensive, up-to-date, research-focused guide to the state of the art
in these two fields, stressing their connections and choosing a unified approach.

Ideally, however, this book should be used for a series of interrelated courses
introducing both these areas jointly. For example, based on the material presented in
this book, a series of four one-semester courses for undergraduate students was test-
driven by the author in Düsseldorf. The students’ positive feedback suggests that the
approach of focusing on the interrelations between complexity theory and cryptology
is more profitable for them than teaching these fields separately and independently.
A typical course series consists of the following four modules on cryptocomplexity:

Cryptocomplexity I: gives an introduction to complexity theory based on material
selected from Chapter 2, Chapter 3, Chapter 5 (e.g., Sections 5.1, 5.2, and 5.6),
and Chapter 6 (e.g., Sections 6.1, 6.2, and 6.3).

Cryptocomplexity II: presents more advanced topics from complexity theory based
on material selected from Chapter 5 (e.g., Sections 5.3, 5.4, 5.5, and 5.7) and
Chapter 6 (e.g., Sections 6.4 and 6.5).

Cryptocomplexity III: gives an introduction to cryptology based on material se-
lected from Chapters 2, 4, and 7.

Cryptocomplexity IV: presents more advanced topics from cryptology based on
material selected from Chapters 7 and 8.

Of course, the topics presented in this book can be supplemented by current original
research results and other material of interest. Detailed descriptions of these modules
can be found at http://wwwold.cs.uni-duesseldorf.de/˜rothe.

Much care has been taken to motivate and explain the notions and results pre-
sented. Numerous examples, figures, and tables are provided to make the text com-
prehensible, easy-to-read, and hopefully even entertaining at times. Occasionally,
before presenting some notion or result in abstract, formal, mathematical terms, it is
first introduced and explained using a short story.

Reading this book is not only fun, though, it is also hard work: Every chapter
has a set of exercises and problems, with hints at possible solutions or pointers to the
original literature. The degree of difficulty of the exercises varies in a broad range;
there are rather easy exercises and there are hard ones. Many of the problems are most
challenging. Some of them are research problems that were solved only recently in
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the literature, and they sometimes require deep insights or clever ideas. Even if they
turn out to be too difficult, it is worth trying to solve them.

Due to its comprehensive bibliography (with 516 entries) and subject index (with
1466 main entries), this textbook is also a valuable source for researchers working
in complexity theory and cryptology. Starting from scratch and seeking a unified ap-
proach, it works its way to the frontiers of current research in selected topics from
these two fields. Every chapter concludes with a summary that describes the histor-
ical development of the notions and results presented, explains related notions and
ideas, and provides comprehensive, detailed bibliographic remarks.

The subject index has an abundance of entries and cross-references because a
textbook is only as useful as its index is.1 Every catchword can have several entries, a
boldfaced main entry pointing to its definition, and a number of other entries pointing
to theorems containing the catchword. A textbook without an index, or with a poorly
or sloppily made index, is of no more help to the reader than a library lacking a
classified catalog and having all its books huddled together unsorted. You may stand
in front of this huge heap of books, knowing that they contain all the knowledge and
the wisdom of the universe, and still you won’t be able to find that particular piece of
information you are looking for so desperately. This point has been eloquently made
by Borges [Bor89] in his short story, “The Library of Babel.” By the way, each of the
catchwords mentioned in Footnote 1 can indeed be found in the index. Check it out.

Admittedly, this book has a clear focus on theory. Practical aspects of security en-
gineering, such as the creation of secure public-key infrastructures, cannot be found
here. A recommendable reference for this topic is Buchmann [Buc01].

In 2003 and 2004, a group of University of Düsseldorf students developed a
system that implements a number of cryptosystems, which are also treated in this
book. Acknowledgments are due to Tobias Riege, who supervised the students,
and to Yves Jerschow, Claudia Lindner, Tim Schlüter, David Schneider, Andreas
Stelzer, Philipp Stöcker, Alexander Tchernin, Pavel Tenenbaum, Oleg Umanski,
Oliver Wollermann, and Isabel Wolters. The source code in Java can be downloaded
from http://wwwold.cs.uni-duesseldorf.de/˜riege/praktikum.

Overview of the Book Chapters

Chapter 2 provides some background from those fields of computer science and
mathematics that are relevant to the topics from complexity theory and cryptology
covered in this book. The concepts used are explained with mathematical rigor and
in as short a way as possible but to the extent necessary to understand them. In par-
ticular, it provides some of the elementary foundations of algorithmics, the theory
of formal languages, recursive function theory, logic, algebra, number theory, graph

1 Suppose you are looking for each occurrence of the phrase baby cloning in this book. Or
you are interested in a particular tool, say a chain-saw or a Turing machine. Or you may
want to know what this book has to say about polygamy, the wizard Merlin, the Ruling
Ring, the Holy Grail, or DNA tests. Or you may want to learn everything about its dogmas.
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theory, and probability theory. Although each field is explained from scratch and not
much mathematical background is assumed from the reader, some familiarity with
the foundations of mathematics and theoretical computer science might be helpful.

In Chapters 3 and 4, the foundations of complexity theory and cryptology are
laid, and their historical development is briefly sketched. In Chapter 3, complexity
measures and classes are defined in the traditional worst-case model. (The average-
case complexity model is not treated here; a useful reference is Wang’s excellent
survey [Wan97].) Fundamental properties of worst-case complexity are studied, in-
cluding linear tape-compression and speed-up and the hierarchy theorems for time
and space. The relations between the most central complexity classes between loga-
rithmic and polynomial space are explored. Most notable among them are the classes
P and NP, deterministic and nondeterministic polynomial time.

P is thought of as a complexity class capturing the intuitive notion of efficient
computation, whereas the hardest problems in NP, the NP-complete problems, are
thought of as a collection of intractable problems, assuming P �= NP. The P versus
NP question, which asks whether or not these two classes differ, is one of the most
important open questions in theoretical computer science, and it has kept annoying
complexity theorists for more than thirty years now. If P �= NP then no NP-complete
problem can have efficient (i.e., polynomial-time computable) algorithms. On the
other hand, if P = NP then all problems in NP are polynomial-time solvable and, in
particular, most of the cryptosystems currently in use can be broken.

Particular attention is paid in Chapter 3 to complexity-bounded reducibilities,
such as the polynomial-time many-one reducibility, and to the related notions of
hardness and completeness. Reducibilities are powerful tools for comparing the com-
plexity of two given problems, and completeness captures the hardest problems in a
complexity class with respect to a given reducibility. In particular, the complete prob-
lems in the classes NL (nondeterministic logarithmic space) and NP are intensely
investigated, and a host of specific examples of natural complete problems in these
classes are given. These include various variants of the satisfiability problem, which
asks whether or not a given boolean formula is satisfiable. The list of problems shown
to be NP-complete in this chapter includes certain graph problems, such as the graph
three-colorability problem, and certain variants of the knapsack problem. Chapter 8
presents a cryptosystem based on such a knapsack-type problem.

There are problems in NP that seem to be neither NP-complete nor to have effi-
cient algorithms. One such example is the graph isomorphism problem, introduced
in Chapter 2 and more deeply studied in Chapters 3, 6, and 8. Another example of a
problem that can be solved in nondeterministic polynomial time but is not known to
be solvable in deterministic polynomial time is the factoring problem, which will be
carefully investigated in Chapter 7. Many cryptosystems, including the famous RSA
public-key cryptosystem, are based on the hardness of the factoring problem.

Chapter 3 also introduces an interesting complexity class that seems to lack com-
plete problems: UP, “unambiguous polynomial time,” contains exactly those NP
problems that never have more than one solution. The complexity class UP is useful
for characterizing the existence of certain types of one-way functions in the worst-
case model. A function is one-way if it is easy to compute but hard to invert. In
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complexity theory, such functions are closely related to Berman and Hartmanis’ iso-
morphism conjecture. One-way functions (in an adequate model of complexity) are
also important in cryptography; such functions are discussed in Chapter 8.

Chapter 4 introduces the basic notions of cryptology, such as symmetric (a.k.a.
private-key) and asymmetric (a.k.a. public-key) cryptosystems. This chapter presents
some classical symmetric cryptosystems, including the substitution, affine, and per-
mutation ciphers, affine linear block ciphers, stream ciphers, the Vigenère, and the
Hill cipher. Cryptanalytic attacks on these cryptosystems are provided by example.
Moreover, based on the notion of entropy from Shannon’s information and coding
theory, the notion of perfect secrecy for cryptosystems is introduced and Shannon’s
result is presented, which provides necessary and sufficient conditions for a cryp-
tosystem to achieve perfect secrecy.

Chapter 5 turns to complexity theory again and introduces hierarchies based
on NP, including the boolean hierarchy over NP and the polynomial hierarchy. Re-
latedly, various polynomial-time Turing reducibilities are defined. Both these hierar-
chies contain NP as their first level and are very useful to classify important problems
that seem to be harder than NP-complete problems. Examples of problems complete
in the higher levels of the boolean hierarchy are the “exact” variants of NP-complete
optimization problems, facet problems, and critical graph problems. Examples of
problems complete in the higher levels of the polynomial hierarchy are certain vari-
ants of NP-complete problems that can be represented by a bounded number of al-
ternating polynomially length-bounded quantifiers. The canonical example of such
problems is the quantified boolean formula problem with a bounded number of al-
ternating quantifiers, which generalizes the satisfiability problem.

Relatedly, the notion of alternating Turing machines is introduced in Chapter 5,
and P and PSPACE are characterized in terms of such machines: Deterministic
polynomial time equals alternating logarithmic space, and deterministic polynomial
space equals alternating polynomial time. The former result shows that alternating
Turing machines are a reasonable model of parallel computation, since they satisfy
Cook’s criterion that parallel time is roughly the same as sequential (i.e., determinis-
tic) space. The latter result shows that the quantified boolean formula problem with
an unbounded number of alternating quantifiers is complete for PSPACE.

There is a remarkable connection between the polynomial hierarchy and the
boolean hierarchy over NP: If the boolean hierarchy collapses to a finite level, then
so does the polynomial hierarchy. Chapter 5 further introduces the query hierar-
chies over NP with a bounded number of queries, and the low and high hierarchies
within NP. The low hierarchy can be used to measure the complexity of NP problems
that seem to be neither in P nor NP-complete.

Chapter 6 is concerned with randomized algorithms and probabilistic complex-
ity classes. In particular, a randomized algorithm for the NP-complete satisfiability
problem is introduced, which still runs in exponential time but is faster than the naive
deterministic algorithm for this problem. Moreover, Monte Carlo and Las Vegas al-
gorithms and the probabilistic complexity classes PP (probabilistic polynomial time),
RP (random polynomial time), ZPP (zero-error probabilistic polynomial time), and
BPP (bounded-error probabilistic polynomial time) are introduced and thoroughly



1. Introduction to Cryptocomplexity 7

studied in Chapter 6. Bounding the error away from one half yields a very useful
probability amplification by which the error in the computation can be made expo-
nentially small in the input size. Such a small error probability can be safely ne-
glected for most practical applications. Again, some of the probabilistic complexity
classes (e.g., PP) do have complete problems, whereas others (e.g., BPP) are unlikely
to have complete problems.

Chapter 6 also studies the Arthur-Merlin games introduced by Babai and Moran.
Arthur-Merlin games can be regarded as interactive proof systems with public coin
tosses, and they can be used to define a hierarchy of complexity classes. The main
results about the Arthur-Merlin hierarchy in Chapter 6 are, first, that this hierarchy
collapses to a finite level, and, second, that the graph isomorphism problem is con-
tained in the second level of this hierarchy. Consequently, the graph isomorphism
problem is contained in the low hierarchy and thus is unlikely to be NP-complete.

Chapter 7 introduces the RSA cryptosystem, the first public-key cryptosystem
developed in the public sector, which is still widely used in practice today. The RSA
digital signature scheme, which is based on the RSA public-key cryptosystem, is
also presented. A digital signature protocol enables Alice to sign her messages to
Bob so that Bob can verify that indeed she was the sender, and without Erich being
able to forge Alice’s signature. In addition, numerous cryptanalytic attacks on the
RSA system are surveyed and thoroughly discussed, and for each attack on RSA
presented, possible countermeasures are suggested.

Related to the RSA system, Chapter 7 investigates the factoring problem and the
primality problem in depth. On the one hand, the security of RSA crucially depends
on the presumed hardness of factoring large integers. On the other hand, the RSA
cryptosystem and digital signature scheme both require the efficient generation of
large primes, as do many other cryptosystems. The complexity of the most prominent
factoring methods known, such as the quadratic sieve, is discussed in Chapter 7. Note
that the factoring problem is currently known neither to have an efficient algorithm
nor to have a rigorous proof of its hardness.

Chapter 7 further presents a number of efficient primality tests that are used in
practice, including the Fermat test, the Miller–Rabin test, and the Solovay–Strassen
test. These are randomized algorithms, and some of them are of the Monte Carlo
type. A recent result showing that the primality problem can be solved in determin-
istic polynomial time is also discussed.

Chapter 8 surveys further important public-key cryptosystems and cryptographic
protocols, including the Diffie–Hellman secret-key agreement protocol and the El-
Gamal digital signature protocol. The latter protocol, with appropriate modifications,
has been adopted as the United States digital signature standard. Relatedly, the dis-
crete logarithm problem is carefully studied in this chapter. The security of many
important protocols, such as the two just mentioned, relies on the presumed hardness
of the discrete logarithm problem.

Revisiting the graph isomorphism problem and the notion of Arthur-Merlin
games that were studied in previous chapters, Chapter 8 introduces the notion of
zero-knowledge protocols, which is related to the cryptographic task of authentica-
tion.
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There have been attempts in the past to base cryptosystems on NP-hard problems;
in particular, on variants of the knapsack problem. Some of those cryptosystems
were broken, whereas others are still unbroken. One such cryptosystem is presented
and critically discussed in Chapter 8. Relatedly, the notion of a trapdoor one-way
function, which is important in public-key cryptography, is discussed. Finally, this
chapter introduces protocols for secret-key agreement and digital signatures that are
based on associative, strongly noninvertible one-way functions (in the worst-case
model).

Obviously, there are many interesting topics and results in complexity theory
and cryptology that could not be covered in this book. Here are some recommend-
able references. For example, approximation and nonapproximation results, which
are of both theoretical and practical importance, are not covered here; see, for exam-
ple, Ausiello et al. [ACG+03], Vazirani [Vaz03], and the comprehensive, up-to-date
compendium of NP optimization problems edited by Crescenzi, Kann, Halldórsson,
Karpinski, and Woeginger:

http://www.nada.kth.se/˜viggo/problemlist/compendium.html.

For a variety of further important topics of complexity theory, see the books
by Balcázar, Dı́az, and Gabarró [BDG95, BDG90], Bovet and Crescenzi [BC93],
Du and Ko [DK00], Garey and Johnson [GJ79], L. Hemaspaandra and Ogihara
[HO02], Papadimitriou [Pap94], Reischuk [Rei90], Vollmer [Vol99], Wagner and
Wechsung [WW86, Wec00], and Wegener [Weg87, Weg03], and the collections
edited by Selman and L. Hemaspaandra [Sel90, HS97] and Ambos-Spies, Homer,
and Schöning [AHS93]. For topics of cryptology not covered here, see, for exam-
ple, Goldreich [Gol99, Gol01], Luby [Lub96], Micciancio and Goldwasser [MG02],
Salomaa [Sal96], Schneier [Sch96], Stinson [Sti02], and Welsh [Wel98].



2

Foundations of Computer Science and Mathematics

The language of the Netherlands is Dutch. The language of life is the genetic code.
And the language of nature and science is mathematics. Just as with most fields of
science, the language of mathematics describes the notions, results, and methods of
computational complexity and cryptology in the most precise and most elegant way.

This chapter provides an introductory course to those fields of computer science
and mathematics that are relevant to the topics from complexity theory and cryptol-
ogy covered in this book. The concepts used are explained with mathematical rigor
and in as short a way as possible but to the extent necessary to understand them. In
particular, we provide some basic background from algorithmics, formal languages,
recursive function theory, logic, algebra, number theory, graph theory, and probabil-
ity theory. One may as well skip this chapter and return to it whenever necessary.

2.1 Algorithmics

What is an algorithm? This question, which in a certain sense has also a philosophical
dimension, is to be treated merely pragmatically and informally for now. Everyone
surely has an intuitive idea of what an algorithm is. A mathematically precise, formal
model of the notion of an algorithm, the Turing machine, is introduced later on in
Section 2.2, see Definitions 2.15 and 2.16. Turing machines and other, equivalent al-
gorithmic models can be used to formalize the notions of computability of functions
and of decidability of problems.

The term “algorithm” has developed by language transformation from the name
of the Persian-Arabian scientist Muhammed Ibn Musa Abu Djáfar al Choresmi (773
until 850),1 the court mathematician of the caliphate in Baghdad. In 820, he wrote
the highly influential book “On the Indian Numbers” in which the decimal system
(including the number zero) is introduced.
1 Other spellings of his name are known as well, such as Abu Ja’far Mohammed Ibn Musa

Al-Khowarizmi [Sch02a]. His name has transformed into “algorithm” via the Latin phrase
“dixit algorizmi,” which might be translated as “Thus spoke al Choresmi” and which was
meant to approve the correctness of a calculation with some kind of quality seal.



10 2. Foundations of Computer Science and Mathematics

Intuitively, an algorithm is a finite set of rules or procedures that must be fol-
lowed in solving some problem. The process of applying these rules on some input
may terminate after a finite number of steps either successfully, thereby transform-
ing the input into an output solving the given problem instance, or unsuccessfully,
thereby rejecting the input. It may also happen that this process never terminates and
the algorithm runs forever. Telling the latter case apart from the first two cases in
which the algorithm does terminate is more difficult than one may suspect at first
glance. This problem, which is known as the halting problem, asks whether or not
a given algorithm (encoded as a string) on a given input ever halts. A fundamental
result of recursive function theory says that the halting problem is not decidable al-
gorithmically [Tur36], which means that there is provably no algorithm that solves
the halting problem. This result is the first in a long list of so-called undecidability
results that show the limitations of algorithms and computers.

EUCLID(n, m) {
if (m = 0) return n;
else return EUCLID(m, n mod m);

}

Fig. 2.1. Euclidian Algorithm

Let us consider an example. One of the most simple and most profound algo-
rithms has been known since ancient times and is mentioned in the book “Elements”
by Euclid of Alexandria (about 325 until 265 B.C.). Despite its age, Euclid’s al-
gorithm is still very useful, for example in Chapter 7 that introduces the popular
public-key cryptosystem RSA.

Let N = {0, 1, 2, . . .} be the set of natural numbers, and let Z = {0,±1,±2, . . .}
be the set of integers. The Euclidian Algorithm determines the greatest common
divisor of two given integers m and n with m ≤ n, i.e., the greatest number k ∈ N

for which there are numbers a, b ∈ Z with m = a ·k and n = b ·k. This k is denoted
by gcd(n, m), and is output by the algorithm shown in pseudocode in Figure 2.1.

The Euclidean Algorithm successively modifies the numbers given, n and m,
by calling itself recursively with the new numbers m (instead of n) and n mod m
(instead of m); the notation “n mod m” and the arithmetics modulo m are explained
in Problem 2.1 at the end of this chapter. EUCLID keeps performing this recursion
until the break condition (m = 0) is reached. By this time, the current value of n is
the greatest common divisor gcd(n, m) of the original input n and m, see (2.1).

There is no doubt that this recursive representation of the Euclidean Algorithm is
elegant. It can, however, as well be implemented iteratively. This means that there are
no recursive calls, but the intermediate values of the computation are stored explicitly
on a stack. Table 2.1 shows a test run for the Euclidean Algorithm on input n = 170
and m = 102. In this particular case, the algorithm indeed computes the correct
solution, since gcd(170, 102) = 34. However, already Edsger Dijkstra (1930 until
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n m n mod m

170 102 68
102 68 34
68 34 0

34 0

Table 2.1. Test run of the Euclidean Algorithm

2002) knew that such tests for particular inputs can display merely the presence of
errors, yet not their absence. To prove the correctness of Euclid’s algorithm, it is
enough to show the following equation:

gcd(n, m) = gcd(m, n mod m). (2.1)

For the number r = n mod m and an appropriate number s ∈ Z, we have
n = s·m+r, where 0 ≤ r < m. In order to prove (2.1), we show that every common
divisor of n and m is also a common divisor of m and r = n mod m, and vice versa.
Let k be any common divisor of m and n. Then, there are numbers a, b ∈ Z with
m = a · k and n = b · k. Substituting these values, we obtain b · k = s ·m + r =
s ·a ·k+r, which implies r = (b−s ·a)k. Thus, k is also a divisor of r = n mod m.
Conversely, let k now be any common divisor of m and r = n mod m. Then, there
are numbers c, d ∈ Z with m = c · k and r = d · k. Substituting these values now
gives n = s ·m + r = s · c · k + d · k = (s · c + d)k. Hence, k is also a divisor of n,
and (2.1) is proven. Thus, the Euclidean Algorithm is correct.

As mentioned above, the Euclidian Algorithm follows a recursive divide-and-
conquer strategy, since the numbers considered become strictly smaller with each
recursive call. The general scheme of divide-and-conquer algorithms is given by:

1. Divide the problem into pairwise disjoint subproblems of the same type and of
smaller size.

2. Conquer the problem by solving these smaller subproblems recursively.
3. Merge the solutions of the subproblems to a solution of the original problem.

Unlike most other applications of divide-and-conquer algorithms, the Euclidean
Algorithm does not require the merge step, since merging the solutions of the smaller
subproblems is not necessary here to obtain a solution of the given problem.

However, in the extended version of Euclid’s algorithm displayed in Figure 2.2,
the merge step is not omitted. This extended Euclidean Algorithm computes a linear
combination of the given two numbers, m and n, by determining numbers x and
y such that gcd(n, m) = x · n + y · m. This algorithm again is very useful in
various applications such as the RSA cryptosystem in Chapter 7. The merge step here
consists of computing the values x and y from the recursively computed values x′

und y′. The notation “
⌊

n
m

⌋
” in Figure 2.2 denotes the greatest integer not exceeding

n/m. Similarly, “
⌈

n
m

⌉
” denotes the least integer not dropping below n/m.

Table 2.2 shows a test run of the extended algorithm of Euclid for n = 170 and
m = 102. The two leftmost columns of the table are filled top-down as with the Eu-
clidean Algorithm, thereby calling the algorithm EXTENDED-EUCLID recursively
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EXTENDED-EUCLID(n, m) {
if (m = 0) return (n, 1, 0);
else {

(g, x′, y′) := EXTENDED-EUCLID(m, n mod m);
x := y′;
y := x′ − y′ ∗ ¨

n
m

˝
;

return (g, x, y);
}

}

Fig. 2.2. Extended Euclidean Algorithm

for new values of n and m in each loop. In the last row of the table, the break condi-
tion is reached with n = 34 and m = 0. No further recursive call is initiated, but the
algorithm now sets (g, x, y) := (34, 1, 0), and while EXTENDED-EUCLID is return-
ing from its recursive calls one after the other, the three rightmost columns are filled
bottom-up. Finally, EXTENDED-EUCLID(170, 102) returns the triple (34,−1, 2) in
the first row of the table. This result indeed is correct in this particular case, since

(−1) · 170 + 2 · 102 = 34 = gcd(170, 102).

Exercise 2.1 asks you to prove the correctness of EXTENDED-EUCLID.

n m g x y

170 102 34 −1 2

102 68 34 1 −1
68 34 34 0 1
34 0 34 1 0

Table 2.2. Test run of the extended Euclidean Algorithm

Another important feature of an algorithm besides its correctness is its running
time. Is the algorithm efficient? Or does it require, for certain “hard” problem in-
stances or even on average, an exorbitantly long running time until it yields the re-
sult? The running times of the Euclidean Algorithm and of its extended version are
essentially the same; therefore, only the former is to be analyzed now. Obviously,
it is crucial to estimate the number of recursive calls of the Euclidean Algorithm in
order to analyze its running time. To this end, some preliminaries are in order.

Definition 2.1 (Fibonacci Numbers).
The sequence F = {fn}n≥0 of Fibonacci numbers is defined inductively by:

f0 = 0,

f1 = 1,

fn = fn−1 + fn−2 for n ≥ 2.
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Mathematically speaking, the Fibonacci numbers are defined by a homogeneous
linear recurrence equation of second degree. That is, the elements of the sequence F
are of the form:

T (0) = r,

T (1) = s, (2.2)

T (n) = p · T (n− 1) + q · T (n− 2) for n ≥ 2,

where p, q, r, and s are real constants with p �= 0 and q �= 0.

Theorem 2.2. The solution of the recurrence equation (2.2) has the form:

T (n) =
{

A · αn −B · βn if α �= β
(A · n + B)αn if α = β,

where α and β are the two real solutions to the quadratic equation a2−p ·a−q = 0,
and where the numbers A and B are defined as follows:

A =
{ s−r·β

α−β if α �= β
s−r·α

α if α = β
and B =

{ s−r·α
α−β if α �= β

r if α = β.

The proof of Theorem 2.2 is left to the reader as Exercise 2.2. In the case of the
Fibonacci numbers, the constants satisfy p = q = s = 1 and r = 0. The first twenty
values of the sequence F are given in Table 2.3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Table 2.3. The first twenty Fibonacci numbers

The rapid growth of the first Fibonacci numbers in Table 2.3 suggests that the
sequence F = {fn}n≥0 grows exponentially. Before proving this conjecture, we
look at an illustrative example. When one thinks of exponential growth, the breeding
of rabbits might come to mind. And this was indeed the original motivation for the
investigations of Leonardo Pisano (1170 until 1250) whose nickname was Fibonacci.
The sequence that now carries his name provides a mathematical description of rabbit
reproduction, under certain simplifying assumptions. In Fibonacci’s model, every
rabbit gives birth to one new rabbit each month, except for the first two months of
its lifetime. Furthermore, in abstraction of reality, it is assumed that all rabbits are of
the same gender and immortal, and they do not have any natural enemies. Starting
your rabbit breeding with just one rabbit makes you the proud owner of a population
with exactly fn rabbits after n months. Table 2.4 displays this process for the initial
part of the sequence F.
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0th month f0 = 0

1st month f1 = 1

2nd month f2 = 1

3rd month f3 = 2

4th month f4 = 3

5th month f5 = 5

6th month f6 = 8

7th month f7 = 13

8th month f8 = 21

9th month f9 = 34

10th month f10 = 55

Table 2.4. The Fibonacci numbers proliferate like rabbits and vice versa

We now prove our conjecture that the sequence F = {fn}n≥0 grows exponen-
tially in n. We show by induction on n that for suitable constants a and c and for all
sufficiently large n:

fn ≥ c · an. (2.3)

The induction base is trivial. Now, substituting the induction hypothesis into the
recurrence equation for fn gives:

fn = fn−1 + fn−2 ≥ c · an−1 + c · an−2 = c · an · a + 1
a2

≥ c · an.

The induction is completed if we can show the latter inequality above, which is
equivalent to a2 − a − 1 ≤ 0. A quadratic equation of the form a2 + p · a + q = 0
has the two real-valued solutions−p/2±√

p2/4− q. In our case (a2− a− 1 = 0),
we have p = −1 = q and obtain the following solutions:

α =
1
2

+

√
1
4

+ 1 =
1 +

√
1 + 4

2
=

1 +
√

5
2

,

β =
1
2
−

√
1
4

+ 1 =
1−√1 + 4

2
=

1−√5
2

.

Hence, the induction step is shown for all a ≤ α =
(
1 +

√
5
)
/2 ≈ 1.618. The

number α =
(
1 +

√
5
)
/2 occurs in various contexts in mathematics and computer

science. In geometry, for example, this number occurs in subdividing a rectangle into
a square and a smaller rectangle such that the side lengths of the two rectangles have
the same ratio. This subdivision is called the “golden cut” and is described in detail
in Exercise 2.3.
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By Theorem 2.2, the numbers α and β yield A = 1/
√

5 and B = 1/
√

5, which
implies for the nth Fibonacci number that

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−√5

2

)n

. (2.4)

The second term in (2.4), −1/
√

5
(
(1−√5)/2

)n
, can be neglected, since β =(

1−√5
)
/2 has an absolute value smaller than 1, and 1/

√
5
(
(1−√5)/2

)n
thus

goes to zero for increasing n. Analogously, one can show that for suitable constants
d and y and for all sufficiently large n,

fn ≤ d · yn.

Next, we show that the sequence F = {fn}n≥0 of Fibonacci numbers is closely
related to the number of calls of the Euclidean Algorithm. Theorem 2.3 determines
numbers giving the worst running time of the Euclidean Algorithm.

Theorem 2.3. For each k ≥ 1, the following two statements hold.

1. The computation of EUCLID(fk+3, fk+2) requires exactly k recursive calls.
2. If the computation of EUCLID(n, m) makes at least k recursive calls, then |n| ≥

fk+3 and |m| ≥ fk+2.

Proof. Without loss of generality, we may assume that the inputs n and m in the
second assertion are from N, so we do not have to consider negative values and may
drop the absolute values. Both assertions of the theorem are shown by induction on k.

Induction base: k = 1. Then, fk+3 = f4 = 3 and fk+2 = f3 = 2. Since
EUCLID(3, 2) triggers the recursive call of EUCLID(2, 1), which in turn terminates
without any further recursive call, the first assertion is true for k = 1. The second as-
sertion is also true for k = 1, since EUCLID(2, 1), EUCLID(2, 2), and EUCLID(n, 1)
terminate without any further recursive calls for all n ≥ 1.

Induction step: (k− 1) �→ k. Let k ≥ 2. By definition of the fn, we have fn ≥ 1
for all n ≥ 1, and thus fn > fn−1 for each n ≥ 3. Hence, for n ≥ 1,

fn+2 < fn+3 = fn+2 + fn+1 < 2fn+2,

which implies that fk+3 is not divisible by fk+2 for k ≥ 2.
Since fk+3 mod fk+2 = fk+1, the computation of EUCLID(fk+3, fk+2) re-

cursively calls EUCLID(fk+2, fk+1). By the induction hypothesis, the computation
of EUCLID(fk+2, fk+1) requires exactly k − 1 further recursive calls. Altogether,
EUCLID(fk+3, fk+2) requires exactly k calls, which proves the first assertion.

To prove the second assertion, we assume that the computation of EUCLID(n, m)
requires at least k ≥ 2 recursive calls. The first call is EUCLID(m, n mod m). By
the induction hypothesis, we have m ≥ fk+2 and (n mod m) ≥ fk+1. It remains
to prove that n ≥ fk+3. Since n ≥ m and m is no divisor of n (for otherwise,
EUCLID(n, m) had not been called), it follows that
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n ≥ m + (n mod m) ≥ fk+2 + fk+1 = fk+3,

which proves the theorem.

For any given function g : N → N, define the function class O(g) by

O(g) = {f : N → N | (∃c > 0) (∃n0 ∈ N) (∀n ≥ n0) [f(n) ≤ c · g(n)]}.

(If you are not familiar with notation such as the ∃ and ∀ quantifiers, see Section 2.3.)
A function f ∈ O(g) grows no faster than g asymptotically. The O notation ne-

glects additive constants, constant factors, and finitely many exceptions. That is why
it is so useful for analyzing the running times of algorithms. In particular, the base of
logarithms is irrelevant in the O notation, see Exercise 2.4. Therefore, we agree by
convention that the logarithm log is always base 2, dropping the subscript. Additional
asymptotic rate-of-growth notation is provided in Section 3.2, see Definition 3.5.

Returning to the analysis of EUCLID, Theorem 2.3 says that the number of recur-
sive calls of EUCLID(n, m) is bounded by max{k | fk+3 ≤ n}. We know from (2.3)

that fk+3 ≥ c · αk+3 for α = 1+
√

5
2 ≈ 1.618 and a suitable constant c. Taking

logarithms to the base α in the inequality c · αk+3 ≤ fk+3 ≤ n then gives:

logα c + logα αk+3 = logα c + k + 3 ≤ logα n.

It follows from the above considerations that the number k of recursive calls
of EUCLID(n, m) is in O(log n). The input numbers n and m can be represented in
binary by b = �log n�+1 bits; see the paragraph right after Definition 2.4. Noting that
one iteration of EUCLID has the bit complexity O(b2), which is due to one division
when computing gcd(n, m), we obtain a bit complexity ofO(log n)·O(b2) = O(b3)
for the entire computation. In fact, the bit complexity of EUCLID can even be shown
to be in O(b2), see [CLRS01, Sch01]. Hence, EUCLID is an efficient algorithm.

2.2 Formal Languages and Recursive Function Theory

In this section, the foundations of the theory of formal languages and automata are
laid, and recursive function theory is introduced. Proofs are omitted in this section.

Definition 2.4 (Alphabet, String, and Language).
An alphabet is a finite, nonempty set Σ of letters (or symbols). A string over Σ is a
finite sequence of elements from Σ. The set of all strings over Σ is denoted by Σ∗.

The length of any string w ∈ Σ∗, denoted by |w|, is the number of symbols
occurring in w. The empty string, denoted by ε, is the uniquely determined string of
length zero. Every subset of Σ∗ is a (formal) language (over Σ). The cardinality of a
language L ⊆ Σ∗ is the number of its strings, and is denoted by ‖L‖.

Problems are encoded as languages over some fixed alphabet; typically, we are
working with the binary alphabet Σ = {0, 1}. Numbers are encoded as strings over
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some fixed alphabet. In particular, bin(n) denotes the binary representation of a
number n ∈ N without leading zeros. For example, bin(19) = 10011.

In addition to the usual set-theoretic operations such as union, intersection, and
complementation that can be performed on languages, we now define some further
basic operations on strings and languages.

Definition 2.5 (Operations on Strings and Languages).

• Let A and B be any languages over some alphabet Σ. Define the intersection
of A and B by A ∩ B = {x ∈ Σ∗ | x ∈ A and x ∈ B}, the union of A and
B by A ∪ B = {x ∈ Σ∗ | x ∈ A or x ∈ B}, and the complement of A by
A = {x ∈ Σ∗ | x �∈ A}.

• Let u = u1u2 · · ·um and v = v1v2 · · · vn be two strings over some alphabet Σ.
The concatenation of u and v is defined by uv = u1u2 · · ·umv1v2 · · · vn.

• The concatenation of two languages A ⊆ Σ∗ and B ⊆ Σ∗ is defined by

AB = {ab | a ∈ A and b ∈ B}.
• The iteration of a language A ⊆ Σ∗ (a.k.a. the Kleene closure of A) is the

language A∗, which is inductively defined by

A0 = {ε}, An = AAn−1, A∗ =
⋃
n≥0

An.

Define the ε-free iteration of A by A+ =
⋃

n≥1 An. Note that A+ = A∗ − {ε}.
If you start learning a new language, such as Dutch, you first need to learn the

language’s vocabulary and its grammar. The vocabulary is just the set of all words
in this language. The grammar is a list of rules that specifies how to combine words
and word groups, along with the appropriate punctuation, so as to form syntactically
correct sentences. Later on, you will learn how to form semantically correct (or even
meaningful) sentences. For now, let us focus on the syntax of languages. Consider,
for example, the language L = {anbn | n ∈ N}, which consists of all strings that
start with n symbols a followed by n symbols b, for any n ≥ 0. Note that also the
empty string ε belongs to L, due to the case n = 0.

A formal language such as L has one thing in common with a natural language
such as Dutch: They both need a grammar specifying their syntax.

Definition 2.6 (Grammar). A grammar is a quadruple G = (Σ, Γ, S, R), where
Σ and Γ are disjoint alphabets (i.e., Σ ∩ Γ = ∅), S ∈ Γ is the start symbol, and
R ⊆ (Σ ∪ Γ )+ × (Σ ∪ Γ )∗ is the finite set of rules (or productions). The symbols
in Σ are called terminals; they are indicated by lower-case letters. The symbols in
Γ are called nonterminals (or variables); they are indicated by capital letters. Rules
(p, q) in R are also written as p → q.

Next, we explain how to derive strings by applying the rules of a grammar, and
we define the language generated by a grammar. Such languages contain only strings
over the terminal alphabet.
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Definition 2.7. Let G = (Σ, Γ, S, R) be a grammar, and let u, v ∈ (Σ ∪ Γ )∗.

• Define the (immediate) derivation relation with respect to G, denoted by �G, by:

u �G v ⇐⇒ u = xpy and v = xqy for some x, y ∈ (Σ ∪ Γ )∗

and for some rule p → q in R.

We write u �n
G v if and only if u = x0 �G x1 �G · · · �G xn = v for n ≥ 0 and

for some x0, x1, . . . , xn ∈ (Σ ∪ Γ )∗. In particular, u �0
G u.

• Define �∗G=
⋃

n≥0 �n
G to be the reflexive and transitive closure of �G, i.e., �∗G is

the smallest reflexive, transitive binary relation on (Σ ∪ Γ )∗ containing �G.
• Strings of terminal letters are called words. The language of G is defined by

L(G) = {w ∈ Σ∗ | S �∗G w}.

Example 2.8 (Grammar). Consider the following two simple grammars.

1. Let G1 = (Σ1, Γ1, S1, R1) be the following grammar: the terminal alphabet is
Σ1 = {a, b}, the nonterminal alphabet is Γ1 = {S1}, and the set of rules is
given by R1 = {S1 → aS1b, S1 → ε}. It is not hard to see that G1 generates
the language L = {anbn | n ∈ N}, i.e., L(G1) = L; see Exercise 2.5.

2. Now, let G2 = (Σ2, Γ2, S2, R2) be the following grammar: the terminal al-
phabet is Σ2 = {by, eaten, fox, rabbit, the, was}, the nonterminal alphabet is
Γ2 = {S2, Pn, Pv, Va, V, N, P, A}, and the set of rules is given by

R2 =
{

S2 → PnPv, Pn → AN, Pv → VaV PPn, Va → was,
V → eaten, N → fox, N → rabbit, P → by, A→ the

}
.

Note that English words such as “fox” are considered as only one terminal sym-
bol here. The nonterminals have the following intuitive meaning: S2 for “sen-
tence,” Pn for “noun phrase,” Pv for “verb phrase,” Va for “auxiliary verb,” V
for “verb,” N for “noun,” P for “preposition,” and A for “article.”
Obviously, by applying appropriate rules of the grammar, one can derive from
the start symbol S2 the following English sentence:

the rabbit was eaten by the fox

which is a sequence of terminal letters and thus a word in L(G2), the language
of G2. Figure 2.3 displays the syntax tree for this derivation. Note that also

the fox was eaten by the rabbit

can be derived from S2 and is thus a word in L(G2); see Exercise 2.5. Whether
this word, which represents an English sentence, expresses a true statement or
not is of no concern here; we are merely interested in the syntax of languages.

The process of deriving words is inherently nondeterministic, since more than
one rule may be applied in one derivation step. Syntax trees can be used to visualize
one concrete derivation, see Figure 2.3. Distinct grammars can generate the same
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S2

Pn Pv

A N Va V P Pn

A N

the rabbit was eaten by the fox

Fig. 2.3. Syntax tree for the grammar G2 from Example 2.8

language; in fact, for every language L, there are infinitely many distinct grammars
generating L. Two grammars are said to be equivalent if and only if they generate
the same language. That is, a grammar is a syntactical object that specifies via the
notions given in Definition 2.7 a semantical object, namely its language.

Grammars are classified according to certain restrictions imposed on their rules.
This gives rise to the Chomsky hierarchy, a hierarchy of classes of languages to be
defined now.

Definition 2.9 (Chomsky Hierarchy). Let G = (Σ, Γ, S, R) be a grammar.

• G is a grammar of type 0 if there are no restrictions imposed on R.
• G is a grammar of type 1 (or a “context-sensitive” grammar) if all rules p → q

in R satisfy |p| ≤ |q|.
• G is a grammar of type 2 (or a “context-free” grammar) if all rules p → q in R

satisfy p ∈ Γ .
• G is a grammar of type 3 (or a “regular” grammar) if all rules p → q in R satisfy

p ∈ Γ and q ∈ Σ ∪ΣΓ .
• A language L ⊆ Σ∗ is of type i ∈ {0, 1, 2, 3} if and only if there exists a

grammar G of type i such that L(G) = L.
• For each i ∈ {0, 1, 2, 3}, define the language class

Li = {L(G) |G is a grammar of type i}.

The Chomsky hierarchy consists of these four language classes, which are com-
monly referred to as follows:
– L0 is the class of all languages that can be generated by some grammar;
– L1 = CS is the class of all context-sensitive languages;
– L2 = CF is the class of all context-free languages;
– L3 = REG is the class of all regular languages.

Obviously, both grammars from Example 2.8 are context-free. The term “context-
free” for type 2 grammars accounts for the fact that applying rules of the form A → q,
where A is a nonterminal, replaces A by q regardless of the context of A. Similarly,
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the term “context-sensitive” for type 1 grammars accounts for the fact that any gram-
mar whose rules have the form p → q with |p| ≤ |q| can be transformed into an
equivalent grammar G = (Σ, Γ, S, R) whose rules are of the form uAv → uwv
with A ∈ Γ , u, v, w ∈ (Σ ∪ Γ )∗, and w �= ε. That is, the nonterminal A can be
replaced only in the context of u and v when applying such a rule of G.

It is not difficult to see that the Chomsky hierarchy has the inclusion structure
stated in Fact 2.10. One can show that all these inclusions are strict, see Theo-
rem 2.21. In particular, the context-free language L = {anbn | n ∈ N} defined
in Example 2.8 is not regular, which proves that REG �= CF; see Problem 2.2.

Fact 2.10 REG ⊆ CF ⊆ CS ⊆ L0.

Among the classes of the Chomsky hierarchy, the context-free languages are par-
ticularly important in computer science, e.g., in building compilers for programming
languages. However, this theme is not to be pursued here. Rather, we now turn to au-
tomata theory and recursive function theory both of which are closely related to the
theory of formal languages. In particular, each class of the Chomsky hierarchy can be
characterized by some suitable type of automata. For example, for the lowest class in
the hierarchy, L3 = REG, it is known that every regular language can be recognized
by a finite automaton, and every language recognizable by some finite automaton is
regular. We start by introducing the notion of a deterministic finite automaton.

Definition 2.11 (Deterministic Finite Automaton). A deterministic finite au-
tomaton (a DFA, for short) is a quintuple M = (Σ, Z, δ, z0, F ), where Σ is an
alphabet, Z is a finite, nonempty set of states with Σ ∩Z = ∅, δ : Z×Σ → Z is the
transition function, z0 ∈ Z is the initial state, and F ⊆ Z is the set of final states.

The extended transition function δ̂ : Z×Σ∗ → Z of M is inductively defined by

δ̂(z, ε) = z for each z ∈ Z;

δ̂(z, ax) = δ̂(δ(z, a), x) for each z ∈ Z , a ∈ Σ, and x ∈ Σ∗.

The language accepted by M is defined by L(M) = {x ∈ Σ∗ | δ̂(z0, x) ∈ F}.
A finite automaton M can be represented by a graph whose vertices are the states

of M and whose edges indicate a transition according to M ’s transition function δ. If
δ(z, a) = z′ for some symbol a ∈ Σ and for two states z, z′ ∈ Z , then the directed
edge from z to z′ is labeled by a. The distinguished initial state z0 is marked by an
arrow pointing to it, and the final states are marked by two circles, see Figure 2.4.

As noted in Definition 2.11, DFAs can recognize languages. Given an input string
x ∈ Σ∗, DFA M executes |x| steps after which it either accepts or rejects x. Starting
at the initial state z0, M reads its input x symbol by symbol, one in each step, moving
from state to state according to its transition function δ: If M currently is in state z
and reads the symbol a ∈ Σ and δ(z, a) = z′, then M ’s state changes into z′. The
computation halts after the last symbol of x is read. If M is in a final state then, it
accepts x; otherwise, it rejects x. The extended transition function formally expresses
the process just described: δ̂(z0, x) ∈ F if and only if M accepts x.
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Fig. 2.4. A deterministic and a nondeterministic finite automaton

We now introduce the notion of nondeterminism, a very powerful concept that is
crucial in many areas of computer science and in particular in the upcoming chapters
of this book. The DFA shown on the left-hand side in Figure 2.4 is deterministic,
since every move it can make is uniquely determined by its transition function; see
also the left table in Table 2.5. The right-hand side in Figure 2.4 and in Table 2.5
displays a nondeterministic finite automaton whose transition function maps pairs
(z, a) of states and symbols to a subset of the states. Thus, computation paths of this
automaton are not uniquely determined. An input is accepted by such a nondeter-
ministic finite automaton if and only if there exists at least one path from one of the
initial states to one of the final states. The question of which languages are accepted
by the DFA and the NFA in Figure 2.4 is left to the reader as Exercise 2.6.

δ z0 z1 z2 z3 z4

a z1 z2 z3 z4 z0

b z4 z0 z1 z2 z3

δ z0 z1 z2 z3 z4 z5 z6

a {z2, z3} ∅ {z4} {z4} {z4} {z5} ∅
b ∅ {z6} {z1} ∅ {z4} {z2, z5} {z5}

Table 2.5. Transition functions of the DFA and the NFA from Figure 2.4

Definition 2.12 (Nondeterministic Finite Automaton). A nondeterministic finite
automaton (an NFA, for short) is a quintuple M = (Σ, Z, δ, S, F ), where Σ is an
alphabet, Z is a finite, nonempty set of states with Σ ∩ Z = ∅, δ : Z ×Σ → P(Z)
is the transition function, S ⊆ Z is the set of initial states, and F ⊆ Z is the set of
final states. Here, P(Z) denotes the power set of Z , i.e., the set of all subsets of Z .

The extended transition function δ̂ : P(Z) × Σ∗ → P(Z) of M is inductively
defined by

δ̂(Z ′, ε) = Z ′ for each Z ′ ⊆ Z;

δ̂(Z ′, ax) =
⋃

z∈Z′
δ̂(δ(z, a), x) for each Z ′ ⊆ Z , a ∈ Σ, and x ∈ Σ∗.

The language accepted by M is defined by L(M) = {x ∈ Σ∗ | δ̂(S, x) ∩ F �= ∅}.
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Every language can be recognized by an NFA if and only if it can be generated
by a regular grammar, see Exercise 2.7. By definition, every DFA is a particular NFA
whose transition function δ maps each pair (z, a) to a set containing exactly one state,
and whose set of initial states is also a singleton. Conversely, for every NFA there is
an equivalent DFA; the proof of Theorem 2.13 is left to the reader as Exercise 2.8.
Thus, regular grammars and deterministic and nondeterministic finite automata are
pairwise equivalent concepts; they all characterize the class of regular languages.

Theorem 2.13 (Rabin and Scott). Every language that can be recognized by
some NFA can also be recognized by some DFA.

Corollary 2.14. L3 = REG = {L(M) |M is a DFA} = {L(M) |M is an NFA}.
Similar characterizations by suitable types of automata are known for the other

classes of the Chomsky hierarchy as well. For instance, the class L2 = CF of
context-free languages is characterized by push-down automata, the class L1 = CS
of context-sensitive languages is characterized by linear bounded automata, and the
class L0 is characterized by Turing machines, see Definitions 2.15 and 2.16 below.
This theme is not to be pursued any further here.

Complexity theory, one of the main topics of this book, is in particular concerned
with proving “lower bounds” on the computational complexity of problems. The dif-
ficulty here is that it does not suffice to analyze the running time of one concrete
algorithm solving a given problem. Rather, one has to prove that no algorithm what-
soever that solves this problem has a running time better than the bound to be shown.
Among the algorithms that must be considered in proving lower bounds for some
problem are even those algorithms that have not been designed as yet. Consequently,
one first has to formalize the notion of algorithms in a mathematically rigorous way,
for otherwise one could not speak about the set of algorithms in its totality.

Since the 1930s, various attempts have been made to propose a formal model of
algorithms. Any two of the models proposed are equivalent in the sense that either
one can be transformed into the other one. Loosely speaking, such a transformation
might be seen as some kind of compilation between distinct programming languages.
Due to the equivalence of all these models of computation, Church’s Thesis postu-
lates that each one of these algorithmic models captures precisely the notion of what
intuitively is considered to be computable, an inherently somewhat vague notion.

The algorithmic model adopted here is the Turing machine, introduced in 1936
by Alan Turing (1912 until 1954) in his groundbreaking paper [Tur36]. The Turing
machine is a quite simple, abstract model of a computer. We now define this model
by giving its syntax and its semantics. As with finite automata, one can distinguish
deterministic and nondeterministic Turing machines. It is convenient to start by intro-
ducing the latter model first. Deterministic Turing machines then result immediately
as a special case of nondeterministic Turing machines.

First, we give some technical details and describe the working method of Turing
machines. A Turing machine is equipped with k working tapes that are infinite in
both directions and subdivided into cells. For each tape, there is a head accessing
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exactly one cell at a time. Each cell may contain one symbol. The absence of a sym-
bol in a cell is indicated by a special symbol, the blank �, belonging to the working
alphabet of the machine, but not to its input alphabet. The actual computation is per-
formed on the working tapes, and it starts with the input string being written on the
input tape and with all other tape cells being blank. If the computation is completed,
the machine halts with the resulting output string being written on the output tape. It
may be determined that the input tape is a read-only tape and that the output tape is a
write-only tape, but such a convention is not necessary and the input and output tapes
may as well be regular read-write working tapes. One may also agree by convention
on various further variations of the technical details and constraints. For example,
one may define tapes to be infinite in only one direction, or that the tape heads are
allowed to move in just one direction, or that the number of tapes is restricted, etc.

One step in the computation of a Turing machine consists of the following ac-
tions: Each head reads the symbol written on the cell it is accessing currently and
possibly overwrites it with another symbol, and then the head moves either one cell
to the left, or one cell to the right, or it does not move at all. At the same time, the
machine may change its current state that is stored in its finite control. Figure 2.5
displays a Turing machine with two tapes.

finite
control

� S H H KROW�! � I N � P R G R E S S !O �

TUPNI� � � � � � � � � � � � � � � � � � ��

input tape

working tape

head

head
H

Fig. 2.5. A Turing machine

Definition 2.15 (Syntax of Turing Machines).
A (nondeterministic) Turing machine with k tapes (an NTM with k tapes, for short)
is a septuple M = (Σ, Γ, Z, δ, z0, �, F ), where Σ is the input alphabet, Γ is the
working alphabet with Σ ⊆ Γ , Z is a finite, nonempty set of states with Z ∩ Γ = ∅,
δ : Z × Γ k → P(Z × Γ k × {L, R, N}k) is the transition function, z0 ∈ Z is the
initial state, � ∈ Γ − Σ is the blank symbol, and F is the set of final states with
F ⊆ Z . Recall that P(Z) denotes the power set of Z , the set of all subsets of Z .

In place of (z′,b,x) ∈ δ(z, a) with z, z′ ∈ Z , a,b ∈ Γ k, and x ∈ {L, R, N}k,
we also write (z, a) �→ (z′,b,x). Such a Turing instruction has the following mean-
ing. If z is the current state of M and, for each i with 1 ≤ i ≤ k, if the ith head of M
scanning the ith tape of M currently reads a cell on which the symbol ai is written,
where a = (a1, a2, . . . , ak), then:
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• ai is replaced by bi, where b = (b1, b2, . . . , bk),
• z′ is the new state of M , and
• M moves its ith head according to xi ∈ {L, R, N}, where x = (x1, x2, . . . , xk),

i.e., the ith head moves one cell to the left if xi = L, or one cell to the right if
xi = R, or it does not move at all if xi = N .

The special case of a deterministic Turing machine with k tapes (a DTM with k
tapes, for short) is obtained by letting the transition function δ map from Z × Γ k to
Z × Γ k × {L, R, N}k.

For k = 1, we obtain the one-tape Turing machine for which we simply use
NTM or DTM as a shorthand. Every k-tape NTM and k-tape DTM can be simulated
by an equivalent one-tape Turing machine, with only doubling the running time. If
efficiency is important, it can be sensible to have more than one tape.

Turing machines can be used as acceptors, which accept languages, or they can be
used as transducers, which compute functions. This difference is taken into account
when we now define the semantics of Turing machines. For convenience, we restrict
ourselves here to the case of one-tape Turing machines; the generalization to the case
of k-tape Turing machines is straightforward.

Definition 2.16 (Semantics of Turing Machines).
Let M = (Σ, Γ, Z, δ, z0, �, F ) be a one-tape NTM. A configuration of M is a string
k ∈ Γ ∗ZΓ ∗. Here, k = αzβ means that αβ is the current tape inscription (i.e., the
string whose letters are written on the already visited part of the tape), that the head
currently scans the first symbol of β, and that z is the current state of M .

On the set KM = Γ ∗ZΓ ∗ of all configurations of M , we define a binary rela-
tion �M describing the transition from a configuration k ∈ KM to another configura-
tion k′ ∈ KM by applying the transition function δ. For all strings α = a1a2 · · · am

and β = b1b2 · · · bn in Γ ∗, where m ≥ 0 and n ≥ 1, and for all states z ∈ Z , define

αzβ �M

⎧⎨⎩
a1a2 · · · amz′cb2 · · · bn if (z, b1) �→ (z′, c, N), m ≥ 0, and n ≥ 1
a1a2 · · · amcz′b2 · · · bn if (z, b1) �→ (z′, c, R), m ≥ 0, and n ≥ 2
a1a2 · · · am−1z

′amcb2 · · · bn if (z, b1) �→ (z′, c, L), m ≥ 1, and n ≥ 1.

Two special cases are to be considered separately:

1. If n = 1 and (z, b1) �→ (z′, c, R) (i.e., M ’s head moves to the right and encoun-
ters a � symbol), then a1a2 · · · amzb1 �M a1a2 · · · amcz′�.

2. If m = 0 and (z, b1) �→ (z′, c, L) (i.e., M ’s head moves to the left and encoun-
ters a � symbol), then zb1b2 · · · bn �M z′�cb2 · · · bn.

The initial configuration of M on input x is always z0x. The final configurations
of M on input x have the form αzβ with z ∈ F and α, β ∈ Γ ∗.

Let �∗M be the reflexive, transitive closure of �M . That is, for any two configu-
rations k, k′ ∈ KM , we have k �∗M k′ if and only if there exists a finite sequence
k0, k1, . . . , kt of configurations in KM such that

k = k0 �M k1 �M · · · �M kt = k′,
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where k = k0 = kt = k′ is possible. If k0 = z0x is the initial configuration of M on
input x, then this sequence of configurations is called a finite computation of M(x).
If in addition kt is a final configuration (i.e., the state in kt is a final state), we say
that M halts on input x. The language accepted by M is defined as

L(M) = {x ∈ Σ∗ | z0x �∗M αzβ with z ∈ F and α, β ∈ Γ ∗}.
The set F of M ’s final states can also be partitioned into the set Fa of accepting final
states and the set Fr of rejecting final states, where F = Fa ∪ Fr and Fa ∩ Fr = ∅.
In this case, the language accepted by M is defined by

L(M) = {x ∈ Σ∗ | z0x �∗M αzβ with z ∈ Fa and α, β ∈ Γ ∗}.
Let Σ and ∆ be alphabets. A Turing machine M computes a word function

f : Σ∗ → ∆∗ if and only if for each x ∈ Σ∗ and for each y ∈ ∆∗,

• x ∈ Df if and only if M halts on input x after finitely many steps, and
• for each x ∈ Df , f(x) = y ⇐⇒ z0x �∗M zy for some z ∈ F ,

where Df denotes the domain of f . A word function is said to be computable if and
only if there is a Turing machine computing it.

A function f : Nk → N is said to be computable if and only if the word function
g : {0, 1, #}∗ → {0, 1}∗ is computable, which is defined by

g(bin(x1)#bin(x2)# · · ·#bin(xk)) = bin(f(x1, x2, . . . , xk)).

In the case of NTMs, configurations can have more than one successor config-
uration. Thus, we obtain a computation tree whose root is the initial configuration
and whose leaves are the final configurations. Trees are special graphs (see Defini-
tion 2.49 and Problem 2.3) and thus they consist of vertices and edges. The vertices
of the computation tree of M(x) are the configurations of M on input x. For any two
configurations k and k′ from KM , there exists a directed edge from k to k′ exactly
if k �M k′. A computation path in the tree of M(x) is a sequence of configurations
k0 �M k1 �M · · · �M kt �M · · · . The computation tree of an NTM can have
infinite paths. In the case of a DTM, every configuration (except the initial configu-
ration, of course) is uniquely determined by its immediate predecessor configuration.
That is why the computation tree of a DTM degenerates into a linear chain, starting
with the initial configuration and ending with some final configuration if the machine
halts on the given input; otherwise, the computation chain goes to infinity.

Definition 2.16 introduced the notion of computable functions that is central to
recursive function theory. Note that “computable function” and “recursive function”
are used synonymously here. For languages, the notion corresponding to the com-
putability of functions is called “decidability.”

Definition 2.17 (Computability and Decidability). Let IP denote the class of all
partial recursive (i.e., computable) functions, and let IR = {f | f ∈ IP and f is total}
denote the class of all total (i.e., everywhere defined) recursive functions. The char-
acteristic function of a language L is defined by
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cL(x) =
{

1 if x ∈ L
0 if x �∈ L.

A language L is said to be decidable if and only if cL ∈ IR. Let REC denote the class
of all decidable languages.

It can be shown that every context-sensitive language is decidable: CS ⊆ REC.
Moreover, this inclusion is strict: CS �= REC.

Example 2.18. Consider the language L = {anbncn | n ≥ 1}. A Turing machine
accepting L is defined by

M = ({a, b, c}, {a, b, c, $, �}, {z0, z1, . . . , z6}, δ, z0, �, {z6}),
where the list of M ’s Turing instructions according to the transition function δ is
given in Table 2.6. Table 2.7 gives the meaning of the single states of M as well as
the intention behind each state of M . Since cL ∈ IR via M , L is decidable. Note
that M has the property that it never leaves the range of its tape on which the input is
written. Such a Turing machine is called a linear bounded automaton. Since the class
CS can be characterized by linear bounded automata, L is even context-sensitive.
However, L is not context-free, which proves that CF �= CS; see Problem 2.2.

(z0, a) �→ (z1, $, R) (z2, $) �→ (z2, $, R) (z5, c) �→ (z5, c, L)
(z1, a) �→ (z1, a, R) (z3, c) �→ (z3, c, R) (z5, $) �→ (z5, $, L)
(z1, b) �→ (z2, $, R) (z3, �) �→ (z4, �, L) (z5, b) �→ (z5, b, L)
(z1$) �→ (z1, $, R) (z4, $) �→ (z4, $, L) (z5, a) �→ (z5, a, L)

(z2, b) �→ (z2, b, R) (z4, �) �→ (z6, �, R) (z5, �) �→ (z0, �, R)
(z2, c) �→ (z3, $, R) (z4, c) �→ (z5, c, L) (z0, $) �→ (z0, $, R)

Table 2.6. M ’s transition function δ for L = {anbncn | n ≥ 1}

state meaning intention

z0 initial state start a new cycle
z1 one a stored search for the next b

z2 one a and one b stored search for the next c

z3 one a, one b, and one c deleted search for the right boundary
z4 right boundary reached move back and test whether all a, b, c are deleted
z5 test not successful move back and start a new cycle
z6 test successful accept

Table 2.7. Interpretation of the states of M

Another notion central to recursive function theory is the notion of recursively
enumerable sets. Synonymously, such sets are called “semi-decidable,” since they
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can be defined equivalently as follows: A language L is semi-decidable if and only
if ĉL ∈ IP, where the partial characteristic function ĉL of L is defined by ĉL(x) = 1
if x ∈ L, and ĉL(x) is undefined if x �∈ L. In other words, a semi-decision for L
means that some algorithm (implemented, for example, by a Turing machine) gives
the answer “yes” for each input x in L, but never halts on inputs not in L. Below, we
define the equivalent notion of recursively enumerable sets.

Definition 2.19 (Recursive Enumerability).
A language A is said to be recursively enumerable if and only if either A is the empty
set, or A is the image of some total recursive function f . This function f enumerates
A recursively in the sense that A = {y | f(x) = y for some x}. Let RE denote the
class of all recursively enumerable sets.

Much is known about the recursively enumerable sets. Here, we state just a few
results without proof. Many such proofs apply the proof method of “diagonaliza-
tion.” An important ingredient needed for this method to work is the notion of a
“Gödelization of Turing machines,” which is not defined formally here. We merely
give a rough outline, leaving the somewhat cumbersome task of filling in the formal
details to the reader as Exercise 2.9.

Informally speaking, the objective is to systematically enumerate all algorithms
from a given class of algorithms; for example, one wants to enumerate all Turing
machines. The point is that (syntactically correct) Turing machines are encoded by
strings over some suitable alphabet. Such code words can be lexicographically or-
dered, provided that an ordering of the underlying alphabet is given. Strings that
do not encode syntactically correct Turing machines are dropped. In the remaining
ordered sequence, every Turing machine imaginable occurs. If the underlying alpha-
bet has k symbols, code words for Turing machines can be identified with numbers
in k-adic representation. Thus, we obtain an enumeration of Turing machines; the
number assigned to a machine is called its Gödel number, named after the famous
mathematician Kurt Gödel (1906 until 1978). The crucial point to observe here is
that one can effectively (i.e., via an algorithm) determine the Gödel number of a
given Turing machine, and vice versa.

To a given Gödelization M0, M1, M2, . . . of Turing machines that are transduc-
ers, there corresponds an enumeration ϕ0, ϕ1, ϕ2, . . . of functions in IP, where for
each i, Mi computes ϕi. Similarly, to a given Gödelization N0, N1, N2, . . . of Tur-
ing machines that are acceptors, there corresponds an enumeration L0, L1, L2, . . . of
languages, where for each i, Ni accepts Li, i.e., L(Ni) = Li. Of course, distinct
Turing machines can compute the same function or can accept the same language,
respectively. Thus, infinitely many machines (to which distinct Gödel numbers are
assigned) compute one and the same function or accept one and the same language,
respectively.

The totality of all languages corresponding to any fixed Gödelization of Turing
machine acceptors equals RE, the class of recursively enumerable sets. Below, we
list without proof a number of conditions equivalent to being recursively enumerable,
and further basic properties of the classes RE and REC.
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Theorem 2.20. 1. A ∈ REC if and only if A ∈ RE and A ∈ RE. Thus, REC ⊆ RE.
2. A ∈ RE if and only if A is the projection of some decidable set B, i.e., if and

only if there is a set B ∈ REC such that (∀x) [x ∈ A ⇐⇒ (∃y) [(x, y) ∈ B]].
3. Let ϕ0, ϕ1, . . . be a fixed Gödelization of IP, and let Di = Dϕi and Ri = Rϕi

denote the domain and range, respectively, of the ith function ϕi in IP. Then,

RE = {Di | i ∈ N} = {Ri | i ∈ N}.
4. The halting problem, which is defined by H = {i ∈ N | i ∈ Di}, is recursively

enumerable, yet not decidable. Thus, REC �= RE.
5. RE = L0.
6. A ∈ RE if and only if ĉA ∈ IP.

To summarize, Fact 2.10 can be expanded and strengthened to the following
claim, where for classes C and D of sets, we denote strict inclusion by C ⊂ D,
i.e., C ⊂ D ⇐⇒ (C ⊆ D and C �= D).

Theorem 2.21. L3 = REG ⊂ L2 = CF ⊂ L1 = CS ⊂ REC ⊂ L0 = RE.

Finally, we define the notion of oracle Turing machines.

Definition 2.22 (Oracle Turing Machine).
An oracle set (or an oracle, for short) is a set of strings. An oracle Turing machine M ,
say with oracle B, is a Turing machine that is equipped with a special working tape,
the so-called oracle tape or query tape, and whose set of states contains a special
query state, z?, and the two answer states zyes and zno. As long as M is not in the
query state z?, it works just like a regular Turing machine. However, when M reaches
the query state z? during its computation, it interrupts its computation and queries
its oracle about the string q that currently is written on the oracle tape. The oracle
B can be imagined as some kind of “black box”: B answers the query of whether it
contains q or not within one step of M ’s computation, regardless of how difficult it is
to decide the set B. If q ∈ B, then M changes its current state into the new state zyes
and continues its computation. Otherwise (if q �∈ B), M continues its computation
in the new state zno. We then say that the computation of M on input x is performed
relative to the oracle B, and we write MB(x).

Let L(MB) be the language accepted by MB . A class C of languages is said
to be relativizable if and only if it can be represented in this way by oracle Turing
machines relative to the empty oracle. A language L ∈ C is said to be represented by
an oracle Turing machine M if and only if L = L(M∅). For any relativizable class
C and for any oracle B, define the class C relative to B by

CB = {L(MB) |M is an oracle Turing machine representing some set in C}.
For any class B of oracle sets, define CB =

⋃
B∈B CB.

Clearly, C∅ = C, and the superscript can be dropped if the oracle is empty. We
use the shorthand DOTM and NOTM, respectively, for deterministic and for non-
deterministic oracle Turing machine. If the running time of a DOTM or an NOTM,
respectively, is bounded by some polynomial, we write DPOTM and NPOTM; see
also Section 3.2.
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2.3 Logic

2.3.1 Propositional Logic

“I did not have sex with that woman,” a former U.S. president is quoted as saying.
Did he make a true statement? Logic cannot answer this question. However, what
logic can do is evaluate the truth of complicated, involved propositions composed of
several atomic statements that are connected by logical operations such as and, or,
and not. The truth value of such a composed statement, which is called a (boolean)
formula, can be determined from the given truth values of the formula’s atomic state-
ments. For example, consider the following proposition:

“I did not have sex with that woman, or if I ever did have sex with that
woman and I’m not a liar, then I was just telling you the plain truth.”

One can safely make this statement, even under oath, simply because it is always
true, provided that we choose to interpret its contents textually. To analyze the truth
value of the formula S representing the sentence quoted above, decompose it into its
atomic parts and consider its logical structure.

What are the atomic parts of S? Let A denote the statement “I did not have sex
with that woman.” The statement “I ever did have sex with that woman” is the logical
negation of A and is written as ¬A. Further, let B denote the statement “I’m a liar,”
whose negation¬B is “I’m not a liar.” Finally, let C denote the statement “I was just
telling you the plain truth.”

We use the symbols ¬, ∨, ∧, =⇒, and ⇐⇒ for the logical operations negation
(“not”), disjunction (“or”), conjunction (“and”), implication (“if. . . then. . . ”), and
equivalence (“if and only if”). In this notation, the logical structure of S is

S = A ∨ ((¬A ∧ ¬B) =⇒ C). (2.5)

Boolean operations are defined by their truth tables. For example, the negation
¬ flips the truth value of its argument: If A is true then ¬A is false, and if A is
false then ¬A is true. For convenience, we represent the constant truth values true
and false by 1 and 0, respectively. Table 2.8 gives the truth tables for the remain-
ing boolean operations mentioned above, under every possible truth assignment of
their two arguments. Altogether, there are exactly 24 = 16 distinct binary boolean
operations.

x y x ∨ y x ∧ y x =⇒ y x ⇐⇒ y

0 0 0 0 1 1
0 1 1 0 1 0
1 0 1 0 0 0
1 1 1 1 1 1

Table 2.8. Truth tables for various boolean operations
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Suppose that the person making the statement S tells the truth. Clearly, S is
true in this case. Now suppose that the person making the statement S is lying, i.e.,
S is false. By the definition of “∨” in Table 2.8, both the statement A (“I did not
have sex with that woman”) and the statement (¬A ∧ ¬B) =⇒ C must be false.
Since A is false, we know that ¬A is true. However, B (“I’m a liar”) is also true
in this case, which implies that ¬B is false. Hence, the hypothesis ¬A ∧ ¬B of
the implication in (2.5) is false. Thus, by the definition of “=⇒” in Table 2.8, the
implication (¬A ∧¬B) =⇒ C is true, no matter whether or not its conclusion C is
true. Contradiction. It follows that the current case cannot occur: S is true regardless
of whether or not the person making the statement S was telling the plain truth.

The above argument shows that the notion of “truth” and the definition of a “liar”
are somewhat vague and elastic in real life, and especially so in politics. Therefore,
in the rigorous and abstract field of logic, we usually do not interpret the contents of
statements textually. In logical terms, S is not a “tautology,” i.e., S is not a boolean
formula that is true for each possible truth assignment to its variables. If we abstract
from its contents and regard its atomic subformulas A, B, and C merely as boolean
variables that are either true or false, then S is not always true because we obtain a
truth assignment that makes S false by setting each of A, B, and C to false.

Definition 2.23 (Syntax of Boolean Formulas).

• The boolean constants true and false, respectively, are represented by 1 and 0. Let
x1, x2, . . . be boolean variables, i.e., xi ∈ {0, 1} for each i. Boolean variables
and constants are also called atomic formulas. Variables and their negations are
called literals. We agree by convention that the subscripts of variables may be
dropped, and we may sometimes write x, y, z, . . . in place of x1, x2, x3, . . .

• Boolean formulas (formulas, for short) are inductively defined as follows:
1. Every atomic formula is a formula.
2. If ϕ is a formula, then ¬ϕ is a formula.
3. If ϕ and ψ are formulas, then ϕ ∨ ψ and ϕ ∧ ψ are formulas.

• As a shorthand, we use
– ϕ =⇒ ψ to denote ¬ϕ ∨ ψ,
– ϕ ⇐⇒ ψ to denote (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ),
–

∨n
i=1 ϕi to denote ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn, and

–
∧n

i=1 ϕi to denote ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn.
• A boolean formula ϕ is in conjunctive normal form (CNF, for short) if and only

if ϕ is of the form

ϕ(x1, x2, . . . , xn) =
m∧

i=1

⎛⎝ ki∨
j=1


i,j

⎞⎠
= (
1,1 ∨ · · · ∨ 
1,k1) ∧ · · · ∧ (
m,1 ∨ · · · ∨ 
m,km) ,

where the 
i,j are literals over {x1, x2, . . . , xn}, and the disjuncts
(∨ki

j=1 
i,j

)
of literals are said to be the clauses of ϕ.
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• A boolean formula ϕ is in k-CNF if and only if ϕ is in CNF and each clause of
ϕ has at most k literals.

Analogously to the notion of CNF defined above one can define the disjunctive
normal form (DNF, for short) of boolean formulas, see Exercise 2.10.

Definition 2.24 (Semantics of Boolean Formulas).

• Given a boolean formula ϕ(x1, x2, . . . , xn), a truth assignment of ϕ is a map-
ping α : {x1, x2, . . . , xn} → {0, 1} assigning truth values to each variable of ϕ.
By evaluating ϕ according to α, a truth value α(ϕ) ∈ {0, 1} is assigned to ϕ.

• A truth assignment α satisfies a boolean formula ϕ if and only if α makes ϕ true,
i.e., α(ϕ) = 1. A satisfying truth assignment α of a formula ϕ is also called a
model of ϕ. A boolean formula is satisfiable if and only if there exists a satisfying
truth assignment for it. A boolean formula ϕ is said to be valid (or a tautology)
if and only if every truth assignment of ϕ makes ϕ true.

• Any two formulas ϕ and ψ (with the same variables) are said to be (semantically)
equivalent (denoted by ϕ ≡ ψ) if and only if for each truth assignment α, we have
α(ϕ) = α(ψ).

Note that formulas with distinct variables may as well be semantically equivalent.
For example, every tautology is equivalent to the constant true. Table 2.9 gives a
number of equivalences that can be used to simplify boolean formulas. The proof of
the equivalences stated in Table 2.9 is deferred to Exercise 2.12.

Name Rule Name Rule

idempotence ϕ ∨ ϕ ≡ ϕ associativity (ϕ ∨ ψ) ∨ ρ ≡ ϕ ∨ (ψ ∨ ρ)
ϕ ∧ ϕ ≡ ϕ (ϕ ∧ ψ) ∧ ρ ≡ ϕ ∧ (ψ ∧ ρ)

commutativity ϕ ∨ ψ ≡ ψ ∨ ϕ distributivity ϕ ∨ (ψ ∧ ρ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ ρ)
ϕ ∧ ψ ≡ ψ ∧ ϕ ϕ ∧ (ψ ∨ ρ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ρ)

tautology rule 1 ∨ ϕ ≡ 1 absorption ϕ ∨ (ϕ ∧ ψ) ≡ ϕ
1 ∧ ϕ ≡ ϕ ϕ ∧ (ϕ ∨ ψ) ≡ ϕ

unsatisfiability 0 ∨ ϕ ≡ ϕ deMorgan’s ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
rule 0 ∧ ϕ ≡ 0 rule ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

double negation ¬¬ϕ ≡ ϕ

Table 2.9. Equivalences between boolean formulas

Example 2.25 (Boolean Formula).

1. The boolean formulas ϕ and ψ defined by

ϕ(w, x, y, z) = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (w ∨ ¬y ∨ z) ∧ (¬w ∨ z);
ψ(w, x, y, z) = (¬w ∨ x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (¬w ∨ y ∨ z)

are both satisfiable, see also Exercise 2.11. Here, ϕ is a formula in 3-CNF. In
contrast, ψ is not in 3-CNF, since its first clause contains four literals.
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2. Exercise 2.11 asks you to prove that the formula ϕ = ((¬x ∧¬y) =⇒ ¬y) is a
tautology. Note that any formula ϕ is valid if and only if ¬ϕ is not satisfiable.

In Chapter 3, variations of the satisfiability problem for boolean formulas are
studied, see Definition 3.44 in Section 3.5. Chapter 5 investigates the complexity of
certain problems for quantified boolean formulas, see in particular Definition 5.34 in
Section 5.2 and also Section 5.6. The set of quantified boolean formulas is obtained
by adding existential and universal quantifiers to the boolean formulas introduced in
Definition 2.23.

Definition 2.26 (Quantified Boolean Formulas).
Extending the set of boolean formulas, the set of quantified boolean formulas (QBFs,
for short) is defined as the closure of the set of boolean constants, 0 and 1, and
boolean variables, x1, x2, . . ., under the following boolean operations:

• ¬ (negation), ∨ (disjunction), and ∧ (conjunction);
• ∃xi (existential quantification) and ∀xi (universal quantification).

Occasionally, we write
∨

for ∃, and
∧

for ∀.

Every occurrence of a variable is either bound by a quantifier or free. An occur-
rence of a variable x in a QBF F is said to be bound (or quantified) if x occurs in a
subformula of F that is of the form (∃x)G or (∀x)G; otherwise, this occurrence of
x is free. A QBF F is said to be closed if all variables occurring in F are quantified.
Otherwise (i.e., if there occur free variables in F ), F is said to be open.

The semantics of QBFs is defined in the obvious way, see Definitions 2.24
and 2.32. The details are left to the reader as Exercise 2.12(b). The notions of satisfi-
ability, validity, and semantic equivalence introduced in Definition 2.24 straightfor-
wardly extend to quantified boolean formulas.

Note that every closed QBF F evaluates to either true or false. In contrast, an
open QBF F is a boolean function of its k ≥ 1 free (i.e., not quantified) variables,
which maps from {0, 1}k to {0, 1}. In Chapter 5, we will focus on closed QBFs.

Note further that the equivalences stated in Table 2.9 for boolean formulas can
as well be proven for quantified boolean formulas, see Exercise 2.12. Due to the
addition of quantifiers in QBFs, additional equivalences can be shown. In particular,
deMorgan’s rule can be generalized to:

¬(∃x) [F (x)] ≡ (∀x) [¬F (x)] and ¬(∀x) [F (x)] ≡ (∃x) [¬F (x)]. (2.6)

Example 2.27 (Quantified Boolean Formulas). Consider the open QBF

F = (∀x) (∃y) [(x ∧ y) ∨ ¬z] ∨ ¬(∀x) [x ∨ ¬y]. (2.7)

The free variables of F are z and the rightmost occurrence of y; all other variables
are quantified. Note that one and the same variable can occur both free and quantified
in a formula. Example 2.29 shows that F is satisfiable. Now consider the closed QBF

G = (∀x) [x ∧ (∃y) [(x ∧ y) =⇒ ¬x]].
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To evaluate G, consider the subformula H(x) = (∃y) [(x ∧ y) =⇒ ¬x] of G
first. The variable y is existentially quantified; assigning the truth value 0 to y thus
simplifies H(x) to H(x) ≡ ((x ∧ 0) =⇒ ¬x) ≡ (0 =⇒ ¬x) ≡ 1. Hence,

G ≡ (∀x) [x ∧H(x)] ≡ (∀x) [x ∧ 1] ≡ (∀x) [x] ≡ 0 ∧ 1 ≡ 0.

Thus, G is false.

Every QBF can be transformed into an equivalent QBF in prenex form, i.e., all
quantifiers appear in a leftmost prefix of the formula. Moreover, one can combine
contiguous equal quantifiers to one quantifier of the same type, which thus quantifies
a set of variables; we write them here as sets but use an encoding by a standard
pairing function when dealing with computational problems for QBFs in Chapter 5.
By renaming the quantified variables, the variable sets after each quantifier can be
made pairwise disjoint.

Definition 2.28 (Prenex Form of a QBF).
A QBF F is said to be in prenex form if and only if F is of the form:

F (x1, . . . , xk) = (Q1y1) · · · (Qnyn)ϕ(x1, . . . , xk, y1, . . . , yn),

where Qi ∈ {∃, ∀} for each i with 1 ≤ i ≤ n, ϕ is a boolean formula without
quantifiers, and x1, . . . , xk are the free variables occurring in F .

Example 2.29 (Prenex Form of a QBF). Consider the open QBF F from (2.7):

F (y, z) = (∀x) (∃y) [(x ∧ y) ∨ ¬z] ∨ ¬(∀x) [x ∨ ¬y].

F is transformed into an equivalent QBF in prenex form as follows:

Step 1: Rename the quantified variables to transform F into an equivalent for-
mula F1 in which no variable occurs both free and quantified and in which all
quantified variables are disjoint:

F1(y, z) = (∀x) (∃u) [(x ∧ u) ∨ ¬z] ∨ ¬(∀v) [v ∨ ¬y].

Step 2: Transform F1 into an equivalent formula F2 in prenex form:

F2(y, z) = (∀x) (∃u) (∃v) [(x ∧ u) ∨ ¬z ∨ (¬v ∧ y)].

Step 3: Combine contiguous equal quantifiers in F2 to one quantifier of the same
type, which thus quantifies a set of variables:

F3(y, z) = (∀x) (∃{u, v}) [(x ∧ u) ∨ ¬z ∨ (¬v ∧ y)].

Note that F3 and F are equivalent QBFs. To see that F3 (and thus F ) is satisfiable,
choose the assignment that makes the free variables y and z true. Evaluating F3

under this assignment then yields a closed QBF that can be simplified to

(∀x) (∃{u, v}) [(x ∧ u) ∨ ¬v]

by applying the tautology rule and the unsatisfiability rule from Table 2.9. Since for
each truth assignment to x, there exist truth assignments to u and v such that the
subformula (x ∧ u) ∨ ¬v evaluates to true, F3 (and thus F ) is satisfiable.
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2.3.2 Predicate Logic

Not everything one may wish to express can be formulated in terms of propositional
logic. For example, consider the statement: “There exists an apple tree all apples
of which are red.” To formalize this sentence in logical terms, we need to formally
express properties of objects, such as the color of apples. Such properties are called
predicates. In addition, one often wants to express a certain functional relationship
between objects. Recall, for example, the definition of the O notation:

O(g) = {f : N → N | (∃c > 0) (∃n0 ∈ N) (∀n ≥ n0) [f(n) ≤ c · g(n)]}.

Written verbosely, this definition reads: “O(g) consists of those functions f mapping
from N to N for which there exist constants c > 0 and n0 ∈ N such that for all
n ≥ n0, f(n) ≤ c · g(n).” This statement uses existential and universal quantifiers,
the functions f , g, and multiplication and the relation ≤. (A binary relation such as
≤ is a set of pairs of elements from the universe, and is thus a two-ary predicate.)

Predicate logic expands propositional logic by adding predicate symbols and
function symbols to quantified boolean formulas. Again, we define both the syn-
tax and the semantics of predicate logic. To introduce formulas in predicate logic,
we first need to define the notion of terms, of which these formulas are composed.

Definition 2.30 (Syntax of Predicate Logic).

• Let x1, x2, . . . be variables. A predicate symbol is of the form P k
i and a function

symbol is of the form fk
i , where the superscript k ∈ N denotes the arity of these

symbols and the subscript i ∈ {1, 2, . . .} is used to distinguish them from each
other. Function symbols of arity zero are also called constants.

• Terms are inductively defined as follows:
1. Every variable is a term.
2. If fk

i is a k-ary function symbol and t1, . . . , tk are terms, then fk
i (t1, . . . , tk)

is a term. Note that for k = 0, f0
i is a constant, i.e., an element in the universe.

• In predicate logic, formulas are inductively defined as follows:
1. If P k

i is a k-ary predicate symbol and t1, . . . , tk are terms, then P k
i (t1, . . . , tk)

is an (atomic) formula.
2. If F is a formula, then ¬F is a formula.
3. If F and G are formulas, then F ∨G and F ∧G are formulas.
4. If x is a variable and F is a formula, then (∃x)F and (∀x)F are formulas.

Example 2.31 (Syntax of Predicate Logic). Consider the formula F defined by

F = (∀x) [Q(a(x, 1), s(x)) ∧ (∃y) [P (y) ∧ P (s(y))
∧((¬Q(x, y) ∧ P (x)) =⇒ ¬P (s(x)))]],

with the predicate symbols P and Q and the function symbols a and s.

To give meaning to the syntax of formulas in predicate logic, we define the notion
of a structure consisting of a universe of objects and a mapping that interprets the
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predicate symbols (namely, P and Q in F above) and the terms (namely, x, y, 1, a,
and s in F ) of the formula, which are its syntactic building blocks. Based on this
interpretation, the truth value of such a formula can be defined.

Definition 2.32 (Semantics of Formulas in Predicate Logic).

• A structure is a pair A = (UA, IA), where UA is a nonempty set called the
universe, and IA is a mapping from the set {xi, P

k
i , fk

i | i, k ∈ N and i ≥ 1} to
the set UA ∪ {P |P is a predicate on UA} ∪ {f | f is a function on UA}. That is,
IA interprets every variable xi, every predicate symbol P k

i , and every function
symbol fk

i on which it is defined by mapping it to an element of UA, to a k-ary
predicate on UA, and to a k-ary function on UA, respectively. Again, subscripts
and superscripts of xi, P k

i and fk
i may be dropped. We use the shorthand xA for

IA(x), PA for IA(P ), and fA for IA(f).
• A structure A = (UA, IA) is suitable for a formula F if and only if IA is defined

on all free variables, predicate symbols, and function symbols occurring in F .
• Let F be a formula, and let A = (UA, IA) be a structure suitable for F . For each

term t occurring in F , we define the value of t in A, denoted by A(t), inductively
as follows:
1. If t = x is a variable, then A(t) = xA.
2. If t = f(t1, . . . , tk), where f is a k-ary function symbol and t1, . . . , tk are

terms, then A(t) = fA(A(t1), . . . ,A(tk)).
• The truth value of the formula F in the structure A, denoted by A(F ), is induc-

tively defined as follows:
1. If F = P (t1, . . . , tk), where P is a k-ary predicate symbol and t1, . . . , tk

are terms, then

A(F ) =
{

1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise.

2. If F = ¬G, then

A(F ) =
{

1 if A(G) = 0
0 otherwise.

3. If F = G ∨H , then

A(F ) =
{

1 if A(G) = 1 or A(H) = 1
0 otherwise.

4. If F = G ∧H , then

A(F ) =
{

1 if A(G) = 1 and A(H) = 1
0 otherwise.

5. For any variable x and for any element a ∈ UA, let A(x:a) = (UA, IA(x:a))
denote the structure that coincides with A except that xA(x:a) = a, regardless
of whether or not IA is defined on x. If F = (∃x)G, then

A(F ) =
{

1 if there exists some a ∈ UA such that A(x:a)(G) = 1
0 otherwise.
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6. If F = (∀x)G, then

A(F ) =
{

1 if for all a ∈ UA, A(x:a)(G) = 1
0 otherwise.

• A structure A suitable for a formula F satisfies F (or is a model of F ) if and
only if A(F ) = 1. A formula F is satisfiable if and only if there exists a model
for it. F is said to be valid if and only if every structure suitable for F is a model
of F .

• Any two formulas F and G are said to be (semantically) equivalent (denoted
by F ≡ G) if and only if for each structure A suitable for F and G, we have
A(F ) = A(G).

Example 2.33 (Semantics of Predicate Logic). Consider the formula

G = (∀x) [Q(a(x, 1), s(x)) ∧ (P (x) =⇒ ¬P (s(x)))].

A structure A = (UA, IA) suitable for G is given by:

• UA = N, the set of nonnegative integers,
• IA(P ) = PA = {n ∈ UA | n is a prime number},
• IA(Q) = QA = {(m, n) |m, n ∈ UA and m = n},
• IA(a) = aA is the addition function on UA, i.e., aA(m, n) = m + n,
• IA(s) = sA is the successor function on UA, i.e., sA(n) = n + 1, and
• IA(1) = 1A is the constant 1 ∈ UA.

Clearly, the predicate Q(a(x, 1), s(x)) is true for each x in N. However, the impli-
cation (P (x) =⇒ ¬P (s(x))), which says that the successor of every prime is not
a prime, is false: There exists a prime number (namely, 2 ∈ N) whose successor, 3,
is also a prime number. Thus, the closed formula G is false in the given structure A.
Can you think of a different structure in which G is true?

In contrast, the closed formula

F = (∀x) [Q(a(x, 1), s(x)) ∧ (∃y) [P (y) ∧ P (s(y))
∧((¬Q(x, y) ∧ P (x)) =⇒ ¬P (s(x)))]]

from Example 2.31 is true in the above structure A, since the variable y can be
interpreted as 2 ∈ UA. Thus, both y = 2 and s(y) = 3 are prime numbers, and
the successor of each odd prime number is not prime. Can you think of a different
structure suitable for F in which F is false?

It is important to realize the interplay between the syntax and the semantics of
formulas in predicate logic, and in particular between the syntactical objects of a
structure A and the semantical interpretation of variables, predicate symbols, and
function symbols by xA, PA, and fA. By defining distinct structures for a given
formula F , one may obtain distinct interpretations of F .

Observe that the assertions we have seen to hold for (quantified) boolean formu-
las in propositional logic straightforwardly transfer to formulas in predicate logic.
For instance, any formula is valid if and only if its negation is unsatisfiable.
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As noted above, predicate logic expands propositional logic. Indeed, one obtains
propositional logic from predicate logic by requiring all predicate symbols to be of
arity zero. Then, the notions of terms, variables, and quantifiers are superfluous and
the predicate symbols of arity zero play the role of atomic formulas from propo-
sitional logic. In fact, it is enough to exclude variables (and thus quantifiers) from
predicate logic in order to degenerate it to propositional logic (without quantifiers).

To avoid confusion, we stress here that we distinguish the boolean variables and
constants used in propositional logic from the variables and constants in predicate
logic. The former ones are interpreted simply as truth values, whereas the latter ones
are interpreted as objects (or individuals) of the universe in a given structure.

Although predicate logic has more expressive power than propositional logic,
one still cannot formulate everything one may wish to express in predicate logic.
The type of predicate logic introduced here is called first-order logic. Crucially, only
quantification of variables is allowed in first-order logic. By allowing quantification
of predicate and function symbols in addition, the expressive power of first-order
predicate logic can be increased even further to second-order predicate logic. This
theme is not to be pursued any further here.

2.4 Algebra, Number Theory, and Graph Theory

The algorithms and problems to be dealt with in subsequent chapters require some
foundations of algebra and in particular from group theory, number theory, and graph
theory. The current section may as well be skipped for now, and the definitions and
results can be looked up later on when they are needed. Again, most of the proofs
are omitted here.

2.4.1 Algebra and Number Theory

We start by introducing some fundamental algebraic structures.

Definition 2.34 (Group, Ring, and Field).

• A group G = (S, ◦) is defined by a nonempty set S and a binary operation ◦ on
S satisfying the following axioms:
– Closure: (∀x ∈ S) (∀y ∈ S) [x ◦ y ∈ S].
– Associativity: (∀x ∈ S) (∀y ∈ S) (∀z ∈ S) [(x ◦ y) ◦ z = x ◦ (y ◦ z)].
– Neutral element: (∃e ∈ S) (∀x ∈ S) [e ◦ x = x ◦ e = x].
– Inverse element: (∀x ∈ S) (∃x−1 ∈ S) [x ◦ x−1 = x−1 ◦ x = e].
The element e is called the neutral element of the group G. The element x−1 is
called the inverse element of x. Define the order of an element x of G to be the
smallest positive integer k such that xk = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸

k times

= e.

• M = (S, ◦) is a monoid if and only if it satisfies associativity and closure un-
der ◦. Note that a monoid M may have no neutral element, and not every element
in M may have an inverse.
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• A group G = (S, ◦) (respectively, a monoid M = (S, ◦)) is said to be commuta-
tive (or abelian) if and only if for each x, y ∈ S, x ◦ y = y ◦ x. The number of
elements of a finite group G is said to be the order of G and is denoted by ||G||.

• Let G = (S, ◦) be a group. H = (T, ◦) is said to be a subgroup of G (denoted by
H ≤ G) if and only if T ⊆ S and H satisfies the group axioms.

• A ring is a triple R = (S, +, ·) such that (S, +) is an abelian group, (S, ·) is a
monoid, and the distributive laws are satisfied for all x, y, and z in S:

x · (y + z) = (x · y) + (x · z);
(x + y) · z = (x · z) + (y · z).

• A ring R = (S, +, ·) is said to be commutative if and only if the monoid (S, ·) is
commutative.

• Let R = (S, +, ·) be a ring. The neutral element of the group (S, +) is said
to be the zero element (the zero, for short) of R. The neutral element of the
monoid (S, ·), if it exists, is said to be the one element (the one, for short) of R.

• Let R = (S, +, ·) be a ring with one. An element x of R is invertible if and only
if it is invertible in the monoid (S, ·).

• A field is a commutative ring with one in which each element distinct from zero
is invertible.

Note that the neutral element and the inverse elements defined above are uniquely
determined if they exist. Consider the following simple examples.

Example 2.35 (Group, Ring, and Field).

1. Let k ∈ N. The set Zk = {0, 1, . . . , k − 1} is a finite group with respect to
addition modulo k, and with the neutral element 0. The arithmetics modulo an
integer is explained in Problem 2.1 at the end of this chapter. With respect to
addition and multiplication modulo k, Zk is a commutative ring with one, see
also Problem 2.1. If p is a prime number (i.e., p ≥ 2 is divisible by 1 and by p
only), then Zp is a field with respect to addition and multiplication modulo p.

2. The greatest common divisor gcd(n, m) of two integers m and n is defined in
Section 2.1. For any fixed k ∈ N, define the set

Z∗
k = {i | 1 ≤ i ≤ k − 1 and gcd(i, k) = 1}.

With respect to multiplication modulo k, Z∗
k is a finite group with the neutral

element 1.

If the operation ◦ of a group G = (S, ◦) is clear from the context, we omit
stating it explicitly. The group Z∗

k from Example 2.35 is particularly important in
Section 7.1, which introduces the RSA cryptosystem.

Definition 2.36 (Euler Function).
The Euler function ϕ gives the order of the group Z∗

k, i.e., ϕ(k) = ||Z∗
k||.

The following properties of ϕ follow from the definition:
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• ϕ(m · n) = ϕ(m) · ϕ(n) for each m, n ∈ N with gcd(m, n) = 1, and
• ϕ(p) = p− 1 for each prime p.

The proof of these properties is left to the reader as Exercise 2.14. In particular,
these properties immediately imply the following fact that we need in Section 7.1.

Fact 2.37 If n = p · q for prime numbers p and q, then ϕ(n) = (p− 1)(q − 1).

Euler’s theorem below is a special case of Lagrange’s theorem, which states that
for every finite group G of order k, the order of each subgroup of G divides k. Since
the order of any group element a is the order of the subgroup generated by a, it
follows that the order of a divides k. Letting e denote the neutral element of G, we
have ak = e. Since Z∗

n is a finite multiplicative group of order ϕ(n), we have proven
Euler’s theorem.

Theorem 2.38 (Euler). For each a ∈ Z∗
n, aϕ(n) ≡ 1 mod n.

The special case of Euler’s theorem with a prime number n coprime with a is
known as Fermat’s Little Theorem.

Corollary 2.39 (Fermat’s Little Theorem).
If p is prime and a ∈ Z∗

p, then ap−1 ≡ 1 mod p.

We now define several number-theoretic notions that are central for the crypto-
graphic protocols in subsequent chapters.

Definition 2.40 (Primitive Element). A primitive element of a number n ∈ N is
an element r ∈ Z∗

n satisfying rd �≡ 1 mod n for each d with 1 ≤ d < ϕ(n).

A primitive element r of n is a generator of the entire group Z∗
n. That is, we have

Z∗
n = {ri | 0 ≤ i < ϕ(n)}. Recall that Z∗

p is a group of order ϕ(p) = p− 1, for each
prime p. Note that Z∗

p has exactly ϕ(p−1) primitive elements, see also Exercise 2.15.

Example 2.41 (Primitive Element). Consider Z∗
5 = {1, 2, 3, 4}. Since Z∗

4 =
{1, 3}, we have ϕ(4) = 2, and the two primitive elements of 5 are 2 and 3. Both
2 and 3 generate all of Z∗

5, since

20 = 1; 21 = 2; 22 = 4; 23 ≡ 3 mod 5;
30 = 1; 31 = 3; 32 ≡ 4 mod 5; 33 ≡ 2 mod 5.

Not every integer has a primitive element; the number 8 is the smallest such
example. It is known from elementary number theory that a number n has a primitive
element if and only if n either is in {1, 2, 4}, or is of the form n = qk or n = 2qk for
some odd prime q.

Definition 2.42 (Discrete Logarithm). Let p be a prime, and let r be a primitive
element of p. The modular exponential function with base r and modulus p is the
function expr,p mapping from Zp−1 into Z∗

p and defined by expr,p(a) = ra mod p.
Its inverse function is called the discrete logarithm and maps, for fixed p and r, the
value α = expr,p(a) to a. If α = expr,p(a), we write a = logr α mod p.
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Definition 2.43 (Quadratic Residue and Nonresidue).

• For n ∈ N, an element x ∈ Z∗
n is said to be a quadratic residue modulo n if and

only if there exists some w ∈ Zn such that x ≡ w2 mod n. Otherwise, x is said
to be a quadratic nonresidue modulo n.

• Define the decision problems

QR = {(x, n) | x ∈ Z∗
n, n ∈ N, and x is a quadratic residue modulo n};

QNR = {(x, n) | x ∈ Z∗
n, n ∈ N, and x is a quadratic nonresidue modulo n},

where x and n are represented in binary.

The notions of quadratic residues and nonresidues defined above and the related
decision problems QR and QNR are important for various cryptosystems to be intro-
duced in subsequent chapters. Euler’s criterion below can be used to design a deter-
ministic polynomial-time algorithm for QR if the modulus is an odd prime number.

Theorem 2.44 (Euler Criterion). Let p be an odd prime number. Then, x is a
quadratic residue modulo p if and only if

x(p−1)/2 ≡ 1 mod p.

Proof. Suppose that x is a quadratic residue modulo p, i.e., x ≡ w2 mod p for
some w ∈ Z∗

p. By Fermat’s Little Theorem (see Corollary 2.39), wp−1 ≡ 1 mod p.
Thus,

x(p−1)/2 ≡ (
w2

)(p−1)/2 ≡ wp−1 ≡ 1 mod p.

Conversely, suppose that x(p−1)/2 ≡ 1 mod p. Let r be a primitive element
modulo p. Then, we have x ≡ ri mod p for some i. It follows that

x(p−1)/2 ≡ (
ri
)(p−1)/2 ≡ ri(p−1)/2 ≡ 1 mod p.

Since r has the order p− 1, it follows that p− 1 divides i(p− 1)/2. Hence, i is even,
and the two square roots of x are ± ri/2.

For future reference, we next define the Legendre and Jacobi symbols.

Definition 2.45 (Legendre Symbol and Jacobi Symbol).

• For m ∈ N and a prime number p, the Legendre symbol
(

m
p

)
is defined by

(
m

p

)
=

⎧⎨⎩ 0 if m ≡ 0 mod p
1 if m is a quadratic residue modulo p
−1 if m is a quadratic nonresidue modulo p.

• Let m ∈ N, and let n > 2 be an odd number whose prime factorization is
n = pe1

1 · · · pek

k . The Jacobi symbol
(

m
n

)
generalizes the Legendre symbol to

composite “denominators” n and is defined by(m

n

)
=

k∏
i=1

(
m

pi

)ei

.
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By Euler’s criterion (see Theorem 2.44), one can efficiently compute the Legen-
dre symbol, since for any odd prime p, we have(

x

p

)
≡ x(p−1)/2 mod p. (2.8)

By using certain number-theoretic facts, also the Jacobi symbol
(

m
n

)
can be com-

puted in polynomial time without knowing the prime factorization of n.
Finally, we state one more useful number-theoretic fact without proof.

Theorem 2.46 (Chinese Remainder Theorem). Let m1, m2, . . . , mk be k posi-
tive integers that are pairwise relatively prime (i.e., gcd(mi, mj) = 1 for i �= j),
let

M =
k∏

i=1

mi,

and let a1, a2, . . . , ak be any integers. For each i with 1 ≤ i ≤ k, define qi =
M/mi, and let q−1

i denote the inverse element of qi in Z∗
mi

. Then, the system of k
congruences x ≡ ai mod mi, where 1 ≤ i ≤ k, has the unique solution

x =
k∑

i=1

aiqiq
−1
i mod M.

2.4.2 Permutation Groups

Section 6.5 will be concerned with algorithms for the graph isomorphism problem,
and Section 8.4 will present a zero-knowledge protocol for the graph isomorphism
problem. This problem can be considered to be a special case of certain group-
theoretic problems. In particular, permutation groups are important here. We start
by defining them, and give illustrating examples later on in Section 2.4.3.

Definition 2.47 (Permutation Group).

• A permutation is a bijective mapping of a set onto itself. For any natural number
n ≥ 1, let [n] denote the set {1, 2, . . . , n}. The set of all permutations of [n] is
denoted by Sn. For algorithmic purposes, we represent permutations π ∈ Sn as
lists of n ordered pairs (i, π(i)) from [n]× [n].

• For permutations π and τ in Sn, define their composition πτ to be the permuta-
tion in Sn that results from first applying π and then applying τ to the elements
from [n], i.e., (πτ)(i) = τ(π(i)) for each i ∈ [n]. Sn is said to be a permutation
group with respect to the composition of permutations. Its neutral element is the
identical permutation, defined as id(i) = i for each i ∈ [n]. The subgroup of Sn

that contains id as its only element is denoted by id.
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• For any subset T of Sn, define the permutation group 〈T〉 generated by T to be
the smallest subgroup of Sn containing T. Subgroups G of Sn are represented
by their generators. In G, the orbit of any element i ∈ [n] is defined by

G(i) = {π(i) | π ∈ G}.

• For any subset T of [n], let ST
n denote the subgroup of Sn that maps each el-

ement of T onto itself. In particular, for i ≤ n and any subgroup G of Sn, the
(pointwise) stabilizer of [i] in G is defined by

G(i) = {π ∈ G | π(j) = j for each j ∈ [i]}.

Note that G(n) = id and G(0) = G.
• Let G and H be permutation groups with H ≤ G. For τ ∈ G, the right co-set of

H in G is defined by
Hτ = {πτ | π ∈ H}.

Any two right co-sets of H in G are either identical or disjoint. Thus, the permu-
tation group G can be partitioned into right co-sets of H in G:

G = Hτ1 ∪Hτ2 ∪ · · · ∪ Hτk. (2.9)

Every right co-set H in G has the cardinality ||H||. The set {τ1, τ2, . . . , τk}
from (2.9) is called the complete right transversal of H in G.

The notion of pointwise stabilizers is in particular important for designing algo-
rithms for problems on permutation groups. The decisive structure employed here is
the so-called “tower of stabilizers” of a given permutation group G:

id = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G.

For each i with 1 ≤ i ≤ n, let Ti be a complete right transversal of G(i)

in G(i−1). Then, T =
⋃n−1

i=1 Ti is said to be a strong generator of G. Note that
G = 〈T〉. Every π ∈ G has a unique factorization π = τ1τ2 · · · τn, where τi ∈ Ti.

The following basic algorithmic results about permutation groups will be useful
later on in Sections 6.5.1 and 6.5.2. The proof of Theorem 2.48 is omitted.

Theorem 2.48. Let a permutation group G ≤ Sn be given by its generating set.
Then, we have the following two assertions.

1. For each i ∈ [n], the orbit G(i) of i in G can be computed in polynomial time.
2. The tower of stabilizers id = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G

can be computed in time polynomially in n. That is, there is a polynomial-time
algorithm that determines the complete right transversals Ti of G(i) in G(i−1)

for each i with 1 ≤ i ≤ n, and thus a strong generator of G.
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2.4.3 Graph Theory

The notions introduced in Definition 2.47 are now explained for concrete examples
from graph theory. In particular, we consider the automorphism group of a given
graph, and the set of isomorphisms between two given graphs. To this end, we need
some basic notions from graph theory.

Definition 2.49 (Graph Isomorphism and Graph Automorphism).
A graph G consists of a finite set of vertices, V (G), and a finite set of edges, E(G),
connecting some of the vertices. G is said to be a directed graph (respectively, an
undirected graph) if the edges are ordered (respectively, unordered) pairs of vertices.
We assume that there are no multiple or reflexive edges. That is, there is at most
one edge connecting any two vertices, and there is no edge connecting any vertex
with itself. The graphs we consider need not be connected in general, i.e., they may
have more than one component. In this section, we focus on undirected graphs, the
corresponding notions for directed graphs can be defined analogously.

Let G and H be two given graphs. The disjoint union of G and H , denoted by
G ∪ H , is defined to be the graph with vertex set V (G) ∪ V (H), where V (G) and
V (H) are made disjoint by renaming if necessary, and edge set E(G) ∪ E(H).

Assume that G and H are graphs with the same number of vertices. An isomor-
phism between G and H is an edge-preserving bijection from V (G) onto V (H).
That is, if we agree by convention that V (G) = {1, 2, . . . , n} = V (H), then G
and H are isomorphic (G ∼= H , for short) if and only if there exists a permutation
π ∈ Sn such that for any two vertices i, j ∈ V (G),

{i, j} ∈ E(G) ⇐⇒ {π(i), π(j)} ∈ E(H). (2.10)

An automorphism of G is an edge-preserving bijection from V (G) onto itself.
Every graph contains the trivial automorphism id.

Denote the set of all isomorphisms between G und H by ISO(G, H), and denote
the set of all automorphisms of G by Aut(G). Define the graph isomorphism problem
(GI, for short) and the graph automorphism problem (GA, for short) by

GI = {〈G, H〉 |G and H are isomorphic graphs};
GA = {G |G contains a nontrivial automorphism}.

For algorithmic purposes, graphs are represented either by their vertex and edge
lists or by their adjacency matrix, which has the entry 1 at position (i, j) if {i, j} is
an edge, and the entry 0 otherwise. This representation of graphs is suitably encoded
over the alphabet Σ = {0, 1}. Pairs of graphs are represented using a standard bi-
jective pairing function 〈·, ·〉 that maps from Σ∗ × Σ∗ onto Σ∗, is computable in
polynomial time, and has polynomial-time computable inverses. This pairing func-
tion can be extended to encode k-tuples of strings from

(Σ∗)k = Σ∗ ×Σ∗ × · · · ×Σ∗︸ ︷︷ ︸
k times

.
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Example 2.50 (Graph Isomorphism and Graph Automorphism).
The graphs G and H in Figure 2.6 are isomorphic. An isomorphism π between
G and H preserving the adjacency of the vertices according to (2.10) is given by
π = (1 2 3 4 5

3 4 1 5 2) or, in cyclic notation, by π = (1 3)(2 4 5). There are three more iso-
morphisms between G and H , i.e., ||ISO(G, H)|| = 4, see Exercise 2.16. However,
neither G nor H is isomorphic to F . This is immediately clear if one looks at the
sequence of vertex degrees (i.e., the number of edges incident to the single vertices)
of G and H , respectively, which is distinct from the sequence of vertex degrees of F :
For G and H , this sequence is (2, 3, 3, 4, 4), whereas it is (3, 3, 3, 3, 4) for F .

3
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1F

1 2

3 4

5

3
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1G H

Fig. 2.6. Three graphs: G is isomorphic to H , but not to F

A nontrivial automorphism ϕ : V (G) → V (G) of G is given by ϕ = (1 2 3 4 5
2 1 4 3 5)

or, in cyclic notation, by ϕ = (1 2)(3 4)(5); another one is given by τ = (1 2 3 4 5
1 2 4 3 5) or

τ = (1)(2)(3 4)(5). There are two more automorphisms of G, i.e., ||Aut(G)|| = 4,
see Exercise 2.16.

The permutation groups Aut(F ), Aut(G), and Aut(H) are subgroups of S5. The
tower Aut(G)(5) ≤ Aut(G)(4) ≤ · · · ≤ Aut(G)(1) ≤ Aut(G)(0) of stabilizers
of Aut(G) consists of the subgroups Aut(G)(5) = Aut(G)(4) = Aut(G)(3) = id,
Aut(G)(2) = Aut(G)(1) = 〈{id, τ}〉, and Aut(G)(0) = Aut(G). In the automor-
phism group Aut(G) of G, the vertices 1 and 2 have the orbit {1, 2}, the vertices 3
and 4 have the orbit {3, 4}, and the vertex 5 has the orbit {5}.

We now prove a useful lemma that will be needed later on in Section 6.5.1.

Lemma 2.51. For any two given graphs G and H , we have:

||ISO(G, H)|| =
{ ||Aut(G)|| = ||Aut(H)|| if G ∼= H

0 if G �∼= H;
(2.11)

||Aut(G ∪H)|| =
{

2 · ||Aut(G)|| · ||Aut(H)|| if G ∼= H
||Aut(G)|| · ||Aut(H)|| if G �∼= H .

(2.12)

Proof. ISO(G, H) and Aut(G) have equal size if and only if G and H are isomor-
phic. This is true, since if G and H are isomorphic, then Aut(G) = ISO(G, G) im-
plies ||ISO(G, H)|| = ||Aut(G)||. Otherwise, if G �∼= H , then ISO(G, H) is empty,
whereas Aut(G) always contains the trivial automorphism id. This implies the as-
sertion (2.11) from Lemma 2.51.
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For proving the assertion (2.12), we assume that G and H are connected; oth-
erwise, we consider the co-graphs G and H in place of G and H , see Exer-
cise 2.17. An automorphism of G ∪H exchanging the vertices of G and H is com-
posed of an isomorphism in ISO(G, H) and an isomorphism in ISO(H, G). Thus,
||Aut(G ∪ H)|| = ||Aut(G)|| · ||Aut(H)|| + ||ISO(G, H)||2, which implies the as-
sertion (2.12) via (2.11).

If G and H are isomorphic graphs and τ is an isomorphism in ISO(G, H), then
ISO(G, H) = Aut(G)τ . That is, ISO(G, H) is a right co-set of Aut(G) in Sn. Since
any two right co-sets are either disjoint or equal, Sn can be partitioned into right
co-sets of Aut(G) according to (2.9):

Sn = Aut(G)τ1 ∪Aut(G)τ2 ∪ · · · ∪ Aut(G)τk, (2.13)

where ||Aut(G)τi|| = ||Aut(G)|| for each i, 1 ≤ i ≤ k. Thus, the set {τ1, τ2, . . . , τk}
of permutations in Sn is a complete right transversal of Aut(G) in Sn. Denoting by
π(G) the graph H that is obtained by applying the permutation π ∈ Sn to the
vertices of G, and noting that H ∼= G, it follows that

{τi(G) | 1 ≤ i ≤ k} = {H |H ∼= G}.
Since there are exactly n! = n(n− 1) · · · 2 · 1 many permutations in Sn,

||{H |H ∼= G}|| = k =
||Sn||

||Aut(G)|| =
n!

||Aut(G)||
follows from (2.13). This proves the following corollary.

Corollary 2.52. To any graph G with n vertices, n!
||Aut(G)|| graphs are isomorphic.

For example, exactly 5!/4 = 30 graphs are isomorphic to the graph G from
Figure 2.6 in Example 2.50.

The following lemma will be needed later on in Section 6.5.1. Let G and H be
two given graphs with n vertices each. Define the set

A(G, H) = {〈F, ϕ〉 | F ∼= G ∧ ϕ ∈ Aut(F )} ∪ {〈F, ϕ〉 | F ∼= H ∧ ϕ ∈ Aut(F )}.
Lemma 2.53. For any two given graphs G and H with n vertices each, we have

||A(G, H)|| =
{

n! if G ∼= H
2n! if G �∼= H .

Proof. If F and G are isomorphic, then ||Aut(F )|| = ||Aut(G)|| implies

||{〈F, ϕ〉 | F ∼= G ∧ ϕ ∈ Aut(F )}|| = n!
||Aut(F )|| · ||Aut(F )|| = n!

by Corollary 2.52. Analogously, ||{〈F, ϕ〉 | F ∼= H ∧ ϕ ∈ Aut(F )}|| = n!.
If G and H are isomorphic, then the sets {〈F, ϕ〉 | F ∼= G ∧ ϕ ∈ Aut(F )} and

{〈F, ϕ〉 | F ∼= H ∧ ϕ ∈ Aut(F )} are equal, which implies ||A(G, H)|| = n!.
If G and H are nonisomorphic, then the sets {〈F, ϕ〉 | F ∼= G ∧ ϕ ∈ Aut(F )}

and {〈F, ϕ〉 | F ∼= H ∧ ϕ ∈ Aut(F )} are disjoint. Hence, ||A(G, H)|| = 2n!.
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2.5 Probability Theory

Randomness is a crucial concept in algorithmics, complexity theory, and cryptol-
ogy. To discuss the perfect secrecy of cryptosystems in Chapter 4 and to introduce
randomized algorithms and probabilistic complexity classes in Chapter 6 in mathe-
matical terms, we need some notions from elementary probability theory.

We are concerned with finite probability spaces only, which are specified by a
finite set E = {e1, e2, . . . , ek} of elementary events each of which is assigned a
probability pi = Pr(ei) such that

∑k
i=1 pi = 1. The idea is that each ei is one of

the possible results of a stochastic experiment. For example, a randomized algorithm
can make random choices that affect the result of the computation.

The assignment of probabilities to the elementary events is called a probability
distribution. If all events occur with the same probability (i.e., pi = 1/k for each i
with 1 ≤ i ≤ k), we obtain the uniform distribution. The assignment of probabilities
can be extended from the elementary events ei to any subset E ⊆ E by defining
Pr(E) =

∑
ei∈E pi. Such a subset E is said to be an event. If we have the uniform

distribution on E , then Pr(E) = ||E||/||E|| is simply the ratio of the number of
“good” cases and the number of “all” cases. The following basic properties of the
probability function Pr(·) are easy to see:

1. 0 ≤ Pr(E) ≤ 1, where Pr(∅) = 0 and Pr(E) = 1.
2. Pr(E) = 1− Pr(E), where E = E − E is the complementary event for E.
3. Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

We now define the notion of conditional probability and (stochastic) indepen-
dence of events.

Definition 2.54. Let A and B be events with Pr(B) > 0.

• The probability that A occurs under the condition that B occurs is defined by

Pr(A |B) =
Pr(A ∩B)

Pr(B)
.

• A and B are said to be independent if and only if Pr(A ∩ B) = Pr(A) · Pr(B);
equivalently, if and only if Pr(A |B) = Pr(A).

Lemma 2.55 (Bayes).
Let A and B be events with Pr(A) > 0 and Pr(B) > 0. Then,

Pr(B) · Pr(A |B) = Pr(A) · Pr(B |A).

Proof. By definition, we have

Pr(B) · Pr(A |B) = Pr(A ∩B) = Pr(B ∩A) = Pr(A) · Pr(B |A),

which proves the lemma.

Moreover, if A and B are independent, we have:
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Pr(A) = Pr(A |B) · Pr(B) + Pr(A |B) · (1 − Pr(B)).

A random variable is a function mapping from E to R (or to Z). For example, if
every elementary event ei is the input of a randomized algorithm A, then one might
define the random variable X(ei) to be the running time of A on input ei.

If X : E → R is a random variable on a probability space E , then “X = x”
denotes the event E that X takes on the value x ∈ R, i.e., E = {ei ∈ E |X(ei) = x}.
The expectation value and the variance of a random variable X are defined by:

E(X) =
∑
ei∈E

X(ei) · Pr(ei);

V(X) = E((X − E(X))2) = E(X2)− (E(X))2.

Intuitively, the expectation value E(X) gives the value taken on by X on the average,
with respect to the underlying probability distribution. The variance is a measure of
how far the values of X deviate from E(X).

Let p denote the probability that a certain event E occurs, and let X be a random
variable that gives the number of independent trials until E occurs for the first time.
Let µ denote the number of independent trials on the average until E occurs for the
first time, i.e., µ = E(X). With probability p, E occurs with the first trial already
(which is thus successful), and with probability 1 − p one still needs on the average
µ trials after this first (unsuccessful) trial. Hence,

µ = p · 1 + (1− p)(1 + µ),

which implies E(X) = µ = 1/p. For example, if a randomized algorithm provides
some desired result with probability p, then this algorithm has to be simulated 1/p
times on the average until this desired result is obtained.

2.6 Exercises and Problems

Exercise 2.1 Prove that the extended algorithm of Euclid in Figure 2.2 is correct.

Exercise 2.2 Prove Theorem 2.2 by induction.

Exercise 2.3 Golden Cut: Consider a rectangle with the side lengths a and b, where
a < b. If one cuts a square of side length a out of this rectangle, one obtains another
rectangle with the side lengths b − a and a. The question is for which numbers of a
and b the ratio of the side lengths of these two rectangles is equal: a/b = (b− a)/a.

(a) Prove that the ratio (1 +
√

5)/2 satisfies this equation.

(b) By which other (negative) ratio is this equation also satisfied?

Exercise 2.4 Prove that the base of the logarithm is irrelevant in the O notation: If
a, b > 1 are two distinct bases, then logb n = (logb a)(loga n), which implies that
logb n ∈ O(loga n).
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Exercise 2.5 Consider the grammars G1 and G2 from Example 2.8.

(a) Draw the syntax tree for the derivation S1 �G1 aS1b �G1 aaS1bb �G1 aabb.
Prove that L(G1) = {anbn | n ∈ N}.

(b) Determine the language L(G2) generated by G2. To this end, guess what L(G2)
might be, and then verify your guess by proving that exactly the words you
guessed to be in L(G2) can be derived from the start symbol S2.

Exercise 2.6 Let M be the DFA displayed on the left-hand side of Figure 2.4, and
let N be the NFA displayed on the right-hand side of Figure 2.4.

(a) Determine the language L(M) accepted by M .

(b) Determine the language L(N) accepted by N .

Exercise 2.7 Prove that every language can be recognized by an NFA if and only if
it can be generated by a regular grammar.

Exercise 2.8 Prove Theorem 2.13.

Hint: Given an NFA M , define a DFA whose states are the subsets of M ’s set of
states, and modify the transition function of M and its initial and final states appro-
priately.

Exercise 2.9 (a) Give a formal definition of the notion of a Gödelization of Turing
machines. In particular, specify the underlying alphabet Σ and explain how to
encode syntactically correct Turing machines by strings over Σ.

(b) Give a detailed definition of the notion of a Gödelization of deterministic finite
automata.

Exercise 2.10 Define the disjunctive normal form (DNF, for short) of boolean for-
mulas dually to the conjunctive normal form from Definition 2.23 by exchanging ∧
and ∨. That is, a boolean formula ϕ is in DNF if and only if it is a disjunction of
conjuncts:

ϕ(x1, x2, . . . , xn) =
m∨

i=1

⎛⎝ ki∧
j=1


i,j

⎞⎠ ,

where the 
i,j are literals over {x1, x2, . . . , xn}. Define the satisfiability problem for
boolean formulas in disjunctive normal form by

DNF-SAT = {ϕ | ϕ is a satisfiable boolean formula in DNF}.
Design a deterministic polynomial-time algorithm for testing whether or not a given
formula in DNF is satisfiable.

Exercise 2.11 Consider the boolean formulas ϕ and ψ defined in Example 2.25.

(a) Find all satisfying assignments of both ϕ and ψ.

(b) Using appropriate rules from Table 2.9, turn both ϕ and ψ into an equivalent
formula in DNF.

(c) Prove that the formula ϕ = ((¬x∧¬y) =⇒ ¬y) is a tautology by looking at its
truth table. Prove that ¬ϕ is unsatisfiable.
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Exercise 2.12 (a) Prove the equivalences stated in Table 2.9 by looking at the cor-
responding truth tables.

(b) Define the the semantics of QBFs analogously to Definition 2.24.

(c) Prove the generalization of deMorgan’s rule for quantified boolean formulas
stated in (2.6).

(d) Generalize the distributive laws from Table 2.9 to quantified boolean formulas.

Exercise 2.13 (a) Prove that Z is a ring with respect to addition and multiplication.

(b) Is Z a field?

(c) What can be said about the properties of the algebraic structures (N, +), (N, ·),
(N, +, ·), (Q, +, ·), and (R, +, ·)? Here, + and · denote ordinary addition and
multiplication, Q denotes the set of rational numbers, and R denotes the set of
real numbers.

Exercise 2.14 (a) Prove the following properties of Euler’s ϕ function:

• ϕ(m · n) = ϕ(m) · ϕ(n) for all m, n ∈ N with gcd(m, n) = 1, and

• ϕ(p) = p− 1 for each prime p.

(b) Using these properties, prove Fact 2.37.

Exercise 2.15 (a) How many primitive elements do Z∗
13 and Z∗

14 have?

(b) Which one (if any) of the two rings Z13 and Z14 is a field? Find all primitive
elements of Z∗

13 and Z∗
14 and prove that they indeed are primitive elements.

(c) For each of the primitive elements of 13 and 14, respectively, prove that it gen-
erates all of Z∗

13 and Z∗
14.

Exercise 2.16 Consider the graphs F , G, and H from Figure 2.6 in Example 2.50.

(a) Determine all isomorphisms between G and H .

(b) Determine all automorphisms of F , G, and H .

(c) For which isomorphism between G and H is ISO(G, H) a right co-set of Aut(G)
in S5, i.e., for which τ ∈ ISO(G, H) does ISO(G, H) equal Aut(G)τ? Deter-
mine the complete right transversals of Aut(F ), Aut(G), and Aut(H) in S5.

(d) Determine the orbit of all vertices of F in Aut(F ) and the orbit of all vertices of
H in Aut(H).

(e) For the subgroups Aut(F ) ≤ S5 and Aut(H) ≤ S5, respectively, determine the
tower of stabilizers.

(f) How many graphs with five vertices are isomorphic to F ?

Exercise 2.17 The co-graph G of a given graph G is defined by the vertex set
V (G) = V (G) and the edge set E(G) = {{i, j} | i, j ∈ V (G) and {i, j} �∈ E(G)}.
Prove that

(a) Aut(G) = Aut(G);
(b) ISO(G, H) = ISO(G, H);
(c) G is connected if G is not connected.
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Problem 2.1 (Arithmetics in Zk)
Let k ∈ N and x, y, z ∈ Z. The number x is congruent to y modulo k (x ≡ y mod k,
for short) if and only if k divides the difference y−x. For example,−3 ≡ 16 mod 19
and 8 ≡ 0 mod 2. The congruence≡modulo k defines an equivalence relation on Z,
i.e., it is reflexive (x ≡ x mod k), symmetric (x ≡ y mod k implies y ≡ x mod k),
and transitive (if x ≡ y mod k and y ≡ z mod k, then x ≡ z mod k).

The set x + kZ = {y ∈ Z | y ≡ x mod k} is said to be the remainder class of
x mod k. For example, the remainder class of 3 mod 7 is the set

3 + 7Z = {3, 3± 7, 3± 2 · 7, . . .} = {3, 10,−4, 17,−11, . . .}.
We always choose the smallest natural number in x + kZ to represent the re-
mainder class of x mod k; e.g., 3 represents the class 3 mod 7. The set of all re-
mainder classes modulo k is Zk = {0, 1, . . . , k − 1}. On Zk, define the addi-
tion modulo k by (x + kZ) + (y + kZ) = (x + y) + kZ and the multiplication
modulo k by (x + kZ) · (y + kZ) = (x · y) + kZ. For example, in the arith-
metics modulo 7, we have (3 + 7Z) + (6 + 7Z) = (3 + 6) + 7Z = 2 + 7Z and
(3 + 7Z) · (4 + 7Z) = (3 · 4) + 7Z = 5 + 7Z.

Prove that in the arithmetics modulo k:

(a) (Zk, +, ·) is a commutative ring with one;

(b) the set Z∗
k defined in Example 2.35 is a multiplicative group;

(c) for each prime number p, (Zp, +, ·) is a field.

(d) Prove that in any group, the neutral element and the inverse elements are always
unique.

(e) Prove that the invertible elements in a commutative ring R with one form a group,
which is called the unity group of R. What is the unity group of the ring Zk?

Problem 2.2 (Pumping Lemma)
There are two versions of the Pumping Lemma that can be used as a tool to prove
that certain languages are not regular and are not context-free, respectively.

Lemma 2.56 (Pumping Lemma for Regular Languages).
Let L be any language in REG. Then, there exists an integer n ≥ 1 (depending on L)
such that each string x ∈ L with |x| ≥ n can be written in the form x = uvw, where
|v| ≥ 1, |uv| ≤ n, and for each i ≥ 0, uviw ∈ L.

Using Lemma 2.56, prove that the context-free language L = {anbn |n ∈ N} defined
in Example 2.8 is not regular.

Lemma 2.57 (Pumping Lemma for Context-Free Languages).
Let L be any language in CF. Then, there exists an integer n ≥ 1 (depending on L)
such that each string z ∈ L with |z| ≥ n can be written in the form z = uvwxy,
where |vx| ≥ 1, |vwx| ≤ n, and for each i ≥ 0, uviwxiy ∈ L.



2.7. Summary and Bibliographic Remarks 51

Using Lemma 2.57, prove that the context-sensitive language L = {anbncn |n ≥ 1}
defined in Example 2.18 is not context-free.

Problem 2.3 (Tree Isomorphism)
The graph isomorphism problem GI is efficiently solvable on certain special graph
classes, for instance, on the class of trees. An (undirected) tree is a connected, cycle-
free graph, where a cycle is a sequence of pairwise incident edges that returns to
the point of origin. The leaves of a tree are the vertices with degree one. Design an
efficient algorithm for the tree isomorphism problem, which is defined by

TI = {〈G, H〉 |G and H are isomorphic trees}.

Hint: Label the vertices of the given two trees successively by suitable number
sequences, and compare the resulting sequences of labels in the single loops of
the algorithm. Starting from the leaves of the trees and working step by step to-
wards the center of the trees, the algorithm halts when all vertices are labeled; see
also [KST93].

2.7 Summary and Bibliographic Remarks

General Remarks: As a preparation for the subsequent chapters, this chapter intro-
duced the elementary foundations of a variety of fields from computer science and
mathematics. For each such field, there are many good books some of which are
mentioned here.

A wonderful introduction to algorithmics is due to Cormen, Leiserson, Rivest,
and Stein [CLRS01]. The books by Schöning [Sch01] and by Ottmann and Wid-
mayer [OW02] are also very recommendable. Among the classics in the theory
of formal languages and automata are the books by Hopcroft, Motwani, and Ull-
man [HMU01] and by Salomaa [Sal73]. Closely related to these fields is the theory
of recursive functions and computability, which builds on the early work by Tur-
ing [Tur36] and others. Among the classics here are the books by Kleene [Kle52],
H. Rogers [Rog67], Odifreddi [Odi89], and Homer and Selman [HS01]. The fields
mentioned in this paragraph are covered in Sections 2.1 and 2.2; they provide the
fundament of theoretical computer science.

Sections 2.3, 2.4, and 2.5 introduced to various mathematical fields. At least one
reference per field is given. Shoenfield [Sho67] presents the foundations of logic
from a mathematical point of view. For the computer scientist, also the very readable
book by Schöning [Sch95a] and Part II of Papadimitriou’s book [Pap94] are recom-
mendable. An introduction to number theory can be found in the books by Hardy
and Wright [HW79] and Rosen [Ros99]. For graph theory, the reader is referred to
the books by Harary [Har69], Golumbic [Gol80], and Brandstädt et al. [BLS99].
More background on algebra can be found in the books by Anton [Ant00] and Ja-
cobson [Jac74], and for an introduction to probability theory, we refer to Feller’s
book [Fel68].
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Specific Remarks: The idea of nondeterministic machines was introduced by Ra-
bin and Scott who received the Turing Award in 1976 for their joint paper [RS59]
that studies nondeterministic finite automata. Nondeterminism proved to be an enor-
mously valuable concept, and their classic paper has been a continuous source of
inspiration for subsequent work in this field. One particularly important instance of
this research is the study of the class NP and the development of the theory of NP-
completeness, see Section 3.5.3.



3

Foundations of Complexity Theory

3.1 Tasks and Aims of Complexity Theory

The first and most central task of complexity theory is to determine the computational
complexity or “hardness” of problems as precisely as possible. Consider the set S
defined by S = {x2|x|x |x ∈ {0, 1}∗}, whose elements are strings over the alphabet
{0, 1, 2}. How “hard” is S? That is, how hard is it to algorithmically decide whether
or not a given input string belongs to S? The first answer is: Well, it depends!

First, one has to formally specify the notion of “algorithm”; second, one has to
formally specify what type of “complexity” is to be measured and in which way.
Throughout this book, algorithms are represented by Turing machines, a simple
mathematical model of a computer that is formally described in Section 2.2. An
algorithmic device such as a Turing machine can be equipped with varying technical
abilities that affect its computational power and efficiency. In fact, the observation
that distinct algorithms for one and the same problem can have distinct running times
and distinct memory requirements marks the beginning of complexity theory. So, the
second and more specific answer to the above question is in fact at least four answers:

1. Turing machines with one read-only input tape and one read-write working tape
can solve S in real-time, i.e., the number of steps in the computation equals the
length of the input; see also Problem 3.1 at the end of this chapter.

2. Turing machines with only one working tape and no separate input tape require
time at least quadratic in the input size to solve S; see also Problem 3.1.

3. Alternating Turing machines (a model to be introduced in Section 5.6) need time
no more than logarithmic in the input size to solve S.

4. Finite automata cannot solve S at all. Note that finite automata can be considered
to be very restricted Turing machines, which are equipped only with a one-way
read-only input tape (i.e., the head is allowed to go only from left to right in each
step), have no working tape, and must finish their work in real-time.

This observation is well known from everyday life. If one faces the problem of
cutting down a tree of two yards in diameter, it does make a difference with which
tools or devices one is equipped to solve the problem. A worker equipped with only
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an axe certainly will need much more time for this task than a worker using a chain-
saw. A worker equipped with some inappropriate tool such as a nail file may take
forever or, frustrated, he may just give up. Thus, depending on the devices used to
solve a given task or problem, one can assign a certain complexity to this problem.
In the example of the tree, one could measure the time needed to cut it down and
take this value to be the problem’s complexity. One could also measure the physical
power or energy that it takes to do the job, thus obtaining another value for the same
problem’s complexity; that is, one would measure a different kind of complexity in
this case. For a different problem though, the chain-saw, which at first glance appears
to be more powerful a tool than the axe, may turn out to be actually less suitable and
thus less efficient. For example, if you are facing the problem of chopping fifty logs
up into firewood, you should use the axe, not the chain-saw, and you’ll be done with
it much faster. These observations suggest that the computational complexity of a
problem is determined by the following three characteristics:

• the computational model or algorithmic device used—e.g., the two-way, multi-
tape Turing machine defined in Section 2.2;

• the computational paradigm or acceptance mode of this computational model—
e.g., deterministic or nondeterministic or probabilistic or alternating or unam-
biguous, etc. Turing machines;

• the complexity measure or resource used—e.g., the time (i.e., the number of steps
executed in the computation) or the space (i.e., the number of tape cells used in
the computation), etc. that is needed to solve the problem.

Frankly speaking, the set S mentioned in the first paragraph of this section is not
an earthshakingly interesting problem. Complexity theory studies important, inter-
esting, natural problems from almost every field of sciences, including areas as di-
verse as logic, graph theory, algebra and number theory, algorithmics, cryptography,
coding and information theory, data compression, formal languages and automata,
circuit theory, genome sequencing, social choice theory, and many more. Classify-
ing such problems according to their computational complexity is one of the main
tasks of complexity theory.

Another important task of complexity theory is to compare the computational
power of various algorithmic devices and computational paradigms with each other,
and to determine trade-offs between various complexity measures. For example, the
time versus space question and the determinism versus nondeterminism question are
investigated in Sections 3.2, 3.3, and 3.4. In particular, Section 3.2 defines the com-
plexity measures time and space in the worst-case complexity model and introduces
the corresponding complexity classes. A complexity class is a set of problems that,
according to a given computational model and paradigm, can be solved by algorithms
using at most a specified amount of a given complexity resource. In Section 3.3, the
linear speed-up and tape-compression theorems and the hierarchy theorems for time
and space will be proven. These results answer the question of how much a complex-
ity resource must be increased such that strictly more problems can be solved using
algorithms bounded by this resource. Section 3.4 then explores the realm between
logarithmic and polynomial space.
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As mentioned above, complexity classes are suitable to describe, or to classify,
the complexity of a problem by providing an upper bound and a matching lower
bound. For any complexity class C and any problem A, proving C to be an upper
bound for A requires “merely” the design of an algorithm solving the problem and
using at most as much of the complexity resource considered as C provides. That is,
one and only one appropriate algorithm is enough to establish an upper bound. Prov-
ing C to be a lower bound for A usually is much harder. One has to show that every
algorithm solving the problem necessarily uses at least as much of the complexity
resource considered as C provides. In other words, one has to argue that no algorithm
whatsoever can solve the problem with less resources than that of C.

To compare two problems according to their computational complexity, com-
plexity-bounded reducibilities are introduced in Section 3.5. Reducing a problem A
to a problem B means that A is at most as hard as B. In particular, the polynomial-
time and logarithmic-space many-one reducibilities are investigated. Relatedly, the
notions of hardness and of completeness of a problem for a complexity class are in-
troduced. The complete problems in a complexity class are the hardest problems in
this class, with respect to the reducibility considered. That is, every problem in the
class can be reduced to any problem complete for the class. In this sense, every C-
complete problem represents the entire class C. Note, however, that not all complex-
ity classes are known to have complete problems. For example, so-called “promise
classes” are unlikely to have complete problems; see Sections 6.2.1 and 6.5.2.

In particular, the important notions of NL-completeness and NP-completeness
are investigated. Problems complete for NL and NP include variations of the satis-
fiability problem for boolean formulas and certain graph problems. An example of
an NL-complete problem is the graph accessibility problem: Given a directed graph
G and two designated vertices s and t of G, is there a path in G from s to t? An-
other example of an NL-complete problem is 2-SAT: Given a boolean formula ϕ with
two literals per clause, does there exist a truth assignment to the variables of ϕ that
makes ϕ true? In contrast, the general satisfiability problem (with no restriction on
the number of literals per clause) is a standard NP-complete problem by Cook’s The-
orem. His breakthrough result shows that the computation of any given NP machine
on any given input can be encoded into a boolean formula such that the formula is
satisfiable exactly if the computation accepts its input. By finding suitable reductions
from the satisfiability problem, many other important problems can be shown to be
NP-complete, including 3-SAT (the satisfiability problem restricted to three literals
per clause), the graph three-colorability problem, and thousands of other problems.

Section 3.6 studies the important classes P and NP, deterministic and nonde-
terministic polynomial time. For the P versus NP question, which is one of the
most important open questions in theoretical computer science, the notion of NP-
completeness from Section 3.5 is particularly useful. In contrast, there are subclasses
of NP that are very unlikely to have complete problems. For example, the class UP
(“unambiguous polynomial time”) is the class of those NP problems that either have
no solution at all or a unique solution. Also, the graph isomorphism problem cur-
rently is the most prominent candidate for a problem in NP that is neither in P nor
NP-complete. On the one hand, despite considerable efforts in the past, no efficient
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algorithm for solving this problem could be designed as yet. On the other hand, it is
very unlikely to be NP-complete, for reasons to be explained later on in Section 5.7.

3.2 Complexity Measures and Classes

In this section, the complexity measures time and space are introduced in the worst-
case complexity model. Intuitively, the time complexity of a computation is the num-
ber of steps an algorithm performs on a given input, and the space complexity of a
computation is the memory size an algorithm uses on a given input. The time and
space complexity functions depend on the input size. Worst-case complexity means
that, for an algorithm M and for each input size n, the value of the complexity func-
tion of M at length n is the maximum complexity of the computations of M , taken
over all inputs of length n.

Turing machines, which are our model of an algorithm, and the notions of a
Turing machine’s configuration and computation are formally defined in Section 2.2.
Let M be any Turing machine with input alphabet Σ = {0, 1}, and let x ∈ Σ∗

be any input string. M(x) denotes the computation of M on input x. Recall that
if M is a deterministic Turing machine (DTM, for short), then its computation is a
sequence of configurations. If M is a nondeterministic Turing machine (NTM, for
short), then its computation is a tree whose vertices are configurations, whose root is
the start configuration, and whose leaves are the final configurations. It is reasonable
to require that a computation has a complexity exactly if it terminates in finitely many
steps. For the case of a nondeterministic Turing machine, it is enough that at least one
path in the computation tree terminates. The language of M , denoted by L(M), is
the set of all inputs x that M accepts, i.e., for which M(x) has at least one accepting
computation path. (DTMs never have more than one computation path.)

Definition 3.1 (Deterministic Time and Space Complexity Measures).
Let M be any DTM with L(M) ⊆ Σ∗, and let x ∈ Σ∗ be any input. For the compu-
tation M(x), define the time function and the space function, denoted respectively
by TimeM and SpaceM , both of which map from Σ∗ to N, as follows:

TimeM (x) =
{

m if M(x) has exactly m + 1 configurations
undefined otherwise;

SpaceM (x) =

⎧⎨⎩
number of tape cells in a largest

configuration of M(x) if M(x) terminates
undefined otherwise.

Define the functions timeM : N → N and spaceM : N → N by:

timeM (n) =

⎧⎨⎩
maxx:|x|=n TimeM (x) if TimeM (x) is defined for

each x with |x| = n
undefined otherwise;

spaceM (n) =

⎧⎨⎩
maxx:|x|=n SpaceM (x) if SpaceM (x) is defined for

each x with |x| = n
undefined otherwise.
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That the time complexity function should be undefined whenever the computa-
tion does not terminate is immediately clear. That the space complexity function, too,
should be undefined in this case may need some more thought. After all, a nonter-
minating, infinite computation can occur in a limited amount of space. For example,
a Turing machine that never moves its heads needs only one tape cell for its compu-
tation, but it is not guaranteed to terminate. The question of whether such an infinite
computation occurring in limited space should nonetheless be assigned a specific
space complexity is, in fact, a philosophical (or an axiomatic) matter. In this book,
we take the point of view that any computation should have a complexity if and only
if it yields a result, i.e., if and only if it terminates. In fact, this assumption is exactly
the first of two conditions, which are enough to axiomatically introduce an abstract
notion of complexity measure. The second condition says that there exists an algo-
rithm that, given any algorithm M , any input x ∈ Σ∗, and any value m ∈ N, decides
whether or not the computation of M(x) has exactly the complexity m. These two
conditions are known as Blum’s axioms. The time and space functions from Defi-
nition 3.1 are Blum complexity measures; see Exercise 3.3. Throughout this book,
only these two complexity measures are considered. Note, however, that many other
measures satisfy Blum’s axioms, including rather pathological ones.

Blum’s Axioms

Some elementary notions from recursive function theory were introduced in Sec-
tion 2.2. In particular, IP is the class of all partial recursive (i.e., computable) func-
tions, and IR is the class of all total recursive functions, see Definition 2.17. Recall
that the domain of any function f is denoted by Df .

Let ϕ0, ϕ1, ϕ2, . . . be a fixed Gödelization (i.e., an effective enumeration) of all
one-argument functions in IP. Let Φ ∈ IP be a function mapping from N×Σ∗ to N,
and write Φi(x) as a shorthand for Φ(i, x). We say that Φ is a Blum complexity
measure if and only if the following two axioms are satisfied:

Axiom 1: For each i ∈ N, DΦi = Dϕi .
Axiom 2: The set {(i, x, m) | Φi(x) = m} is decidable.

Deterministic Time and Space Complexity Classes

Definition 3.2 (Deterministic Time and Space). Let t and s be functions in IR
mapping from N to N. Define the following deterministic complexity classes with
resource function t and s, respectively:

DTIME(t) =
{

A
A = L(M) for some DTM M and,
for each n ∈ N, timeM (n) ≤ t(n)

}
;

DSPACE(s) =
{

A
A = L(M) for some DTM M and,
for each n ∈ N, spaceM (n) ≤ s(n)

}
.
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Note that a deterministic Turing machine M decides its language. If A = L(M)
then both timeM (n) and spaceM (n) are defined for each n ∈ N. In contrast, a non-
deterministic Turing machine accepts its language. Thus, the nondeterministic case
is treated slightly differently in Definitions 3.3 and 3.4 below.

The resource functions t and s in Definition 3.1 are called the names of DTIME(t)
and DSPACE(s), respectively. If M is a Turing machine with more than one tape,
then SpaceM (x), the size of “a largest configuration of M(x),” is defined to be the
maximum number of tape cells, where the maximum is taken both over all tapes
and over all configurations in the computation. If there is a separate read-only in-
put tape, then only the space used on the working tapes is to be taken into account.
This assumption is reasonable, since one may also want to consider sublinear space
functions such as logarithmic space, and the log n space bound is trivially exceeded
by the n input symbols written on the input tape. For time complexity classes, it is
reasonable to consider only resource functions t ≥ id, where id(n) = n denotes
the identity function, since in less than n steps one could not even scan each of the n
input bits. However, for “alternating Turing machines,” introduced in Section 5.6, it
does make sense to consider “logarithmic time.”

Nondeterministic Time and Space Complexity Classes

In order to introduce nondeterministic complexity measures and complexity classes,
let M(x) be the computation tree of any nondeterministic Turing machine M on
input x, and let α be any fixed path in M(x). Note that the computation of M(x)
along α is nothing else than a deterministic computation: it is a sequence of configu-
rations. Define the time and space functions for each path α in M(x) analogously to
Definition 3.1 and denote them by TimeM (x, α) and SpaceM (x, α), respectively.

Definition 3.3 (Nondeterministic Time and Space Complexity Measures).
Let M be any NTM with L(M) ⊆ Σ∗, and let x ∈ Σ∗ be any input. For the compu-
tation M(x), define the time function and the space function, denoted respectively
by NTimeM and NSpaceM , both of which map from Σ∗ to N, as follows:

NTimeM (x) =
{

min{TimeM (x, α) |M(x) accepts on path α} if x ∈ L(M)
undefined otherwise;

NSpaceM (x) =
{

min{SpaceM (x, α) |M(x) accepts on path α} if x ∈ L(M)
undefined otherwise.

Definition 3.4 (Nondeterministic Time and Space). Let t and s be functions in
IR mapping from N to N. We say that M accepts a set A in time t if and only if

• for each x ∈ A, we have NTimeM (x) ≤ t(|x|), and
• for each x �∈ A, M does not accept x.

We say that M accepts a set A in space s if and only if

• for each x ∈ A, we have NSpaceM (x) ≤ s(|x|), and
• for each x �∈ A, M does not accept x.



3.2. Complexity Measures and Classes 59

Define the following nondeterministic complexity classes with resource function
t and s, respectively:

NTIME(t) =
{

A
A = L(M) for some NTM M
that accepts A in time t(n)

}
;

NSPACE(s) =
{

A
A = L(M) for some NTM M
that accepts A in space s(n)

}
.

Of course, one does not want to view, say, DTIME(n2) and DTIME(n2 + 1)
as being two properly distinct complexity classes.1 Instead, it is reasonable to con-
sider collectionsF of “similar” resource functions and to define the complexity class
corresponding to F by DTIME(F) =

⋃
f∈F DTIME(f). Such a collection F con-

tains all resource functions with a similar rate of growth. For example, consider the
following collections of functions mapping from N to N each:

• ILin containing all linear functions,
• IPol containing all polynomials,
• 2ILin containing all exponential functions whose exponent is linear in n, and
• 2IPol containing all exponential functions whose exponent is polynomial in n.

More generally, for any function t : N → N, define the collection of all functions
linear in t (respectively, polynomial in t) by:

ILin(t) = {f | f = 
 ◦ t and 
 ∈ ILin};
IPol(t) = {f | f = p ◦ t and p ∈ IPol},

where the composition of any two functions, g and h, is the function defined by
g ◦ h(n) = g(h(n)). Similarly, define the collections 2ILin(t) and 2IPol(t). Note that
ILin = ILin(id), IPol = IPol(id), 2ILin = 2ILin(id), and 2IPol = 2IPol(id).

The time and space complexity measures as well as the resulting complexity
classes are clearly invariant under finite variations, since a finite number of excep-
tions can always be handled by table-lookup, where the table of exceptions can be
hard-wired into the program of a Turing machine. TheO and o notations take account
of this fact. Definition 3.5 below defines these and other rate-of-growth notations.

Definition 3.5 (Asymptotic Rate-of-Growth Notation).
For functions f and g mapping from N to N, define the following notation:

• f(n)≤ae g(n) to mean that f(n) ≤ g(n) is true for all but finitely many n ∈ N.
Analogously, the notations <ae , ≥ae , and >ae are defined. The index “ae” of
“≤ae,” etc. stands for “almost everywhere.”

• Similarly, the notation f(n)≤io g(n) means that f(n) ≤ g(n) is true for in-
finitely many n ∈ N. Analogously, the notations <io , ≥io , and >io are defined.
The index “io” of “≤io,” etc. stands for “infinitely often.”

• f ∈ O(g) ⇐⇒ there is a real constant c > 0 such that f(n)+1≤ae c·(g(n)+1).

1 In fact, the linear speed-up theorem in Section 3.3 shows that they are not distinct.
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• f ∈ o(g) ⇐⇒ for all real constants c > 0, f(n) + 1<ae c · (g(n) + 1).
• f � g ⇐⇒ lim supn→∞

f(n)+1
g(n)+1 <∞. Note that f ∈ O(g) ⇐⇒ f � g.

Intuitively, f � g means that, by order of magnitude, f does not grow faster
than g, with at most finitely many exceptions allowed.

• f ≺ g ⇐⇒ lim supn→∞
f(n)+1
g(n)+1 = 0. Note that f ∈ o(g) ⇐⇒ f ≺ g.

Intuitively, f ≺ g means that, by order of magnitude, g does grow strictly faster
than f , with at most finitely many exceptions allowed.

• f �io g ⇐⇒ lim infn→∞
f(n)+1
g(n)+1 < ∞.

Intuitively, f �io g means that, by order of magnitude, f does not grow faster
than g, at least not for infinitely many arguments.

• f ≺io g ⇐⇒ lim infn→∞
f(n)+1
g(n)+1 = 0.

Intuitively, f ≺io g means that, by order of magnitude, g does grow strictly faster
than f , at least for infinitely many arguments.

Write f  g for g � f , f ! g for g ≺ f , f  io g for g�io f , and f !io g for g≺io f .

The additive constant 1 in the denominators of the limit expressions above merely
ensures that the denominator is distinct from zero, so the quotient is well-defined. For
expressions such as lim supn→∞(f(n)+1)/(g(n)+1), the additive constant 1 in the
enumerator prevents it from going to zero without g growing strictly faster than f .
For example, the constant functions 0 and 2, which do not grow at all, should satisfy
0 � 2 � 0. Without the additive 1, however, we had 0 ≺ 2, which is not desirable.

Theorem 3.6. 1. DTIME(t) ⊆ DSPACE(t).
2. If s ≥ log, then DSPACE(s) ⊆ DTIME(2ILin(s)).

Proof. The first statement is immediately clear, since in time t any Turing machine
can move its heads by at most t tape cells.

To prove the second statement, let M be a DTM working in space s(n) and
in time t(n). Suppose M has q states, k working tapes and one input tape, and a
working alphabet with 
 symbols. For each input x of length n, M ’s time bound
t(n) is bounded above by the number of distinct configurations of M(x). To see
why, note that if there were one configuration occurring twice in the computation of
M(x), then since M works deterministically, it would loop forever and would never
halt, a contradiction.

How many distinct configurations can M(x) have? There are q possible states,
n possible head positions on the input tape, (s(n))k possible head positions on the
k working tapes, and 
k·s(n) possible tape inscriptions. Hence, there exist suitable
positive constants a, b, and c such that:

t(n) ≤ q · n · (s(n))k · 
k·s(n) ≤ q · 2log n · 2a·s(n)

≤ q · 2b·s(n) ≤ 2c·s(n),

where the third inequality uses the assumption that s ≥ log. Thus, t is in 2ILin(s).
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Space classes Time classes

L = DSPACE(log) REALTIME = DTIME(id)

NL = NSPACE(log) LINTIME = DTIME(ILin)
LINSPACE = DSPACE(ILin) P = DTIME(IPol)

NLINSPACE = NSPACE(ILin) NP = NTIME(IPol)
PSPACE = DSPACE(IPol) E = DTIME(2ILin)

NPSPACE = NSPACE(IPol) NE = NTIME(2ILin)

EXPSPACE = DSPACE(2IPol) EXP = DTIME(2IPol)

NEXPSPACE = NSPACE(2IPol) NEXP = NTIME(2IPol)

Table 3.1. Some central worst-case complexity classes

Table 3.1 shows some of the most important deterministic and nondeterministic
complexity classes. As mentioned above, the logarithmic resource function makes
sense only for the space complexity classes, not for the time classes. It will turn out
later on that PSPACE = NPSPACE, see Corollary 3.31 below. However, all other
pairs of complexity classes in Table 3.1 are either two provably distinct classes, or it
is not known whether or not they are equal.

It is no coincidence that the polynomial and exponential functions are considered
the most important resource functions for complexity classes. For practical purposes,
it is common to view algorithms running in polynomial time as being “feasible,”
whereas algorithms with an exponential-time lower bound are viewed as being “in-
tractable.”

Dogma 3.7 Polynomial time captures the intuitive notion of efficiency, and exponen-
tial time captures the intuitive notion of inefficiency.

Dogma 3.7 is supported by the observation that polynomial and exponential func-
tions differ significantly in their asymptotical rate of growth. Table 3.2 compares the
growth rates for certain typical polynomial and exponential time functions t(n), as-
suming a computer that executes one million instructions per second and runs a t(n)
time-bounded algorithm on certain practice-relevant input sizes n up to n = 60. Ob-
serve that all polynomials have a feasible execution time up to n = 60, whereas a
3n time-bounded algorithm needs years to solve the problem for instances of size
n = 30 already, it needs centuries for inputs of size n = 40, and for n = 50 and
n = 60 its execution time is truly astronomical.

Table 3.3 is even more revealing: The dramatic development in computer tech-
nology, which has been accomplished during the last few decades and can be ex-
pected to continue, does not help at all in order to significantly reduce the absolute
execution time of an exponential-time algorithm on input sizes that are relevant in
practice. Table 3.3 shows what happens if we had a computer that runs 100 times
or 1000 times faster than the computers in use today. For the function ti(n), where
i ∈ {1, 2, . . . , 6}, Ni is the largest input size that can be solved by a ti(n) time-
bounded algorithm within one hour. Observe that a one-thousand-fold increase in
computing speed only adds about 10 to the size of the largest problem instance solv-
able by a 2n time-bounded algorithm within one hour. In contrast, within one hour
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t(n) n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

n .00001 sec .00002 sec .00003 sec .00004 sec .00005 sec .00006 sec
n2 .0001 sec .0004 sec .0009 sec .0016 sec .0025 sec .0036 sec
n3 .001 sec .008 sec .027 sec .064 sec .125 sec .256 sec
n5 .1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min

2n .001 sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 centuries
3n .059 sec 58 min 6.5 years 3855 centuries 2 · 108 centuries 1.3 · 1013 centuries

Table 3.2. Comparing some polynomial and exponential functions

an n5 time-bounded algorithm can handle input sizes about four times larger with
the same increase in computing power. The data in both tables is quoted from Garey
and Johnson [GJ79].

ti(n) Computer today 100 times faster 1000 times faster

t1(n) = n N1 100 · N1 1000 · N1

t2(n) = n2 N2 10 · N2 31.6 · N2

t3(n) = n3 N3 4.64 · N3 10 · N3

t4(n) = n5 N4 2.5 · N4 3.98 · N4

t5(n) = 2n N5 N5 + 6.64 N5 + 9.97

t6(n) = 3n N6 N6 + 4.19 N6 + 6.29

Table 3.3. What if the computers get faster?

Of course, a dogma is just a dogma, a matter of faith, and as such Dogma 3.7
should be critically disputed. Obviously, an algorithm running in n1077

steps, which
formally is a polynomial whose exponent happens to be roughly the current esti-
mate of the number of atoms in the visible universe, is impractical and inefficient
and not even useful for trivial input sizes such as n = 2. Moreover, one may ar-
gue that even a polynomial of degree, say, 10 is far from being practical or efficient,
and it may not even be useful for modest input sizes. On the other hand, an expo-
nential time bound such as 20.0001·n may be considered feasible for a large fraction
of practice-relevant input sizes—before the exponential rate of growth hits and the
execution time has to pay its tribute. However, for the vast majority of natural prob-
lems for which a polynomial-time algorithm is known, the time bound in fact is a
low-degree polynomial such as O(n2) or O(n3); polynomials of degree four or five
or even higher occur much more rarely. Problems that provably require high-degree
polynomial time do exist; L. Hemaspaandra and Ogihara mention some such results
on page 264 of [HO02]. In Section 7.2.4, a pathbreaking algorithm for the primality
problem that runs in time O(n12) will be presented. These results notwithstanding,
we follow Dogma 3.7 throughout this book.
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3.3 Speed-Up, Compression, and Hierarchy Theorems

The central question in this section is: How much must a resource be increased in
order to be able to compute strictly more? Consider, for example, the deterministic
time class DTIME(t1), for some resource function t1. How much stronger than t1
must another function, t2, grow in order to ensure that DTIME(t1) �= DTIME(t2)?
The linear tape-compression and speed-up theorems (see Theorems 3.10 and 3.11
below) say that a linear increase of the given resource function does not suffice to
get a strictly bigger complexity class.

Before turning to the linear tape-compression and speed-up theorems, note that
it is possible to construct arbitrarily complex problems, i.e., problems that defeat any
given complexity bound.

Fact 3.8 For each t ∈ IR, there exists a problem At such that At �∈ DTIME(t).

Proof. The proof is by diagonalization. Let M0, M1, M2, . . . be a Gödelization
(i.e., an effective enumeration) of all DTMs. Define

At = {0i |Mi does not accept 0i within t(i) steps}.

Suppose At ∈ DTIME(t). Then, there exists a j such that L(Mj) = At and
timeMj (n) ≤ t(n) for each n ∈ N. Hence,

0j ∈ At ⇐⇒ Mj does not accept 0j within t(j) steps

⇐⇒ 0j �∈ L(Mj) = At,

which is a contradiction. It follows that At �∈ DTIME(t).

Since complexity classes such as DTIME(t) are closed under finite invariance
(see Exercise 3.2), “At ∈ DTIME(t)” means: “For some DTM M , L(M) = At

and timeM (n)≤ae t(n).” (Recall notations such as “≤ae ” from Definition 3.5.)
Hence, “At �∈ DTIME(t)” above means: “For each DTM M with L(M) = At,
timeM (n) >io t(n).” However, “At �∈ DTIME(t)” does not exclude that, for in-
finitely many other n ∈ N, timeM (n)≤io t(n) may nonetheless be true. In this sense,
Rabin’s Theorem [Rab60] below is much stronger than Fact 3.8. The proof of Rabin’s
Theorem, which uses a clever priority argument in its diagonalization, is omitted.

Theorem 3.9 (Rabin’s Theorem).
For each t ∈ IR, there exists a decidable set Dt such that for each DTM M decid-
ing Dt, it holds that timeM (n)>ae t(n).

Now, we turn to the linear tape-compression and speed-up theorems.

Theorem 3.10 (Linear Tape-Compression Theorem).
For each function s ∈ IR, DSPACE(s) = DSPACE(ILin(s)).
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Proof. It is enough to show that DSPACE(2s) ⊆ DSPACE(s). Let M be a DTM
working, on any input x of length n, in space 2s(n). It is convenient to make, without
loss of generality, the following assumptions about M : (a) M has only one tape that
(b) is infinite in just one direction, (c) the tape cells are enumerated by 1, 2, etc., and
(d) M ’s head makes a left turn only on even-numbered cells. (If the given machine
does not have these properties, it is not difficult to replace it by an equivalent one
that does have the desired properties; see Exercise 3.4.) Suppose further that Γ is
the working alphabet of M .

The goal is to construct a new DTM N that, on input x of length n, simulates
the computation of M(x) but works in space s(n). The idea is that N , which has
more states than M and whose working alphabet is Γ × Γ , “delays” the simulation
of M : it will wait and see what M is going to do next before actually doing it. To
this end, view M ’s tape as being subdivided into blocks of two adjacent cells each,
i.e., the blocks are the pairs of cells with numbers (2i− 1, 2i), for i ≥ 1. Each such
block is now considered to be one tape cell of N , and every ordered pair of symbols
(a, b) ∈ Γ × Γ is now considered to be one symbol of N . Then, N(x) simulates the
computation of M(x), except that N moves its head to the left or to the right only
when M ’s head crosses a boundary between two blocks to the left or to the right. All
steps of M within any one block can be simulated by N ’s finite control. That is why
N needs more states than M . Clearly, N(x) performs the exact same computation
as M(x) and needs only space s(n).

The linear speed-up theorem below makes a similar statement about the complex-
ity resource time. Its proof is slightly more complicated, and the theorem’s statement
is slightly more restrictive: Linear speed-up can be achieved only for resource func-
tions that, except for finitely many exceptions, grow strictly stronger than the iden-
tity function. This is not a severe restriction, though, since for deterministic classes
it does not make sense to consider time resource functions below the identity.

Theorem 3.11 (Linear Speed-Up Theorem).
For each function t ∈ IR with id ≺ t, DTIME(t) = DTIME(ILin(t)).

Proof. Let A be any set in DTIME(t), and let M be a DTM such that L(M) = A
and M works in time t(n) on inputs of length n. The goal is to construct a DTM N
with L(N) = A but at least m times as fast as M , for some constant m > 1. That
is, m steps of M are to be simulated within just one step of N . Again, the idea is
that patience will pay off: N will “delay” the simulation of M , i.e., N will wait and
see what M is going to do within the next m steps, then doing it all at once within a
single step of its own. Again, N will compress the input using a larger alphabet and
more states. However, N can use its compressed encoding not before it has scanned
every input bit and has transformed the input into the compressed encoding to be
used later on. In other words, the head moves on the input tape cannot be speeded
up. Thus, the computation of N , on input x of length n, is done in two phases:

Phase 1: Preparation. Let m > 1 be a fixed integer whose value will be specified
below. In this phase, N copies the input x ∈ Σ∗ onto a working tape, thereby
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erasing the input tape, and it encodes the input as follows. Subdivide the input
string x = x1x2 · · ·xn of length n into blocks of length m, where the ith block,
i ≥ 1, is represented by the string βi = x1+(i−1)mx2+(i−1)m · · ·xim.
Thus, x can be written as x = β1β2 · · ·βk+1, with k = �n/m� and |βk+1| < m.
Here, for each real number r, �r� denotes the largest integer s with s ≤ r. Note
that βk+1 is empty if and only if m divides n. Since a nonempty βk+1 can be
handled by N ’s finite control, it may conveniently be assumed that m indeed
does divide n and, thus, k = n/m and βk+1 is empty. Then, N writes on its
working tape the following redundant encoding of the input string:2

(�m, β1, β2) (β1, β2, β3) (β2, β3, β4) · · · (βk−2, βk−1, βk) (βk−1, βk, �m).

Every triple of the form (βi−1, βi, βi+1), where 1 < i < k, or (�m, β1, β2) or
(βk−1, βk, �m) is considered to be just one symbol of N . After N has copied the
input in this compressed (and somewhat redundant) form onto the working tape
and has moved the head back to the leftmost symbol, (�m, β1, β2), this working
tape will henceforth be used as the input tape. The original input tape, which has
been erased during Phase 1, will henceforth be used as a working tape.
Phase 1 requires n + k = (1 + 1/m)n steps.

Phase 2: Simulation. The above compressed (and somewhat redundant) encod-
ing is also used for all working tapes of N during Phase 2. It is enough to de-
scribe the simulation for just one tape. Suppose the current content of this tape
in the computation of M(x) is a string a of length 
. As described above, N ’s
encoding of a = a1a2 · · · a� is of the form

(�m, α1, α2) (α1, α2, α3) (α2, α3, α4) · · · (αz−2, αz−1, αz) (αz−1, αz , �
m),

where (1) a is subdivided into z + 1 blocks, a = α1α2 · · ·αz+1, (2) for each
i with 1 ≤ i ≤ z, block αi = a1+(i−1)ma2+(i−1)m · · ·aim has length m, and
(3) block αz+1 with |αz+1| < m is handled by N ’s finite control.
Now, N(x) simulates m steps of M(x) as follows. If M ’s head is currently
scanning a tape cell contained in some block αj , then N ’s head is currently
scanning the symbol (αj−1, αj , αj+1).3 After m steps, M ’s head has moved by
at most m tape cells. Hence, it must scan a tape cell corresponding to either one
of the blocks αj−1, αj , or αj+1, and none of the other blocks has been changed
by M . Since N ’s head is currently scanning (αj−1, αj , αj+1), it can do all of
M ’s changes within a single step of its own, and it moves its head to the symbol:
(αj−2, αj−1, αj) if M scans a tape cell in block αj−1 after these m steps;3

(αj−1, αj , αj+1) if M scans a tape cell in block αj after these m steps;
(αj , αj+1, αj+2) if M scans a tape cell in block αj+1 after these m steps.3

If M accepts or rejects x within these m steps, then so does N . Hence, L(N) =
L(M). Phase 2 requires at most "t(n)/m# steps, i.e., in the simulation phase,

2 This redundancy of the encoding is necessary, since without it no speed-up would be pos-
sible when the head frequently moves back and forth between two adjacent blocks.

3 The case of �m being the first or the third component of this triple is treated analogously.
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N(x) is roughly m times as fast as M(x). Here, for each real number r, "r#
denotes the smallest integer s with s ≥ r.

To estimate the total time of N(x), recall that id ≺ t, i.e., n ∈ o(t(n)). Thus,

(∀c > 0) [n <ae c · t(n)], (3.1)

where the notation “f(n)<ae g(n)” for any two functions f and g is explained in
Definition 3.5. Summing up the time spent in both phases, N(x) needs no more than(
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1
m

)
n +
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m
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1 +

1
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)
1

m
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1 + 1
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steps, where the first inequality follows from (3.1) for the specific constant
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m
(
1 + 1

m

) =
1

m + 1
.

The finitely many exceptions allowed in the ≤ae -notation can be handled by table-
lookup. Thus, an arbitrary linear speed-up is possible by suitably choosing m.

By way of illustration, suppose that t(n) = d · n, for some constant d > 1, and
N(x) has running time

T (n) =
(

1 +
1
m

)
n +

t(n)
m

=
(

1 +
1
m

)
n +

d · n
m

=
(

1 +
d + 1

m

)
n,

where we assume for convenience that m divides both n and t(n). Since d > 1,
choosing m > (d+1)/(d−1) implies T (n) < d·n = t(n) and thus a genuine speed-
up. Since the function t(n) = d · n, where d > 1, does not grow strictly stronger
than the identity function, the example above shows that the hypothesis id ≺ t in
Theorem 3.11 is slightly stronger than necessary. This example also suggests that
the above proof does not work for d = 1, i.e., it does not work for t = id. In fact,
Rosenberg [Ros67] showed that DTIME(t) �= DTIME(ILin(t)) for t = id:

Theorem 3.12 (Rosenberg). REALTIME �= LINTIME.

Linear tape-compression and speed-up are also known for nondeterministic com-
plexity classes. Interestingly, for nondeterministic classes linear speed-up can be
achieved even for the time resource t = id. The proof of this strong result, which is
due to Book and Greibach [BG70], is omitted here.

Theorem 3.13. 1. For each function s ∈ IR, NSPACE(s) = NSPACE(ILin(s)).
2. For each function t ∈ IR with t ≥ id, NTIME(t) = NTIME(ILin(t)).

Recall the question raised in the first paragraph of this section: How much must
a resource be increased in order to be able to compute strictly more? We know from
Theorems 3.10 and 3.11 that a linear increase of the given resource function does not
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suffice to get a strictly bigger complexity class. For example, if s1 and s2 are space
resource functions with

s2 � s1 ⇐⇒ (∃c > 0) [s2(n)≤ae c · s1(n)], (3.2)

then by Theorem 3.10, s2 does not grow strongly enough to outperform s1. Thus, the
least one has to require is that s2 � s1 is not true. Negating Equation (3.2) gives:

s2!io s1 ⇐⇒ (∀c > 0) [s2(n)>io c · s1(n)].

The space hierarchy theorem (Theorem 3.15 below) says that requiring s2!io s1

indeed suffices to obtain a strictly larger complexity class. Thus, Theorems 3.10
and 3.15 complement each other and they are both optimal.4 The time hierarchy the-
orem (Theorem 3.19 below) makes a similar assertion, although it requires a stronger
hypothesis: the two given functions must differ by at least a logarithmic factor.

For the proofs of the hierarchy theorems for space and time to work, a technical
property of resource functions is needed: they must be space-constructible and time-
constructible, respectively. All common resource functions, such as the logarithm
function, the polynomials in IPol, the exponential functions in 2ILin and in 2IPol, etc.
are space-constructible, and all those functions except the logarithm function are
time-constructible; see Exercise 3.6.

Definition 3.14 (Space- and Time-Constructibility).
Let f , s, and t be functions in IR mapping from N to N.

• We say that s is space-constructible if and only if there exists a DTM M such
that, for each n, M on any input of length n uses no more than s(n) tape cells
and prints the string #1s(n)−2$ on one of its tapes, where # and $ are special
symbols marking the left and right boundaries. We then say that M has marked
the space s(n).

• We say that f is constructible in time t if and only if there exists a DTM M such
that, for each n, M on any input of length n runs for exactly t(n) steps and prints
the string #1f(n)−2$ on its tape, where # and $ are special symbols marking
the left and right boundaries. We say that t is time-constructible if and only if t
is constructible in time t.

Theorem 3.15 (Space Hierarchy Theorem).
If s1≺io s2 and s2 is space-constructible, then DSPACE(s2) �⊆ DSPACE(s1).

Proof. We prove the theorem only for the case of s1 ≥ log. Using a result of
Sipser [Sip80], one can get rid of this simplifying assumption.

4 Some textbooks state the space hierarchy theorem by using the stronger hypothesis that
s1 ∈ o(s2), i.e., s1 ≺ s2. Note that s1 ≺ s2 implies s1 ≺io s2, but s1 ≺io s2 does not imply
s1 ≺ s2. Using this unnecessarily strong assumption does not give the strongest result
possible and leaves an unnecessary gap between the hypotheses of the space hierarchy
theorem and the linear tape-compression theorem.
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To construct a set A in the difference DSPACE(s2)−DSPACE(s1) by diagonal-
ization, fix a Gödelization M0, M1, M2, . . . of all DTMs having one working tape;
see Exercise 3.8 for why it is enough to consider, without loss of generality, only
one-tape DTMs. Define a DTM N with an input tape and three working tapes. On
input x ∈ {0, 1}∗ of length n, DTM N works as follows:

1. N marks the space s2(n) on all three working tapes.
2. Suppose x is of the form x = 1iy, where 0 ≤ i ≤ n and y ∈ {ε}∪0{0, 1}∗. That

is, x starts with a (possibly empty) prefix of i ones followed either by the empty
string (in which case x = 1n), or followed by a zero and a (possibly empty)
string from {0, 1}∗. DTM N interprets i as a machine number, and it writes
the suitably encoded program of Mi onto its first working tape. If this is not
possible, since Mi’s program is too large to fit in the marked space s2(n), then
N aborts the computation and rejects x. Otherwise, N proceeds by simulating
the computation of Mi(x) on the second working tape, using the program of Mi

on its first working tape and reading the symbols of x from its own input tape.
3. The third working tape contains a binary counter that is initially set to zero and

is incremented by one in each step of the simulation of Mi(x). If the simula-
tion of Mi(x) succeeds on N ’s second working tape before the counter on N ’s
third working tape overflows, then N(x) accepts if and only if Mi(x) rejects.
Otherwise, N rejects x.

Some technical explanations are in order:

• The counter on N ’s third working tape guarantees that N(x) halts, even if Mi(x)
would never terminate.

• There exists a constant ci such that the simulation of Mi(x) on N ’s second work-
ing tape can be done in space at most ci · spaceMi

(n). Why? DTM N must be
able to simulate every DTM Mi, i ∈ N. If for some i, Mi has zi states and 
i

symbols in its working alphabet, then N can encode these states and symbols
in binary, i.e., by strings over {0, 1} of length "zi# and "
i#, respectively. This
encoding causes a constant space overhead for the simulating machine N , where
the constant, call it ci, depends only on Mi.

Define A = L(N). Clearly, A ∈ DSPACE(s2). To prove that A �∈ DSPACE(s1),
suppose for a contradiction that A ∈ DSPACE(s1). Thus, there exists some i such
that A = L(Mi) and spaceMi

(n) ≤ s1(n)≺io s2(n). Recall what s1≺io s2 means:

(∀c > 0) [s2(n)>io c · s1(n)]. (3.3)

Hence, for each real constant c > 0, there exist infinitely many arguments n0, n1,
n2, . . . in N such that s2(nk) > c · s1(nk) for each k. From this infinite sequence of
arguments, choose nj large enough such that the following three conditions hold:

(a) Mi’s program can be computed and written onto N ’s second working tape in
space s2(nj);

(b) the simulation of Mi(1i0nj−i) succeeds in space s2(nj);
(c) timeMi(nj) ≤ 2s2(nj).
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Condition (a) can be satisfied for a large enough nj , since the size of the program of
Mi is a constant not depending on the machine’s input.

Condition (b) can be satisfied for a large enough nj , since the simulation of
Mi(1i0nj−i) succeeds in space:

ci · spaceMi
(nj) ≤ ci · s1(nj) < s2(nj),

where ci is the above constant that is due to N having to encode Mi’s states and
symbols, and where the last inequality follows from Equation (3.3).

Condition (c) can be satisfied for a large enough nj , since Theorem 3.6 implies
for s1 ≥ log:

timeMi(nj) ≤ 2d·spaceMi
(nj) for a suitable constant d

≤ 2d·s1(nj)

< 2s2(nj),

where the last inequality again follows from Equation (3.3). Hence, the simulation
of Mi(1i0nj−i) succeeds before the binary counter of length s2(nj) on N ’s third
working tape is full. Conditions (a), (b), and (c) and the construction of N imply that
for the string x = 1i0nj−i,

x ∈ A ⇐⇒ N accepts x

⇐⇒ Mi rejects x.

Thus, A �= L(Mi), contradicting our supposition. Hence, A �∈ DSPACE(s1).

The proof of Theorem 3.15 in fact gives a stronger result than that stated in the
theorem.

Corollary 3.16. For each space-constructible function s2,

DSPACE(s2) �⊆
⋃

s1 ≺io s2

DSPACE(s1).

Theorem 3.15 immediately implies Corollary 3.17 below. Note that for sets A
and B, A ⊂ B denotes strict inclusion, i.e., A ⊆ B and A �= B.

Corollary 3.17. If s1 ≤ s2, s1≺io s2, and s2 is space-constructible, then

DSPACE(s1) ⊂ DSPACE(s2).

Define POLYLOGSPACE =
⋃

k≥1 DSPACE((log n)k). Corollary 3.17 implies
the following strict hierarchy of deterministic space classes. The proof of Corol-
lary 3.18 is left to the reader as Exercise 3.7(a).

Corollary 3.18. L ⊂ POLYLOGSPACE ⊂ LINSPACE ⊂ PSPACE ⊂ EXPSPACE.
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Theorem 3.19 (Time Hierarchy Theorem).
If t2 ≥ id and t1≺io t2 and t2 is constructible in time t2 log t2, then

DTIME(t2 log t2) �⊆ DTIME(t1).

Here is an outline of the proof idea of Theorem 3.19. The proof of this theorem
is based on a similar diagonalization as that given in the proof of Theorem 3.15.
Given a fixed Gödelization M0, M1, M2, . . . of all DTMs, the diagonalizing DTM N
working in time t2 log t2 must “defeat” every Mi, i.e., the construction must ensure
that if Mi works in time t1, then the languages of N and Mi differ. Since N must
be able to simulate every multitape DTM Mi, the issue arises of how N , which has
a fixed number of tapes, can do so. While the number of tapes does not matter for
the space used in N ’s simulation of Mi, it does matter for the resource time. Every
k-tape DTM working in space s can be simulated by a one-tape DTM using the
same number s of tape cells, see Exercise 3.8. Thus, in the proof of Theorem 3.15,
it was enough to consider only one-tape DTMs Mi. In contrast, simulating a k-tape
DTM M working in time t exacts its price: a one-tape DTM simulating M will need
time t2, and a two-tape DTM simulating M will need time t log t. The latter result
is due to Hennie and Stearns [HS66] and explains the occurrence of “t2 log t2” in
Theorem 3.19. Using this result, it is enough to show that N “defeats” every two-
tape DTM Mi, and this can be achieved by a four-tape DTM N .

Corollary 3.20. If t1 ≤ t2 log t2 and t2 ≥ id and t1≺io t2 and t2 is constructible in
time t2 log t2, then DTIME(t1) ⊂ DTIME(t2 log t2).

Corollary 3.21. For each constant k > 0, DTIME(nk) ⊂ DTIME(nk+1) and
DTIME(2k·n) ⊂ DTIME(2(k+1)n).

Corollary 3.22. P ⊂ E ⊂ EXP.

Story 3.23 We conclude this section with the story about two sisters, Paula and Ella,
and their best friends, Ann Paula and Ann Ella, who are sisters, too. Four-year-old
Paula loves to play with Ann P., who just turned five. Their big sisters Ella and
Ann E., eight and nine years of age, respectively, are also close friends. One day,
Paula and Ann P. fight with each other for Paula’s favorite toy, a dancing hamster,
who looks like an old hippie, plays cool, funky music like the 1974 song “Jungle
Boogie” from a built-in tape, and dances like crazy. Ann P. is bigger and stronger
than Paula, so she takes her dancing hamster away. From that day on, the two little
girls are separated.

Paula’s big sister, Ella, has got the same music as Paula, not on a tape within a
hamster but nicely compressed on CD. Watching the fight, she is upset and translates
her anger towards Ann P.’s big sister, Ann E. In fury, Ella throws her “Jungle Boogie”
CD at Ann E. and yells at her. From that day on, the two big girls are separated as
well.

What has this story to do with complexity theory? Well, what happened to the
children can also happen to complexity classes. We present Book’s “upward separa-
tion” result, which says that a separation via tally sets between two small complexity
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classes “translates upward” to separate two related, much bigger classes. “Upward
separation” is sometimes dubbed “downward collapse,” which means that if two
large complexity classes coincide, then so do their “little sisters” on the tally sets.
This alternative view gives a happy end to the sad story above: The next day, after
Ann E. gave Ella’s CD back to Ella, so did Ann P. with Paula’s dancing hamster.
Sharing their toys, the four of them were best friends again.

To the two pairs of siblings in the above story correspond the following two pairs
of exponentially related complexity classes: the deterministic time classes P and E,
and their nondeterministic counterparts, NP and NE. Ella’s music, compressed on
CD in the above story, corresponds to any given language L succinctly represented
in binary, and Paula’s dancing hamster corresponds to the tally encoding of L.

Definition 3.24 (Tally Encoding of a Language).

• A tally language is any subset of {1}∗, the set of strings over the one-letter al-
phabet {1}. Let TALLY denote the set of all tally languages.

• Let Σ = {0, 1} be a two-letter alphabet, and let L ⊆ Σ∗ be any set of strings
over Σ. Prefix every string x ∈ L by a 1 and then interpret 1x as a natural
number bin(1x) in binary representation. The tally encoding of L is defined by
Tally(L) = {1bin(1x) | x ∈ L}.

• Conversely, every tally language T ⊆ {1}+ can be transformed into a set over Σ,
which is defined by Bin(T ) = {x ∈ Σ∗ | 1bin(1x) ∈ T }, where the empty string
has been dropped from T for technical reasons.

Clearly, for each set L ⊆ Σ∗, Bin(Tally(L)) = L, and for each tally lan-
guage T ⊆ {1}+, Tally(Bin(T )) = T . Note that Tally(L) is an “exponentially
verbose” representation of L, and that Bin(T ) contains the same information as
T ∈ TALLY in “logarithmically compressed” form. This observation is stated in
the following lemma whose proof is left to the reader as Exercise 3.9.

Lemma 3.25. For each set L ⊆ Σ∗,

1. L ∈ E ⇐⇒ Tally(L) ∈ P, and
2. L ∈ NE ⇐⇒ Tally(L) ∈ NP.

Using Lemma 3.25, one can prove the following upward separation result, which
links the separation of NP and P by a tally language to the separation of their
exponential-time analogs.

Theorem 3.26. NE = E if and only if every tally language in NP is in P.

Proof. To prove the implication from left to right, suppose NE = E. Let T ⊆ {1}+
be any tally language in NP. By part 2 of Lemma 3.25, Bin(T ) is in NE. Since
NE = E, it follows that Bin(T ) is in E. By part 1 of Lemma 3.25, T is in P.

Conversely, to prove the implication from right to left, let L be any given set
in NE. By part 2 of Lemma 3.25, Tally(L) is in NP. Since every tally language in
NP is in P, it follows that Tally(L) is in P. Part 1 of Lemma 3.25 then implies that
L is in E. Thus, NE ⊆ E, so NE = E.
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3.4 Between Logarithmic and Polynomial Space

Theorem 3.27 below explores the inclusion relationships among those complexity
classes from Table 3.1 that are between logarithmic and polynomial space. None of
the inclusions stated is known to be proper, although it is widely conjectured that they
all are. Complexity theory has yielded many important and beautiful results, and as
many important and interesting open questions. One of the most famous questions in
complexity theory is the question of whether or not P equals NP.

Theorem 3.27. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

Proof. The inclusions L ⊆ NL and P ⊆ NP are immediately clear, since every
DTM, by definition, is a special NTM.

To prove that NP ⊆ PSPACE, let M be any NTM running in time p(n) for some
p ∈ IPol. To define a DTM N that decides L(M) in polynomial space, we take
advantage of an important property of the complexity resource space: Unlike the
time resource, space is reusable. Using the same space on its working tape again and
again, DTM N performs a depth-first search through the computation tree of M(x),
traversing path after path in search of an accepting configuration.

Construct DTM N , running on input x of length n, as follows. In addition to its
input tape, N has one working tape subdivided into three tracks. Recall that every
polynomial is space-constructible. N first marks the space p(n) on its working tape,
i.e., N marks exactly p(n) cells. Then, N systematically traverses the computation
tree of M(x) by a depth-first search. To keep track of the current position in the
search, N writes the name of the path of M(x) currently being traversed on track 1
of the working tape. A path name can be encoded in binary5 by a length p(n) string
s ∈ {0, 1}∗, where the ith bit of s represents the ith branching of M(x). The bits of
s may be marked by a hat as needed, indicating that the marked bits of s correspond
to the initial part of the path that has already been processed.

Initially, N writes the path name 0p(n) on track 1 and it writes the start configura-
tion of M(x) on track 2. Then, N starts the search by simulating the computation of
M(x) along the path whose name, say s, is currently written on track 1. N writes two
successive configurations occurring along this path alternately on the tracks 2 and 3.
Let C0 �M C1 �M · · · �M Cp(n) be the sequence of configurations corresponding
to s. For i with 1 ≤ i < p(n), consider the three successive configurations Ci−1,
Ci, and Ci+1, where (a) Ci−1 �M Ci �M Ci+1, (b) Ci is the first configuration
along s as yet unvisited, (c) the first i − 1 bits of s are currently marked by a hat,
and (d) track 2, say, currently contains Ci−1. Then, N writes Ci on track 3, deleting
the former content of track 3 and marking the ith bit of s on track 1 by a hat. N
thus proceeds, alternately switching the roles of track 2 and track 3, until the current
path is completely processed and all bits of s are marked by a hat. If an accepting
configuration is reached, then N halts and accepts x. If s has been processed with-
out reaching an accepting configuration, then N adds a one in binary to the content
of track 1 and keeps traversing the as yet unvisited configurations on that new path.

5 Without loss of generality, we may assume that M(x) is a full binary tree.
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If all the paths of M(x) have been processed without success, then N rejects x. It
follows that L(N) = L(M). Since N works deterministically in polynomial space,
NP ⊆ PSPACE.

To prove the remaining inclusion, NL ⊆ P, let M̂ be any NTM operating in
logarithmic space, and let x be any input of length n. Note that the above systematic
search through the entire computation tree does not work here. In fact, any log-space
bounded NTM can spend as much as q(n) steps along each path, where q ∈ IPol,
which results in a total of 2q(n) potential computation paths. Thus, a polynomial-
time bounded DTM has no chance of checking every path of M̂(x) up to its full
length of q(n) steps. Fortunately, however, an argument analogous to the proof of
Theorem 3.6 shows that there exists a constant c, depending on M̂ only, such that
the number of distinct configurations of M̂(x) is bounded above by

2c·log n = 2log nc

= nc. (3.4)

That is, many of the configurations in the full depth q(n) computation tree of M̂(x)
must occur repeatedly. Hence, one can construct a DTM N̂ that, on input x, searches
through only a polynomial-size part of the computation tree of M̂(x), truncating any
path as soon as some configuration is encountered twice. To this end, N̂ uses three
working tapes. Tape 1 is again subdivided into three tracks and is used the same way
the working tape of DTM N is used in the above proof of NP ⊆ PSPACE. That is,
track 1 again keeps track of the current position in the search, by storing the current
path name and marking how much of it has already been processed. Tracks 2 and 3
again store two successive configurations, alternately producing the next one along
the current path whose name is written on track 1.

In addition, DTM N̂ has two more tapes. Tape 2 keeps a list of every new config-
uration of M̂(x) as yet found. Whenever a new configuration, call it C, is produced
on either track 2 or track 3 of tape 1, it is compared with each configuration cur-
rently contained in tape 2 to check whether or not C indeed is new. If so, C is added
to the list on tape 2; otherwise, the current path of M̂(x) can safely be truncated.
Tape 3 contains a binary counter of length c · log n, where c is the constant from
Equation (3.4). This counter is incremented by one each time a new configuration
is added to tape 2. If an accepting configuration of M̂(x) is found in the course of
this process, then N halts and accepts x. If the search through M̂(x) is completed
without success or if the counter on tape 3 is full, i.e., the maximum number of nc

distinct configurations is found and none of them is accepting, then N rejects x. It
follows that L(N̂) = L(M̂).

To estimate the time needed, note that M̂(x) has at most nc configurations of
lengthO(log n) each. Thus, the number of steps needed to compare the current con-
figuration on tape 1 with the entire content of tape 2 is in O(nc · log n) and thus
in O(nc+1). Hence, comparing each of the at most nc possible configurations on
tape 1 with the content of tape 2 requires altogether at most O(n2c+1) steps. Simi-
larly, the process of producing new configurations on tape 1 and copying them onto
tape 2 requires at most O(nc+1) steps. Incrementing the counter on tape 3 at most
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nc times can be done in parallel. Summing up, N̂(x) needs time no more than poly-
nomial in n. Hence, NL ⊆ P.

There is nothing special about the time resource being a polynomial in the above
proof of NP ⊆ PSPACE, and there is nothing special about the space resource being
the logarithm in the above proof of NL ⊆ P. Thus, generalizing the above arguments,
one obtains a stronger version of Theorem 3.6.

Corollary 3.28. 1. If t is space-constructible, then NTIME(t) ⊆ DSPACE(t).
2. If s ≥ log is constructible in time 2ILin(s), then NSPACE(s) ⊆ DTIME(2ILin(s)).

Corollary 3.28 immediately implies that:

NTIME(t) ⊆ DTIME(2ILin(t)) and NSPACE(s) ⊆ DSPACE(2ILin(s)),

which upperbounds, for both time and space, the costs of trading nondeterminism
for determinism. What about the lower bounds? Is an exponential increase in the re-
sources really necessary in order to deterministically simulate nondeterminism? For
the time resource, the answer to this question is not known. For the space resource,
the answer is no! Theorem 3.29 shows that for the resource space, already a quadratic
increase is enough to deterministically simulate nondeterminism.

Theorem 3.29 (Savitch’s Theorem).
If s ≥ log is space-constructible, then NSPACE(s) ⊆ DSPACE(s2).

Proof. Let A be any set in NSPACE(s), and let M be some NTM accepting A
and working in space s(n) on inputs of length n. We want to construct a DTM N
deciding A in spaceO(s2); by Theorem 3.10, the constant implicit in theO notation
can safely be neglected.

Since s ≥ log, Theorem 3.6 implies that M accepts A in time t(n) ≤ 2c·s(n), for
some constant c. Note that the constant c depends on the program of M only and can
be easily determined according to the proof of Theorem 3.6. We make the following
simplifying assumptions:

• ACCEPTM is the uniquely determined accepting configuration of M on any in-
put,6 and STARTM (x) is the uniquely determined start configuration of M on
input x.

• Let k = c · s(n), where we assume that 2k−1 < t(n) ≤ 2k, which implies
"log t(n)# = k.

• Suppose that the configurations of M(x) are suitably encoded by strings over a
fixed alphabet, and that all such strings have the exact same length d · s(n), for
some constant d. Enumerate all strings of length d·s(n) as C1, C2, . . ., Cm in the
lexicographical ordering. Note that not all strings Ci may encode syntactically
correct configurations of M(x).

6 Convince yourself that it is possible to make this assumption without loss of generality.
For example, one can require that M , before it accepts, always erases its working tape and
moves the input head back to the leftmost input symbol.
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The main idea of the proof is to apply a clever divide-and-conquer strategy that
is based on the simple observation that for each string x ∈ Σ∗:

x ∈ A ⇐⇒ STARTM (x) �2k

M ACCEPTM

⇐⇒ (∃i) [STARTM (x) �2k−1

M Ci and Ci �2k−1

M ACCEPTM ]. (3.5)

It remains to show that this idea can be realized in space O(s2). On input x of
length n, DTM N works as follows:

1. N constructs s(n) and computes the value k = c ·s(n), which equals "log t(n)#.
2. N generates the following pattern on its working tape:

STARTM (x)︸ ︷︷ ︸
d·s(n) cells

#

k blocks︷ ︸︸ ︷
� · · ·�︸ ︷︷ ︸

d·s(n) cells

# � · · ·�︸ ︷︷ ︸
d·s(n) cells

# · · · # � · · ·�︸ ︷︷ ︸
d·s(n) cells

# ACCEPTM︸ ︷︷ ︸
d·s(n) cells

where # is a special symbol separating these k + 2 blocks of size d · s(n) each.
3. N(x) simulates the computation of M(x) deterministically within these k + 2

blocks, reusing the same space on its tape over and over again. This simulation
is described in detail below; see the proof of Lemma 3.30 below.

4. N accepts x if and only if it reaches the ACCEPTM configuration during this
simulation.

To prove that N ’s simulation of M(x) succeeds for each x ∈ A, we need the
following lemma.

Lemma 3.30. If x ∈ A, then N ’s simulation of STARTM (x) �2k

M ACCEPTM suc-
ceeds in the space marked above. If x �∈ A, then N rejects x.

Proof of Lemma 3.30. The proof is by induction on k.

k = 0: N can check whether or not STARTM (x) �20

M ACCEPTM by simulating
M(x) for one step.

(k − 1) �→ k: N systematically cycles through all strings C1, C2, . . ., Cm of
length d · s(n), which potentially encode configurations of M(x), searching for
one Ci that satisfies (3.5). If Ci is the string currently being checked, N first
checks whether or not Ci is a syntactically correct configuration of M(x). If
not, N proceeds by examining the next string, Ci+1. Otherwise (i.e., if Ci is a
syntactically correct configuration of M(x)), N writes Ci onto the (k + 1)st

block of its working tape:

STARTM (x)︸ ︷︷ ︸
d·s(n) cells

#

k−1 blocks︷ ︸︸ ︷
� · · ·�︸ ︷︷ ︸

d·s(n) cells

# · · · # � · · ·�︸ ︷︷ ︸
d·s(n) cells

# Ci︸ ︷︷ ︸
d·s(n) cells

# ACCEPTM︸ ︷︷ ︸
d·s(n) cells

and checks whether or not STARTM (x) �2k−1

M Ci, which is possible by the in-
duction hypothesis. If this test fails, then N erases Ci from the (k+1)st block and
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proceeds by examining the next string, Ci+1. Otherwise (i.e., if Ci has passed
the test that STARTM (x) �2k−1

M Ci), N erases Ci from the (k +1)st block of its
working tape after having it copied onto the second block of its working tape:

STARTM (x)︸ ︷︷ ︸
d·s(n) cells

# Ci︸ ︷︷ ︸
d·s(n) cells

#

k−1 blocks︷ ︸︸ ︷
� · · ·�︸ ︷︷ ︸

d·s(n) cells

# · · · # � · · ·�︸ ︷︷ ︸
d·s(n) cells

# ACCEPTM︸ ︷︷ ︸
d·s(n) cells

and checks whether or not Ci �2k−1

M ACCEPTM , which again is possible by
the induction hypothesis. If this test fails, then N erases Ci from the second
block and proceeds by examining the next string, Ci+1. Otherwise (i.e., if Ci has
passed both tests, STARTM (x) �2k−1

M Ci and Ci �2k−1

M ACCEPTM , according
to (3.5)), N accepts x and halts. If none of the potential configurations Ci of
M(x) passes both tests, then N rejects x and halts.

This proves the lemma. Lemma 3.30

By Lemma 3.30, L(N) = A. Since k = c · s(n) and there are k + 2 blocks
of size d · s(n) each, N(x) works in space O((s(n))2). Theorem 3.10 then implies
A ∈ DSPACE(s2), which proves the theorem. Theorem 3.29

Corollary 3.31. PSPACE = NPSPACE.

Recall from the previous section that Theorem 3.15, the hierarchy theorem for
deterministic space classes, implies that L ⊂ PSPACE; see Corollary 3.18. An even
stronger proper inclusion is stated in Corollary 3.32 below, which follows from The-
orems 3.15 and 3.29 via the following chain of inclusions some of which are proper:

NL ⊆ DSPACE((log n)2) ⊂ DSPACE((log n)3) ⊂ · · · ⊂ DSPACE(id)
= LINSPACE ⊂ DSPACE(n2) ⊂ · · · ⊂ PSPACE.

(3.6)

Corollary 3.32. NL ⊂ PSPACE.

Alternatively, Corollary 3.32 can be proven using the above Corollary 3.31 and
the hierarchy theorem for nondeterministic space classes, which is not contained in
this text but can be found in, e.g., Wagner and Wechsung’s book [WW86]. Note that
Exercise 3.7(b) makes a claim even stronger than Corollary 3.32, and Exercise 3.7(c)
extends the above inclusion chain (3.6).

Although we know from Corollaries 3.18 and 3.32 that L and even NL are strictly
contained in PSPACE, it is not known which one of the inclusions from Theorem 3.27
is proper. That is, it is not known which of the “⊆” relations in the inclusion chain

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

in fact is a “⊂” relation.
Corollary 3.31 suggests that nondeterminism gives much less additional comput-

ing power to the complexity resource space than it gives to the complexity resource
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time. This intuition is also supported by the following famous result that was in-
dependently discovered by Immerman [Imm88] and Szelepcsényi [Sze88]. For any
complexity class C, define coC = {L |L ∈ C} to be the class of complements of sets
in C.

Theorem 3.33. If s ≥ log is space-constructible, then NSPACE(s) = coNSPACE(s).

Theorem 3.33 has important corollaries for the special cases of s = id and
s = log, respectively. In particular, the case of s = id solves an open question
raised by Kuroda [Kur64] in 1964: CS, the class of context-sensitive languages, is
closed under complement. Note that CS is known to be equal to the complexity class
NLINSPACE.

Corollary 3.34. NLINSPACE = coNLINSPACE and NL = coNL.

3.5 Reducibilities and Completeness

3.5.1 Many-One Reducibilities, Hardness, and Completeness

Suppose you are given two problems, A and B, and you want to know whether or not
they have distinct complexities, and if so, which one is harder to solve than the other.
Perhaps you know that both belong to the same complexity class, say NP. Still, A
might be very easy to solve, say in logarithmic space, whereas B is much harder. Re-
call that membership of some problem A in some complexity class C merely provides
an upper bound. How can one prove lower bounds for some problem? In particular,
how can one show that some given problem is one of the hardest problems of some
complexity class? To prove such a result, one would have to show that every problem
in the class is at most as hard as the given problem.

Complexity-bounded reducibilities are a powerful tool for comparing the com-
plexity of two problems. Intuitively, if some set A reduces to some set B, then B is
at least as hard as A. The notion of hardness for a complexity class C, with respect
to some reducibility, formalizes the intuitive notion of a lower bound: if B is hard
for C, then every set A in C is reducible to B. If B is not only hard for C, but also
contained in C, then B is called C-complete. The notion of completeness captures the
hardest problems of a complexity class, with respect to some reducibility. That is, B
is complete for C in the sense that all the computing power represented by the class
C is already inherent in B. Thus, any problem complete for C represents C.

Now, one of the most important reducibilities, the polynomial-time many-one
reducibility, and the related notions of hardness and completeness are defined.

Definition 3.35 (Polynomial-Time Many-One Reducibility and Completeness).
Let Σ = {0, 1} be a fixed alphabet, and let A and B be sets of strings over Σ. Let
FP denote the set of polynomial-time computable total functions mapping from Σ∗

to Σ∗. Let C be any complexity class.
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1. Define the polynomial-time many-one reducibility, denoted by ≤p
m, as follows:

A≤p
m B if and only if there is a function f ∈ FP such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∈ B.
2. A set B is ≤p

m-hard for C if and only if A≤p
m B for each A ∈ C.

3. A set B is ≤p
m-complete for C if and only if B is ≤p

m-hard for C and B ∈ C.
4. C is said to be closed under the ≤p

m-reducibility (≤p
m-closed, for short) if and

only if for any two sets A and B, if A≤p
m B and B ∈ C, then A ∈ C.

The term “many-one” above refers to the fact that a reduction f ∈ FP witnessing
that A≤p

m B in general can map many distinct strings to one and the same string. The
above definition immediately implies the properties stated in the following lemma.
The proof of Lemma 3.36 is left to the reader as Exercise 3.11.

Lemma 3.36. 1. A≤p
m B implies A≤p

m B, yet in general it is not true that A≤p
m A.

2. The relation ≤p
m is both reflexive and transitive, yet not antisymmetric.

3. P, NP, and PSPACE are ≤p
m-closed.

4. If A≤p
m B and A is ≤p

m-hard for some complexity class C, then B is ≤p
m-hard

for C.
5. Let C andD be any complexity classes. If C is≤p

m-closed and B is≤p
m-complete

for D, then D ⊆ C if and only if B ∈ C. In particular, if B is NP-complete, then
P = NP if and only if B ∈ P.

The third item of Lemma 3.36, of course, is not only true for the three classes
mentioned. As a matter of fact, most “reasonable” complexity classes above P are
closed under ≤p

m-reductions. Note also that ≤p
m-closure of any class C means that,

with respect to the≤p
m-reducibility, C upper bounds are inherited downward, whereas

the fourth item of this lemma says that C lower bounds are inherited upward with
respect to ≤p

m. Finally, the last item of Lemma 3.36 is very crucial, since it ties
the collapse or separation of two complexity classes to the apparently much simpler
question of whether or not a single problem from one class belongs to the other. This
property, as simple as its proof may be, is what makes the theory of NP-completeness
so useful, important, and beautiful.

The notion of≤p
m-reducibility does not make sense for the complexity classes L,

NL, and P: It is simply too “coarse” to distinguish the problems within any of these
classes by their computational complexity. In particular, every nontrivial set in each
of these classes trivially is≤p

m-complete for the class. A set B is said to be nontrivial
if ∅ �= B �= Σ∗. Lemma 3.37 illustrates this property for the case of P.

Lemma 3.37. For each nontrivial set B ∈ P (i.e., ∅ �= B �= Σ∗) and for each set
A ∈ P, A≤p

m B. Thus, every nontrivial set in P is ≤p
m-complete for P.

Proof. Choose two strings, b1 ∈ B and b2 �∈ B, which is possible by the assump-
tion that B is nontrivial. Define the ≤p

m-reduction f by

f(x) =
{

b1 if x ∈ A
b2 if x �∈ A.
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Since A is in P, function f is in FP. By definition of f , for each x ∈ Σ∗, x ∈ A
if and only if f(x) ∈ B. Hence, f witnesses that A≤p

m B. Since A is an arbitrary set
in P, it follows that B is ≤p

m-complete for P.

In light of Lemma 3.37, a more refined reducibility than≤p
m is required for P and

smaller classes. Definition 3.38 below introduces the log-space many-one reducibil-
ity, ≤log

m , and the related notions of ≤log
m -hardness and ≤log

m -completeness.
Note that the ≤log

m -reducibility is still too coarse for the class L, for the same
reason ≤p

m is too coarse for P; see Lemma 3.37. To distinguish problems in L and
those in even smaller classes, reducibilities even more refined than ≤log

m must be
used. However, such reducibilities, which are usually defined by uniform boolean
circuits computing them, will not be considered in this book; the reader is referred to
Vollmer’s book [Vol99] instead. For NL and P, the ≤log

m -reducibility is appropriate,
and also for other classes such as NP, the≤log

m -reducibility yields hardness and com-
pleteness notions slightly stronger than those obtained using the ≤p

m-reducibility.

Definition 3.38 (Log-Space Many-One Reducibility and Completeness).
Let Σ = {0, 1} be a fixed alphabet, and let A and B be sets of strings over Σ. Let
FL denote the set of total functions mapping from Σ∗ to Σ∗ that are computable in
logarithmic space. Define the log-space many-one reducibility, denoted by ≤log

m , as
follows: A≤log

m B if and only if there is a function f ∈ FL such that for each x ∈ Σ∗,
x ∈ A ⇐⇒ f(x) ∈ B.

The notions of≤log
m -hardness, of≤log

m -completeness, and of≤log
m -closure for any

complexity class C are defined analogously as in Definition 3.35.

Just like the ≤p
m-reducibility, ≤log

m is clearly a reflexive relation. Theorem 3.39
below establishes another basic property of the ≤log

m -reducibility that, unlike reflex-
ivity, is not that trivial: transitivity.

Theorem 3.39. The ≤log
m -reducibility is a transitive relation.

Proof. Let A, B, and C be sets such that A≤log
m B via some reduction f ∈ FL

and B≤log
m C via some reduction g ∈ FL. Let F be some DTM computing f in

logarithmic space, and let G be some DTM computing g in logarithmic space. To
show transitivity, construct a reduction h ∈ FL that witnesses A≤log

m C. That is,
construct a DTM H computing h in logarithmic space such that, for each x ∈ Σ∗,
x ∈ A if and only if h(x) ∈ C.

As mentioned above, showing the transitivity of the ≤log
m -reducibility is not a

trivial matter. To see why, it is useful to first consider the naive approach for defining
a DTM H that computes a reduction h witnessing A≤log

m C, and then to see why this
naive approach fails. For convenience, assume that F and G each have one read-only
input tape, one read-write working tape, and one write-only output tape. In the naive
approach, one would define H to have F ’s input tape as its own input tape, to have
G’s output tape as its own output tape, and to use the following three tapes as its own
working tapes:

WT 1: the working tape of F ,
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WT 2: the output tape of F , which is identified with the input tape of G, and
WT 3: the working tape of G.

To compute h(x) = g(f(x)), view H on input x as the “composition” of F
and G on input x. That is, H(x) starts by simulating F (x), using log |x| space on
WT 1 and writing the value f(x) on WT 2. Then, H simulates the computation
of G(f(x)) on WT 3, writing the value h(x) = g(f(x)) on its output tape. The
problem with this naive approach, of course, is that in light of the known result
DSPACE(s) ⊆ DTIME(2ILin(s)) (see Theorem 3.6), the length of the output value
f(x) on WT 2 is not logarithmically bounded in |x|. In fact, there exists a constant c
such that |f(x)| ≤ 2c·log |x| = |x|c can be as large as polynomially in |x|.

To overcome this problem with the naive approach, recall that the complexity
resource space can be reused, and consider the following simple idea: Rather than
storing the complete value of f(x) during the simulation, store just one bit of f(x)
on WT 2, namely that bit currently scanned by G. To this end, H needs two more
working tapes, WT 4 and WT 5. In particular, WT 4 is a counter that stores in binary
the position i currently scanned by G’s input head. Since i ≤ |x|c, this is possible in
"c log |x|# space. The purpose of WT 5 will be explained below.

H on input x works as follows. Initially, the counter on WT 4 is set to one,
since G’s input head initially scans the leftmost symbol of its input string. All other
working tapes are empty. H(x) starts by simulating the computation of F (x) on
WT 1 until the first output bit of f(x) is written on WT 2. Interrupting the simulation
of F (x), H now simulates the computation of G(f(x)) on WT 3 until G needs to
scan its next input bit. Interrupting the simulation of G(f(x)) on WT 3, H updates
the counter on WT 4 accordingly, deletes the first output bit of f(x) from WT 2,
continues the simulation of F (x) on WT 1, and proceeds in this manner.

The general situation is the following: WT 2 contains the ith bit of f(x), and
WT 4 contains the number i in binary. Suppose the simulation of G(f(x)) has just
been interrupted because H now needs to scan either the (i− 1)st or the (i + 1)st bit
of f(x). Consider the following two cases.

Case 1: H needs to scan the (i + 1)st bit of f(x). Then, H continues the
simulation of F (x) on WT 1 at the point it was interrupted previously, until
the (i + 1)st bit of f(x) is written on WT 2. H increments the counter on WT 4
by one so that it now contains i + 1 in binary, and proceeds with the simulation
of G(f(x)).

Case 2: H needs to scan the (i − 1)st bit of f(x). Since the (i − 1)st bit of
f(x) is no longer available on WT 2, the computation of F (x) must be simulated
anew from scratch, reusing the same space on WT 1. A second counter on WT 5
is needed for counting the number of bits of f(x) up to the (i−1)st bit. Initially,
the counter on WT 5 is set to zero.
Step 1: H decrements the counter on WT 4, which currently contains the num-

ber i > 1 in binary, by one so that it now contains i − 1, and it deletes the
ith output bit of f(x) from WT 2;
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Step 2: H simulates the computation of F (x) on WT 1. Whenever F attempts
to write an output bit of f(x) on WT 2, H does the following, according to
two subcases of Step 2 in Case 2.
Subcase 2.1: WT 4 contains the number j �= 0 in binary. H decre-

ments the counter on WT 4 by one so that it now contains j − 1 in
binary, and it increments the counter on WT 5 by one so that it now
contains i − j in binary. Then, H continues the simulation of F (x)
without writing on WT 2.

Subcase 2.2: WT 4 contains 0. Since Subcase 2.1 occurred i− 1 times,
the counter on WT 5 currently contains i− 1 in binary and F currently
attempts to write the (i − 1)st output bit of f(x) on WT 2. H now
writes this bit on WT 2, copies the content of WT 5 to WT 4, interrupts
the simulation of F (x), and proceeds with the simulation of G(f(x)).

Since the computation of G(f(x)) on WT 3 can be done in logarithmic space, H(x)
computes h(x) = g(f(x)) in logarithmic space, so x ∈ A if and only if h(x) ∈ C.
It follows that A≤log

m C via h ∈ FL. Thus, ≤log
m is transitive.

Theorem 3.40 can be shown analogously to the above proof; see Exercise 3.12(a).

Theorem 3.40. L and NL are ≤log
m -closed.

Do the reducibilities ≤log
m and ≤p

m coincide? Do they coincide at least on P?
Viewing the relations≤log

m and≤p
m as sets of pairs, i.e., ≤log

m = {(A, B) |A≤log
m B}

and ≤p
m = {(A, B) | A≤p

m B}, the inclusion FL ⊆ FP immediately implies that
≤log

m ⊆ ≤p
m . Whether or not the converse inclusion also is true is an open problem.

However, the following result says that if L and P differ, then ≤log
m and ≤p

m differ
on P. Define A �≤log

m B to mean that A≤log
m B is not true.

Theorem 3.41. If L �= P, then there exist sets A and B in P such that A≤p
m B, yet

A �≤log
m B.

Proof. To prove the contrapositive of the theorem’s assertion, suppose that ≤log
m =

≤p
m on P. Let B be a nontrivial set in L, i.e., ∅ �= B �= Σ∗. Let A be an arbitrary set

in P. By Lemma 3.37, A≤p
m B. Since B ∈ L and L is≤log

m -closed by Theorem 3.40,
A ∈ L. Since A is an arbitrary P set, P = L.

3.5.2 NL-Completeness

In this section, two problems are shown to be≤log
m -complete for NL, the graph acces-

sibility problem (GAP, for short) and the satisfiability problem for boolean formulas
with (at most) two literals per clause.

The graph accessibility problem is defined for directed graphs. G is a directed
graph if E(G) ⊆ V (G)×V (G), where V (G) denotes the vertex set of G and E(G)
denotes the edge set of G. That is, a directed edge e = (u, v) from u to v in G is an
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ordered pair of vertices. For any two vertices u, v ∈ V (G) in a directed graph G, a
path from u to v is a sequence x1, x2, . . . , xk+1 of vertices of G such that u = x1

and v = xk+1 and, for each i with 1 ≤ i ≤ k, ei = (xi, xi+1) is an edge of G.

Definition 3.42 (Graph Accessibility Problem).
Define the decision version of the graph accessibility problem by

GAP =
{
〈G, s, t〉 G is a directed graph with s, t ∈ V (G),

and there is a directed path from s to t in G

}
.

Theorem 3.43. GAP is ≤log
m -complete for NL.

Proof. To show that GAP is in NL, define an NTM M accepting GAP in logarithmic
space as follows. Suppose that 〈G, x1, xN 〉 is any given input, where G is a directed
graph represented by the list of its edges, and V (G) = {x1, x2, . . . , xN}. Starting
with x1, M nondeterministically guesses a path in G to xN . To this end, M stores
the indices of the vertices on such a path in binary, and it always stores just two
successive vertices. In more detail, if i and j are the binary numbers currently written
on M ’s working tape, then M scans its input tape to check whether or not there is
an edge (xi, xj) in E(G). If so, M accepts the input in case j = N . If (xi, xj) is an
edge in E(G) and j �= N , then M deletes i on its working tape and guesses a new
vertex, writing its index k onto the working tape, and thus proceeds. If (xi, xj) is not
an edge in E(G), then M rejects and halts without success on this computation path.

Note that there exists a path α from x1 to xN in G if and only if there exists
a computation path of M(〈G, x1, xN 〉) on which α is guessed. Thus, M accepts
〈G, x1, xN 〉 exactly if 〈G, x1, xN 〉 ∈ GAP. Note further that M never stores more
than two vertex indices simultaneously, and that the binary representation of each
vertex index has length at most "log N#. It follows that no more than O(log n) tape
cells on M ’s working tape are used if the input size is n; so M works in logarithmic
space. Thus, GAP is in NL.

To prove NL-hardness of GAP, let A be any set in NL, and let M be an NTM
accepting A in logarithmic space. Without loss of generality, suppose that M has
one input tape and one working tape. As in the proof of Theorem 3.29, assume that
STARTM (x) is the uniquely determined start configuration of M on input x, and
ACCEPTM is the uniquely determined accepting configuration of M on any input.
For any input string of length n, define the graph GM,n of all potential log n space-
bounded configurations of M by:

V (GM,n) =
{

C
C is a potential configuration of M for which the
inscription on M ’s working tape has length ≤ "log n#

}
;

E(GM,n) = {(C1, C2) | C1 �M C2},
where �M denotes the immediate successor relation of M , i.e., configuration C2

can be reached from configuration C1 within one step of M . Note that by “potential
log n space-bounded configuration” of M we mean not only the configurations in
the computation tree M(x) for some specific input x, but we mean every syntacti-
cally correct configuration of M on any input of length n with no more than "log n#
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symbols written on the working tape, even if such a configuration is not reachable
from STARTM (x) for some x. Of course, for each fixed string x ∈ Σ∗ of length n,
the computation tree M(x) is an induced subgraph of GM,n.

Note that every vertex of GM,n can be encoded by O(log n) symbols:

• the current position of M ’s input head in binary requires "log n# symbols,
• the current inscription on M ’s working tape has at most "log n# symbols, and
• one symbol encoding the current state of M can be inserted into the string cur-

rently written on M ’s working tape to indicate the current position of the working
tape head.

Thus, exactly 2(1 + "log n#) tape cells are enough to encode every potential log n
space-bounded configuration of M .

For each string x ∈ Σ∗ of length n, define the ≤log
m -reduction f from A to GAP

by
f(x) = 〈GM,n, STARTM (x), ACCEPTM 〉.

It follows that, for each x ∈ Σ∗,

x ∈ A ⇐⇒ M(x) has an accepting computation path

⇐⇒ f(x) ∈ GAP.

To show that f ∈ FL, consider the following deterministic algorithm computing
f on input x, |x| = n, in logarithmic space as follows:

Step 1: Mark the space 2(1 + "log n#).
Step 2: Systematically, one after the other in lexicographic order, generate all po-

tential log n space-bounded configurations of M whose encoding needs no more
than the marked 2(1 + "log n#) tape cells.

Step 3: For each such configuration C generated:
1. check that C is syntactically correct;
2. add C to the list of vertices of GM,n;
3. simulate M on C for one step, generating potential log n space-bounded

configurations C1 and C2 with C �M C1 and C �M C2;
4. for i ∈ {1, 2}, add (C, Ci) to the list of edges of GM,n.

Step 4: When the construction of the graph GM,n is completed, output

〈GM,n, STARTM (x), ACCEPTM 〉.

Thus, f ∈ FL witnesses that A≤log
m GAP.

We now turn to variations of the satisfiability problem. Recall the notions of
boolean formulas, truth assignments, and satisfiability of boolean formulas from Def-
initions 2.23 and 2.24 in Section 2.3.

Definition 3.44 (Satisfiability Problem).
Define the decision version of the satisfiability problem by
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SAT = {ϕ | ϕ is a satisfiable boolean formula in CNF}.
For each fixed k ≥ 1, define the following restriction of the satisfiability problem:

k-SAT = {ϕ | ϕ is a satisfiable boolean formula in k-CNF}.
To comprehend why the satisfiability problem above is defined for boolean for-

mulas in CNF only, see Exercise 2.10.

Theorem 3.45. 2-SAT is ≤log
m -complete for NL.

Proof. To show that 2-SAT is in NL, let any boolean formula ϕ(x1, x2, . . . , xn) in
2-CNF be given; without loss of generality, suppose that ϕ has exactly two literals
per clause. Construct a directed graph Gϕ from ϕ:

V (Gϕ) = {x1, x2, . . . , xn} ∪ {¬x1,¬x2, . . . ,¬xn};
E(Gϕ) = {(α, β) | (¬α ∨ β) or (β ∨ ¬α) is a clause in ϕ}.

The edges in Gϕ represent the implications in ϕ and their contrapositives. That
is, if ϕ contains a clause of the form (¬α∨ β) for literals α and β, then this clause is
semantically equivalent to the implication (α =⇒ β), which in turn is semantically
equivalent to its contrapositive (¬β =⇒ ¬α), which in turn is semantically equiva-
lent to (β ∨ ¬α). Note that, by definition, every edge in Gϕ satisfies the following
symmetry: If (α, β) is an edge of Gϕ, then so is (¬β,¬α).

Consider, for example, the boolean formula ϕ̂ with four clauses:

ϕ̂(x1, x2, x3) = (¬x1 ∨ x3) ∧ (¬x3 ∨ ¬x1) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x1).

x1

¬x1

x3

¬x2

x2

¬x3

Fig. 3.1. 2-SAT is NL-complete: Graph Gϕ̂ constructed from the boolean formula ϕ̂

Figure 3.1 displays the corresponding graph Gϕ̂ with eight edges, where two
edges correspond to one clause in ϕ̂. Note that the formula ϕ̂ is not satisfiable.
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On the other hand, loosely identifying the vertices of Gϕ̂ with the literals in ϕ̂,
there is a vertex in graph Gϕ̂ from Figure 3.1 for which there exists a path from
the vertex to its negation and back to the vertex. For example, consider the cycle
(x1, x3,¬x1, x2, x1). As the following lemma shows, this property is not a coinci-
dence.

Lemma 3.46. Let ϕ be any boolean formula in 2-CNF. Then, ϕ is not satisfiable if
and only if there exists a vertex x in Gϕ for which there is a path from x to ¬x and a
path from ¬x back to x in Gϕ.

Proof of Lemma 3.46. To prove the direction from right to left, suppose for a
contradiction that there exists a path in Gϕ from x to ¬x and one from ¬x back to x,
for some x ∈ V (Gϕ), and yet there exists a truth assignment t satisfying ϕ. Consider
the following two cases.

Case 1: t(x) = 1. Then t(¬x) = 0. Thus, there exists an edge (α, β) on the path
from x to ¬x such that t(α) = 1 and t(β) = 0. By construction of Gϕ, since
(α, β) is an edge, there exists a clause of the form (¬α ∨ β) or (β ∨ ¬α) in ϕ,
which is not satisfied by t. Hence, t does not satisfy ϕ, a contradiction.

Case 2: t(x) = 0. Then t(¬x) = 1. By an analogous argument, there exists an
edge (α, β) on the path from ¬x to x corresponding to a clause of the form
(¬α ∨ β) or (β ∨ ¬α) in ϕ that is not satisfied by t. Hence, t does not satisfy ϕ,
which again is a contradiction.

The direction from left to right is proven by contraposition: If for no vertex x in
Gϕ there is a path of the form (x, . . . ,¬x, . . . , x), then ϕ is satisfiable. Indeed, under
the hypothesis stated, a satisfying assignment t for ϕ can be constructed as follows:

while (there are still variables in ϕ not assigned a truth value by t) {
Step 1: Choose the first such variable x in ϕ and consider the corresponding

vertex x in Gϕ. By hypothesis, for x, there exists no path from x to ¬x and
back from ¬x to x.

Step 2: For each vertex γ in Gϕ that is reachable from x (including x itself), set
t(γ) = 1 and t(¬γ) = 0, again loosely identifying the vertices of Gϕ with
the literals in ϕ.

}
Note that Step 2 in the while loop above is well-defined. To see why, consider

the following two possibilities of what could go wrong, and convince yourself that
these two bad cases in fact cannot occur.

Case 1: Suppose there exist paths from x to both γ and ¬γ in Step 2 of the while
loop above. Note that in this case we would be in trouble, since t would have to
assign to both γ and ¬γ the truth value 1, and to both ¬γ and γ the truth value 0.
However, this case cannot occur due to the symmetry in the construction of Gϕ.
In particular, under the above supposition, there also must exist paths from both γ
and ¬γ to ¬x, since a path from x to γ implies one from ¬γ to ¬x by symmetry,
and hence there exists a path from x to ¬γ and from ¬γ to ¬x. Similarly, there
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must exist a path from x to ¬x via γ. Again by symmetry, a path from x to ¬x
implies one from ¬x to x, which is a contradiction to the choice of x.

Case 2: Suppose some vertex γ reachable from x is to be assigned the truth value 1,
but it had already been assigned the truth value 0 by t in an earlier while loop.
That is, suppose there exists a path from x to γ and t(γ) = 0. Then again, we
would be in trouble.
However, this case cannot occur either, since in that earlier while loop also x
would have been assigned the value 0: t(γ) = 0 implies t(¬γ) = 1, which in
turn implies t(¬x) = 1 because of the path from ¬γ to ¬x. Hence, t(x) = 0,
which again contradicts the choice of x.

By hypothesis, for each vertex x, there exists no path from x to ¬x and back from
¬x to x. Hence, the above procedure for constructing a satisfying truth assignment t
terminates, since in each while loop at least one variable is assigned a truth value.

It remains to show that t indeed satisfies ϕ. Whenever some literal is assigned a
truth value of 1, then every successor of the vertex corresponding to this literal is also
assigned the truth value 1. Analogously, every predecessor of a vertex for which the
corresponding literal gets the truth value 0 is also assigned the truth value 0. Thus,
no clause of ϕ yields an implication of the form (1 =⇒ 0) under the assignment t,
so t satisfies ϕ. The lemma is proven. Lemma 3.46

To complete the proof that 2-SAT is in NL, apply Lemma 3.46 to show that the
complement of 2-SAT is in NL. Since NL = coNL by Corollary 3.34, this shows that
2-SAT is in NL.

On input ϕ, an NL machine for the complement of 2-SAT works as follows:
Guess a variable x and a path in Gϕ from x to ¬x and from ¬x back to x, and accept
the input ϕ if and only if such a path exists. By Lemma 3.46, this nondeterministic
algorithm accepts ϕ if and only if ϕ is not satisfiable.

Just as in the proof of Theorem 3.43, when such a path in Gϕ is guessed, only
two successive vertex indices have to be stored simultaneously. Thus, this nondeter-
ministic algorithm works in logarithmic space. It follows that 2-SAT is in NL.

To prove that 2-SAT is NL-hard, we will provide a ≤log
m -reduction from the com-

plement of a restricted version of the graph accessibility problem to 2-SAT. First, we
show that this restricted version of GAP also is NL-complete.

For any graph G, a cycle in G is a path of the form x = x1, x2, . . . , xn = x
for some vertex x ∈ V (G). A graph is said to be acyclic if and only if it does not
contain any cycle. Define the graph accessibility problem restricted to acyclic graphs
as follows: Given an acyclic graph G and two vertices s and t in G, is it true that
there exists a path from s to t?

Denoting this restriction of the graph accessibility problem by GAPacyclic, it is
not hard to prove GAPacyclic ≤log

m -complete for NL by modifying the proof of Theo-
rem 3.43 as is explained in the proof of the following lemma.

Lemma 3.47. GAPacyclic is ≤log
m -complete for NL.

Proof of Lemma 3.47. Recall the proof of Theorem 3.43. Instead of using GM,n,
the graph of all potential log n space-bounded configurations of the given NTM M
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on inputs of length n, we now use the induced subgraph M(x) of GM,n for some
specifically given input string x of length n. In addition, we alter the definition of the
graph GM,n in this proof by logging, along with each configuration C of M(x), the
number of steps from STARTM (x) to C. Define the graph ĜM,x by:

V (ĜM,x) =

⎧⎨⎩〈C, t〉
t ∈ N and C is a configuration of M(x) for which the
inscription on M ’s working tape has length ≤ "log n#
and exactly t steps of M transform STARTM (x) into C

⎫⎬⎭ ;

E(ĜM,x) = {(〈C1, t1〉, 〈C2, t2〉) | C1 �M C2 and t2 = t1 + 1}.

Note that ĜM,x has no (directed) cycles. Starting from 〈STARTM (x), 0〉, ĜM,x can
be constructed deterministically by breadth-first search in logarithmic space. More-
over, for each input string x,

M accepts x ⇐⇒ 〈ĜM,x, 〈STARTM (x), 0〉, 〈ACCEPTM , p(|x|)〉〉, (3.7)

where p is a polynomial time clock such that M(x) runs exactly p(|x|) steps on each
computation path and for each input x; cf. Corollary 3.28. Hence, (3.7) gives a≤log

m -
reduction from any given NL problem to GAPacyclic, which proves that GAPacyclic is
NL-hard. It is not difficult to prove that GAPacyclic is in NL (see Exercise 3.12(b));
thus, GAPacyclic is NL-complete. Lemma 3.47

By Theorem 3.39, which says that the≤log
m -reducibility is transitive, the proof of

Theorem 3.45 is completed by proving that GAPacyclic≤log
m 2-SAT, which is stated

in the following lemma. Since NL = coNL by Corollary 3.34, GAPacyclic is ≤log
m -

complete for coNL as well. Thus, as in the above proof that 2-SAT is in NL, for prov-
ing GAPacyclic≤log

m 2-SAT it is enough to show that the complement of GAPacyclic,
which is NL-complete by Corollary 3.34 and Lemma 3.47, ≤log

m -reduces to 2-SAT.

Lemma 3.48. GAPacyclic≤log
m 2-SAT.

Proof of Lemma 3.48. By the above comments, it suffices to define a reduction
f ∈ FL such that, for each input x,

x �∈ GAPacyclic ⇐⇒ f(x) ∈ 2-SAT. (3.8)

Let x = 〈G, v1, vn〉 be any given instance of GAPacyclic, where G is an acyclic
directed graph with V (G) = {v1, v2, . . . , vn}. Construct the reduction f by

f(x) = ϕx(v1, v2, . . . , vn)

= v1 ∧ ¬vn ∧
∧

(vi,vj)∈E(G)

(¬vi ∨ vj).

Clearly, f ∈ FL. Intuitively, a literal vi in ϕx is true if and only if the vertex vi

in G is reachable from v1. In particular, satisfying the first clause in ϕx means that
v1 is reachable from v1. Also, satisfying the second clause in ϕx means that vn is
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not reachable from v1. Finally, satisfying each remaining clause in ϕx means that if
(vi, vj) ∈ E(G) and vi is reachable from v1, then so is vj . Hence,

x �∈ GAPacyclic ⇐⇒ there exists no path from v1 to vn in G

⇐⇒ f(x) = ϕx(v1, v2, . . . , vn) ∈ 2-SAT.

Thus, (3.8) is true, and the lemma is proven. Lemma 3.48

Since 2-SAT is in NL by the algorithm based on Lemma 3.46, and since 2-SAT is
NL-hard by Lemmas 3.47 and 3.48, the theorem is proven. Theorem 3.45

3.5.3 NP-Completeness

Historically, the first problem proven to be NP-complete is the satisfiability problem
introduced in Definition 3.44 above. This pathbreaking result is due to Cook [Coo71]
and, independently, to Levin [Lev73]. Thousands of further NP-completeness results
followed in the sequel; see Garey and Johnson’s introduction to the theory of NP-
completeness [GJ79] in which several hundred of such problems are collected.

In this section, for convenience, all NP-completeness results are proven with re-
spect to the ≤p

m-reducibility only. With a little more effort, slightly stronger NP-
completeness results with respect to the ≤log

m -reducibility can be established as well.

Theorem 3.49 (Cook’s Theorem). SAT is NP-complete.

Proof. To prove that SAT is in NP, consider the following NTM M accepting SAT in
polynomial time as follows. Given a boolean formula ϕ(x1, x2, . . . , xn), nondeter-
ministically guess a truth assignment t of the variables x1, x2, . . . , xn, and for each
assignment t guessed, evaluate ϕ according to t and accept if and only if t(ϕ) = 1.

To prove NP-hardness, let A be any set in NP, and let M = (Σ, Γ, Z, δ, �, s0, F )
be an NTM accepting A in polynomial time; see Chapter 2 for the meaning of the
single components in the septuple describing M . Without loss of generality, suppose
that M has only one tape serving both as input and as working tape, and, on any
input x of length n, M runs exactly p(n) ≥ n steps for some p ∈ IPol. We are going
to define a reduction f ∈ FP such that, for each x,

x ∈ A ⇐⇒ f(x) = Fx ∈ SAT, (3.9)

where Fx is a boolean formula whose structure and whose variables are to be de-
scribed below.

Let the input string x = x1x2 · · ·xn be given, where xi ∈ Σ for each i. Since M
works in time p(n), the tape head can move no further than p(n) tape cells to the left
and to the right. Enumerate the relevant tape cells from −p(n) through p(n). Fig-
ure 3.2 shows the tape of M at the start configuration: the input symbols x1x2 · · ·xn

are written onto the tape cells 0 through n− 1, the head currently scans the tape cell
with number 0, and the start state is s0.

We now construct the boolean formula Fx such that (3.9) is satisfied. The boolean
variables of Fx, the range of their indices, and their meaning are given in Table 3.4.
Intuitively, there are three types of variables:
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· · · � · · · � x1 x2 · · · xn � · · · � · · ·
· · · −p(n) · · · −1 0 1 · · · n − 1 n · · · p(n) · · ·

Fig. 3.2. Enumerating the tape cells of NTM M on input x in the Cook reduction

• statet,s represents the state s of M in step t;
• headt,i represents the number i of the tape cell that M ’s head scans in step t;
• tapet,i,a represents the symbol a ∈ Γ written in the cell number i of M ’s tape in

step t.

variable index range intended meaning

statet,s t ∈ {0, 1, . . . , p(n)} statet,s is true ⇐⇒ in step t, M is in state s
s ∈ Z

headt,i t ∈ {0, 1, . . . , p(n)} headt,i is true ⇐⇒ in step t, M ’s head
i ∈ {−p(n), . . . , p(n)} scans the tape cell with number i

tapet,i,a t ∈ {0, 1, . . . , p(n)} tapet,i,a is true ⇐⇒ in step t, the symbol a

i ∈ {−p(n), . . . , p(n)} is written in the cell number i of M ’s tape
a ∈ Γ

Table 3.4. The boolean variables of Fx and their meaning in the Cook reduction

Fx will have the following form:

Fx = S ∧ T1 ∧ T2 ∧ E ∧ C,

where these subformulas of Fx have the following meaning:

• S describes the correct start of the computation of M(x);
• T1 describes the correct transition from step t to step t + 1 for those tape cells

whose contents can be altered by the head of M ;
• T2 describes the correct transition from step t to step t + 1 for those tape cells

whose contents cannot be altered by the head of M ;
• E describes the correct end of the computation of M(x), i.e., E is true if and

only if M(x) has an accepting computation path;
• C describes the general correctness, i.e., C is true if and only if the following

conditions hold:
– in each step t of M(x), there exists exactly one s ∈ Z such that statet,s is

true, and there exists exactly one i such that headt,i is true;
– in each step t of M(x) and for each cell number i, there exists exactly one

a ∈ Γ such that tapet,i,a is true.

To describe these subformulas of Fx formally, let the set of M ’s states be
given by Z = {s0, s1, . . . , sk}, and let the working alphabet of M be given by
Γ = {�, a1, a2, . . . , a�}. Note that Γ contains the input alphabet Σ. Define the
subformula C of Fx by
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C =
∧

0≤t≤p(n)

[D(statet,s0 , statet,s1 , . . . , statet,sk
) ∧

D(headt,−p(n), headt,−p(n)+1, . . . , headt,p(n)) ∧ (3.10)∧
−p(n)≤i≤p(n)

D(tapet,i,�, tapet,i,a1
, . . . , tapet,i,a�

)],

where the structure of the three subformulas D of C in (3.10) is specified in
Lemma 3.50 below. In particular, (a) D is true if and only if exactly one of D’s
variables is true, and (b) the size of D—and thus the size of C—is polynomially
in n.

Lemma 3.50. For each m ≥ 1, there exists a boolean formula D in the variables
v1, v2, . . . , vm such that:

• D(v1, v2, . . . , vm) is true if and only if exactly one variable vi is true, and
• the size of the formula D (i.e., the number of variable occurrences in D) is

in O(m2).

Proof of Lemma 3.50. For fixed m ≥ 1, define

D(v1, v2, . . . , vm) =

(
m∨

i=1

vi

)
︸ ︷︷ ︸

D≥

∧
⎛⎝m−1∧

j=1

m∧
k=j+1

¬(vj ∧ vk)

⎞⎠
︸ ︷︷ ︸

D≤

.

Note that the two subformulas D≥ and D≤ of D satisfy the following properties:

D≥(v1, v2, . . . , vm) is true ⇐⇒ at least one variable vi is true; (3.11)

D≤(v1, v2, . . . , vm) is true ⇐⇒ at most one variable vi is true. (3.12)

Equation (3.11) is obvious. To see that also (3.12) is true, observe that the formula
D≤ has the following structure:

D≤(v1, v2, . . . , vm) = (¬v1 ∨ ¬v2) ∧ (¬v1 ∨ ¬v3) ∧ · · · ∧ (¬v1 ∨ ¬vm)
∧ (¬v2 ∨ ¬v3) ∧ · · · ∧ (¬v2 ∨ ¬vm)

. . .
...

∧ (¬vm−1 ∨ ¬vm).

Equations (3.11) and (3.12) together imply that D(v1, v2, . . . , vm) is true if and
only if exactly one vi is true. Clearly, the size of D is in O(m2). Lemma 3.50

To continue the proof of Theorem 3.49, define the subformula S of Fx, which for
step t = 0 describes the correct start of the computation M(x) (see Figure 3.2), by

S = state0,s0 ∧ head0,0 ∧
−1∧

i=−p(n)

tape0,i,� ∧
n−1∧
i=0

tape0,i,xi+1
∧

p(n)∧
i=n

tape0,i,�.
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Next, define the subformula T1 of Fx, which describes the correct transition from
step t to step t+1 for those tape cells whose contents can be altered by the head of M ,
by

T1 =
∧

t,s,i,a

((
statet,s ∧ headt,i ∧ tapet,i,a

)
=⇒

∨
ŝ ∈ Z, â ∈ Γ, y ∈ {−1, 0, 1}

with (ŝ, â, y) ∈ δ(s, a)

(
statet+1,ŝ ∧ headt+1,i+y ∧ tapet+1,i,â

))
,

where δ is M ’s transition function and y ∈ {−1, 0, 1} represents the head moving by
one cell to the left, not moving at all, and moving by one cell to the right, respectively.

Next, define the subformula T2 of Fx, which describes the correct transition from
step t to step t + 1 for those tape cells whose contents cannot be altered by the head
of M , by

T2 =
∧
t,i,a

((¬headt,i ∧ tapet,i,a

)
=⇒ tapet+1,i,a

)
.

Finally, define the subformula E of Fx, which describes the correct end of the
computation of M(x) and checks whether or not M accepts x:

E =
∨
s∈F

statep(n),s,

where F is the set of accepting final states of M .
This completes the construction of the reduction f . Analyzing the structure of

the formula f(x) = Fx and using Lemma 3.50, it can be shown that f ∈ FP; see
Exercise 3.13. So, it remains to prove (3.9): x ∈ A if and only if the formula f(x) =
Fx is satisfiable.

Suppose x ∈ A. Then, there exists an accepting computation path α of M(x).
Assigning truth values to every variable of Fx according to α, associating with each
variable its “intended meaning” according to Table 3.4, then this truth assignment
satisfies each of the subformulas of Fx, and thus it satisfies Fx itself. Hence, Fx ∈
SAT.

Conversely, suppose Fx ∈ SAT. Then, there exists a truth assigment τ to Fx’s
variables satisfying Fx. According to τ , the variables statet,s, headt,i, and tapet,i,a

of Fx can be sensibly interpreted as a sequence of configurations K0, K1, . . ., Kp(n)

of M(x) along some computation path. In particular, τ(S) = 1 implies that K0 is the
start configuration of M(x), τ(T1) = τ(T2) = τ(C) = 1 implies that Kt−1 �M Kt

for each t with 1 ≤ t ≤ p(n), and τ(E) = 1 implies that Kp(n) is an accepting
final configuration of M(x). Hence, x ∈ A. Equation (3.9) is proven and the proof
of Theorem 3.49 is complete. Theorem 3.49

In Theorem 3.45, the restriction 2-SAT of the satisfiability problem was shown
to be NL-complete. In contrast, Theorem 3.51 below shows that 3-SAT, just like
the general satisfiability problem, is NP-complete. The importance of this result is
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due to the fact that 3-SAT is a very suitable starting point for proving further NP-
completeness results.

Theorem 3.51. 3-SAT is NP-complete.

Proof. Membership in NP for the restricted problem follows immediately from
that for the general problem. To prove that SAT≤p

m 3-SAT, define a reduction f map-
ping any given boolean formula ϕ to a boolean formula ψ in 3-CNF such that:

ϕ is satisfiable ⇐⇒ ψ is satisfiable. (3.13)

Let ϕ(x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm, where the Cj are the clauses
of ϕ. The formula ψ is constructed from ϕ as follows. The variables of ψ are ϕ’s
variables x1, x2, . . . , xn and, for each clause Cj of ϕ, the variables yj

1, y
j
2, . . . , y

j
hj

.
Define ψ = D1 ∧ D2 ∧ · · · ∧Dm, where each clause Dj of ψ is constructed from
the clause Cj of ϕ as follows. Consider the jth clause of ϕ, and suppose that Cj =
(z1 ∨ z2 ∨ · · · ∨ zk), where each zi is a literal over {x1, x2, . . . , xn}. Distinguish the
following four cases.

Case 1: k = 1. Define

Dj = (z1 ∨ yj
1 ∨ yj

2) ∧ (z1 ∨ ¬yj
1 ∨ yj

2) ∧ (z1 ∨ yj
1 ∨ ¬yj

2) ∧ (z1 ∨ ¬yj
1 ∨ ¬yj

2).

Case 2: k = 2. Define Dj = (z1 ∨ z2 ∨ yj
1) ∧ (z1 ∨ z2 ∨ ¬yj

1).
Case 3: k = 3. Define Dj = Cj = (z1 ∨ z2 ∨ z3).
Case 4: k ≥ 4. Define

Dj = (z1 ∨ z2 ∨ yj
1) ∧ (¬yj

1 ∨ z3 ∨ yj
2) ∧ (¬yj

2 ∨ z4 ∨ yj
3) ∧ · · · ∧

(¬yj
k−4 ∨ zk−2 ∨ yj

k−3) ∧ (¬yj
k−3 ∨ zk−1 ∨ zk).

Observe that the reduction f is polynomial-time computable. It remains to show
that (3.13) is true.

To prove the implication from left to right in (3.13), let t be a truth assignment to
the variables x1, x2, . . . , xn of ϕ such that t(ϕ) = 1. Extend t to a truth assignment
t′ of the variables of ψ as follows. Since for i �= j, the clauses Di and Dj are disjoint
with respect to the y variables, it is enough to consider all clauses of ψ separately.

Consider the clause Dj for any fixed j. In Cases 1 through 3 above, t already
satisfies Dj , so t can arbitrarily be extended to t′. Consider Case 4 above. Let zi,
where 1 ≤ i ≤ k be the first literal in Cj for which t(zi) = 1. Such an i must exist,
since t satisfies Cj . If i ∈ {1, 2}, then set t′(yj

� ) = 0 for each 
 with 1 ≤ 
 ≤ k − 3.
If i ∈ {k − 1, k}, then set t′(yj

� ) = 1 for each 
 with 1 ≤ 
 ≤ k − 3. Otherwise, set

t′(yj
� ) =

{
1 if 1 ≤ 
 ≤ i− 2
0 if i− 1 ≤ 
 ≤ k − 3.

In each case, t′ satisfies Dj . Hence, t′(ψ) = 1, so ψ is satisfiable.
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Conversely, to prove the implication from right to left in (3.13), let t′ be a satisfy-
ing truth assignment to ψ. Let t be the restriction of t′ to the variables x1, x2, . . . , xn

of ϕ. Hence, t(ϕ) = 1, so ϕ is satisfiable, which proves (3.13) and the theorem.

Note that the above proof gives a reduction from the NP-complete problem SAT
not only to its restriction 3-SAT, which by definition requires that every clause has at
most three literals, but even to the stronger restriction of SAT that requires that every
clause has exactly three literals. This property will be useful in the proof of some
further NP-completeness results.

NP-completeness results for some central graph problems are presented below.
All these problems are defined for undirected graphs, i.e., graphs whose edges are
unordered pairs of vertices. We consider only simple graphs, i.e., graphs without re-
flexive or multiple edges. Recall that V (G) and E(G) denote respectively the vertex
set and the edge set of a given graph G.

We start by introducing some graph-theoretic notation and three well-known
graph problems. For general graph-theoretic notation, see Definition 2.49 in Sec-
tion 2.4.3.

Definition 3.52 (Clique, Independent Set, and Vertex Cover).
Let G be an undirected graph.

• A clique of G is a subset C ⊆ V (G) such that for any two vertices x, y ∈ C with
x �= y, {x, y} ∈ E(G).

• An independent set of G is a subset I ⊆ V (G) such that for any two vertices
x, y ∈ I with x �= y, {x, y} �∈ E(G).

• A vertex cover of G is a subset C ⊆ V (G) such that for each edge {x, y} ∈
E(G), {x, y} ∩C �= ∅.

Define the decision versions of the clique problem, the independent set problem, and
the vertex cover problem by:

Clique = {〈G, k〉 |G is a graph that has a clique of size ≥ k};
IS = {〈G, k〉 |G is a graph that has an independent set of size ≥ k};
VC = {〈G, k〉 |G is a graph that has a vertex cover of size ≤ k}.

Lemma 3.53. For each graph G and for each subset U ⊆ V (G), the following are
equivalent:

1. U is a vertex cover of G.
2. U = V (G) − U is an independent set of G.
3. U = V (G) − U is a clique of the co-graph of G, which is defined as the graph

with vertex set V (G) and edge set {{u, v} | u, v ∈ V (G) and {u, v} �∈ E(G)}.
The proof of Lemma 3.53 is left to the reader as Exercise 3.14(a).

Theorem 3.54. Clique, IS, and VC are NP-complete.
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Proof. It is easy to see that each of Clique, IS, and VC belongs to NP; see Ex-
ercise 3.14(c). Lemma 3.53 implies that these three problems are pair-wise ≤p

m-
equivalent, i.e., for any two problems A and B chosen among Clique, IS, and
VC, A≤p

m B and B≤p
m A; see Exercise 3.14(b). Hence, it suffices to prove that

3-SAT≤p
m IS. Let ϕ(x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm be a given boolean

formula with exactly three literals per clause. For each i with 1 ≤ i ≤ m, let the ith

clause be given by Ci = (zi,1 ∨ zi,2 ∨ zi,3), where every zi,j ∈ {x1, x2, . . . , xn} ∪
{¬x1,¬x2, . . . ,¬xn} is a literal.

The reduction f maps ϕ to the pair 〈G, m〉, where G is the graph with vertex set
V (G) = {zi,j | 1 ≤ i ≤ m and 1 ≤ j ≤ 3} and edge set

E(G) = {{zi,j, zi,k} | 1 ≤ i ≤ m and 1 ≤ j, k ≤ 3 and j �= k} ∪
{{zi,j, zr,s} | i �= r and zi,j = ¬zr,s}.

That is, every occurrence of a literal in some clause of ϕ is represented by a vertex
of G, the clauses of ϕ correspond to triangles in G, and any two vertices of distinct
triangles are connected by an edge if and only if one vertex represents some literal
and the other one its negation.

For example, consider the graph G in Figure 3.3, which is constructed from the
formula

ϕ(x1, x2, x3) = (x1∨x2∨x3)∧(¬x1∨x2∨x3)∧(¬x1∨x2∨¬x3)∧(x1∨¬x2∨x3).

x2

x2x2

¬x2

x1

¬x1x3

x3

x1 ¬x3

¬x1

x3

Fig. 3.3. Graph G in the reduction 3-SAT≤p
m IS

Clearly, f ∈ FP. The construction implies that:



3.5.3. NP-Completeness 95

ϕ ∈ 3-SAT ⇐⇒ there exists a truth assignment t with t(ϕ) = 1
⇐⇒ every clause Ci has a literal zi,ji with t(zi,ji) = 1
⇐⇒ there exists a sequence of literals z1,j1 , z2,j2 , . . . , zm,jm

such that zi,ji �= ¬zk,jk
for i, k ∈ {1, 2, . . . , m} with i �= k

⇐⇒ there exists a sequence of literals z1,j1 , z2,j2 , . . . , zm,jm such
that {z1,j1 , z2,j2 , . . . , zm,jm} is an independent set of size m in G.

Since G has an independent set of size at least m if and only if ϕ is satisfiable,
the reduction f witnesses that 3-SAT≤p

m IS.

Next, we are concerned with graph coloring and dominating set problems, which
arise in various applications and are closely related to scheduling and partitioning
problems. In particular, the colorability problem asks for the minimum number of
colors required to color the vertices of a given graph such that any two adjacent
vertices have distinct colors.

Definition 3.55 (Chromatic Number and k-Colorability Problem).
Given an undirected graph G, a coloring of G is a mapping from V (G) to the positive
integers, which represent the colors. A coloring ψ of G is called legal if for any two
vertices x and y in V (G), if {x, y} ∈ E(G) then ψ(x) �= ψ(y).

The chromatic number of G, denoted by χ(G), is the minimum number of colors
needed to legally color G. Given a fixed constant k ≥ 1, graph G is said to be
k-colorable if and only if there exists a legal coloring of G using no more than k
colors.

For fixed k ≥ 1, define the decision version of the k-colorability problem by

k-Colorability = {G |G is a graph with χ(G) ≤ k}.

It is known that 2-Colorability is polynomial-time decidable; see Exercise 3.16.
In contrast, Theorem 3.56 below shows that 3-Colorability is NP-complete.

Theorem 3.56. 3-Colorability is NP-complete.

Proof. Membership of 3-Colorability in NP is easy to see: Nondeterministi-
cally guess a partition of the vertex set of the given graph into three color classes,
and for each partition guessed, verify deterministically that it represents a legal col-
oring.

The following reduction from 3-SAT to 3-Colorabilitywill prove NP-hardness.
Let ϕ(x1, x2, . . . , xn) = C1 ∧C2 ∧ · · · ∧Cm be a given 3-SAT instance with exactly
three literals per clause. Define a reduction f mapping ϕ to the graph G constructed
as follows. The vertex set of G is defined by

V (G) = {v1, v2, v3} ∪ {xi, x̄i | 1 ≤ i ≤ n} ∪ {yj,k | 1 ≤ j ≤ m and 1 ≤ k ≤ 6},

where the xi and x̄i are vertices representing the literals xi and their negations ¬xi,
respectively. The edge set of G is defined by
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E(G) = {{v1, v2}, {v2, v3}, {v1, v3}} ∪ {{xi, x̄i} | 1 ≤ i ≤ n}
∪ {{v3, xi}, {v3, x̄i} | 1 ≤ i ≤ n}
∪ {{aj, yj,1}, {bj, yj,2}, {cj, yj,3} | 1 ≤ j ≤ m}
∪ {{v2, yj,6}, {v3, yj,6} | 1 ≤ j ≤ m}
∪ {{yj,1, yj,2}, {yj,1, yj,4}, {yj,2, yj,4} | 1 ≤ j ≤ m}
∪ {{yj,3, yj,5}, {yj,3, yj,6}, {yj,5, yj,6} | 1 ≤ j ≤ m}
∪ {{yj,4, yj,5} | 1 ≤ j ≤ m},

where aj , bj, cj ∈
⋃

1≤i≤n{xi, x̄i} are vertices representing the literals occurring in
clause Cj = (aj ∨ bj ∨ cj).

a

b

c

y1

y2

y3

y5

y6

y4

Fig. 3.4. Graph H in the reduction 3-SAT≤p
m 3-Colorability

The graph H shown in Figure 3.4 is the key construct in this reduction, which
uses m disjoint copies of H (with corresponding subscripts), one for each clause Cj

of ϕ. The correctness of the reduction follows from the following two properties of
graph H :

Any coloring of the vertices a, b, and c that assigns color 1 to
one of a, b, and c can be extended to a legal 3-coloring of H
that assigns color 1 to y6.

(3.14)

If ψ is a legal 3-coloring of H with ψ(a) = ψ(b) = ψ(c) = i,
then ψ(y6) = i.

(3.15)

The proof of (3.14) and (3.15) is left to the reader as Exercise 3.15. By (3.14)
and (3.15), ϕ is satisfiable if and only if G is three-colorable. Thus, 3-Colorability
is NP-complete.

We now define the notion of dominating sets in a graph and the domatic number
problem. This problem, which arises in the area of computer networks, is the problem
of partitioning a given graph into a maximum number of disjoint dominating sets.

Definition 3.57 (Domatic Number Problem). Given an undirected graph G, a
dominating set of G is a subset D ⊆ V (G) such that for each vertex u ∈ V (G)−D,
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there exists a vertex v ∈ D with {u, v} ∈ E. The domatic number of G, denoted
by δ(G), is the maximum number of disjoint dominating sets. Define the decision
version of the domatic number problem by

DNP = {〈G, k〉 |G is a graph and k is a positive integer such that δ(G) ≥ k}.
Note that δ(G) ≤ min-deg(G) + 1, where min-deg(G) denotes the minimum

degree of the vertices of graph G.

Theorem 3.58. DNP is NP-complete.

Proof. To prove that 3-Colorability≤p
m DNP, construct a reduction f mapping

any given graph G to a pair 〈H, 3〉 = f(G), where H is a graph satisfying the
implications (3.16) and (3.17):

G ∈ 3-Colorability =⇒ δ(H) = 3; (3.16)

G �∈ 3-Colorability =⇒ δ(H) = 2. (3.17)

Since it can be tested in polynomial time whether or not a given graph is two-
colorable (see Exercise 3.16), we may assume, without loss of generality, that G is
not two-colorable. We also assume that G has no isolated vertices. Note that the do-
matic number of any graph is always at least 2 if it has no isolated vertices; cf. [GJ79].
Graph H is constructed from G by creating ||E(G)|| new vertices, one on each edge
of G, and by adding new edges such that the original vertices of G form a clique.
Thus, every edge of G induces a triangle in H , and every pair of nonadjacent vertices
in G is connected by an edge in H .

Let V (G) = {v1, v2, . . . , vn}, and define the vertex set and the edge set of H by:

V (H) = V (G) ∪ {ui,j | {vi, vj} ∈ E(G)};
E(H) = {{vi, ui,j} | {vi, vj} ∈ E(G)} ∪ {{ui,j, vj} | {vi, vj} ∈ E(G)}

∪ {{vi, vj} | 1 ≤ i, j ≤ n and i �= j}}.
The construction of the graph H from a given graph G is illustrated by the ex-

ample in Figure 3.5. Note that the example graph G in Figure 3.5 is three-colorable;
for instance, color the vertices v1 and v4 red, color the vertex v2 blue, and color the
vertices v3 and v5 green. Then, the domatic number of H is 3, and the vertex set
V (H) can be partitioned into three dominating sets:

R = {v1, v4, u2,3, u2,5},
B = {v2, u1,5, u3,4, u4,5},
G = {v3, v5, u1,2, u2,4},

which shows (3.16) in this example.
We now prove the implications (3.16) and (3.17) in general. By construction,

min-deg(H) = 2 and H has no isolated vertices. Thus, the inequality δ(H) ≤
min-deg(H) + 1 implies that 2 ≤ δ(H) ≤ 3.
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G:

v3 v4

v5

v1

v2

v3 v4

v5

v1

v2

u2,3
u2,4

u3,4

u2,5

u1,2 u1,5

u4,5

H:

Fig. 3.5. Graph H constructed from graph G in the reduction 3-Colorability≤p
m DNP

Suppose that G is three-colorable. Let C1, C2, and C3 be the three color classes
of G, i.e., Ck = {vi ∈ V (G) | vi is colored by color k}, for k ∈ {1, 2, 3}. Form a
partition of V (H) by Ĉk = Ck∪{ui,j |{vi, vj} ∈ E(G) and vi �∈ Ck and vj �∈ Ck},
for k ∈ {1, 2, 3}. Since Ĉk ∩ V (G) �= ∅ for each k, and since V (G) induces
a clique in H , every Ĉk dominates V (G) in H . Also, every triangle {vi, ui,j , vj}
in H contains one element from each Ĉk, so every Ĉk also dominates the set
{ui,j | {vi, vj} ∈ E(G)} in H . Hence, δ(H) = 3, which proves (3.16).

Conversely, suppose that δ(H) = 3. Given a partition of V (H) into three dom-
inating sets, Ĉ1, Ĉ2, and Ĉ3, color the vertices in Ĉk by color k. Every triangle
{vi, ui,j , vj} in H is three-colored, which implies that this coloring on V (G) in-
duces a legal three-coloring of G; so G ∈ 3-Colorability. Hence, χ(G) = 3 if
and only if δ(H) = 3. Since 2 ≤ δ(H) ≤ 3, the implication (3.17) follows.

Finally, we consider certain matching, set covering, and knapsack problems. We
start with the matching problem.

Definition 3.59 (Two-Dimensional Matching Problem).
A bipartite graph is a graph with 2n vertices whose vertex set can be partitioned into
two disjoint subsets of size n, say V1 and V2, that both are independent sets. That is,
neither the vertices within V1 nor the vertices within V2 are adjacent; there are only
edges connecting vertices from V1 with vertices from V2.

Given a bipartite graph G with V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅, a (perfect)
bipartite matching of G is a subset M ⊆ E(G) of n edges such that, for any two
distinct edges {v, w} and {x, y} in M , v �= x and w �= y. The bipartite matching
problem (a.k.a. the two-dimensional matching problem) asks whether or not there
exists a matching in a given bipartite graph.

Example 3.60 (Two-Dimensional Matching Problem). Consider a set Vbride of n
brides and a set Vgroom of n bridegrooms, who form the vertices of a bipartite graph G.
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That is, the vertex set of G is partitioned into Vbride and Vgroom such that V (G) =
Vbride ∪ Vgroom and Vbride ∩ Vgroom = ∅. An edge between two vertices indicates that
the corresponding partners would be willing to marry each other. Straightforward
thought reveals why there are no edges connecting the vertices within Vbride and no
edges connecting the vertices within Vgroom.

One may think of a matching as a way of arranging n weddings between a set
of n brides and a set of n bridegrooms such that, in the words of Garey and John-
son [GJ79], “polygamy is avoided and everyone receives an acceptable spouse.” The
left-hand side of Figure 3.6 gives a concrete example in which four couples (fi, mi)
can be matched according to the bold-faced edges.

The above “wedding” interpretation of bipartite matchings explains that this
problem is sometimes referred to as the “marriage problem.” It is known that the
marriage problem can be solved in polynomial time; see Hopcroft and Karp [HK73].
In real life, their result applies as well: To marry is easy!

We now define the generalization of bipartite graphs and matchings to three di-
mensions and consider the corresponding generalized problem, which is dubbed the
three-dimensional matching problem, a.k.a. the tripartite matching problem.

Definition 3.61 (Three-Dimensional Matching Problem).
Let n be a positive integer, let U , V , and W be three pairwise disjoint sets of size n,
and let R ⊆ U × V ×W be a ternary relation, i.e., a set of triples (u, v, w) with
u ∈ U , v ∈ V , and w ∈ W .

A tripartite matching of R is a subset M ⊆ R of size n such that, for any two
distinct triples (u, v, w) and (û, v̂, ŵ) in M , we have u �= û, v �= v̂, and w �= ŵ.
That is, no two elements of a tripartite matching agree in any coordinate.

Define the decision version of the three-dimensional matching problem by

3-DM =

⎧⎨⎩〈R, U, V, W 〉
U , V , and W are pairwise disjoint, nonempty sets
of equal size, and R ⊆ U × V ×W is a ternary
relation containing a tripartite matching of size ||U ||

⎫⎬⎭ .

The following story continues and extends Example 3.60.

Story 3.62 Nine months have passed. Some morning, our n happily married cou-
ples are on their way to the town hospital. A few hours of hard labor later, n babies
are born, who immediately start screaming and increasing the complexity in the life
of their parents considerably. To begin with, they each get rid of their name tags
indicating to which pair of parents they belong, which causes a huge mess in the
delivery room. Even worse, each of the new fathers—perhaps confused by the mo-
ment’s excitement and intrigued by the other women’s beauty—claim to have never
seen before that young lady who stubbornly insists that she has just given birth to his
child. Instead, the faithless father claims to be allied with the other young lady right
next to her. The chaos is perfect!

The nurse on duty thus faces a difficult problem: Which baby matches which
pair of parents? In other words, to restore the n happy, harmonious, and pairwise
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disjoint families, she has to find a three-dimensional matching among the n fathers,
n mothers, and n babies. No wonder that, in contrast with the efficiently solvable
marriage problem, the problem 3-DM turns out to be NP-complete. After all, to solve
the tripartite matching problem, the nurse has to take 3n blood samples, which she
then uses for certain really sophisticated DNA tests (whose description is beyond the
scope of this book). Again, the result that 3-DM is NP-complete accords with common
sense and worldly wisdom in real life: With children coming along, staying a happy
and harmonious family—disjoint with any other family!—occasionally tends to be
quite hard a task!

Theorem 3.63. 3-DM is NP-complete.

Proof. Membership of 3-DM in NP is easy to see: Given an instance 〈R, U, V, W 〉
of 3-DM, where R ⊆ U × V ×W is a ternary relation over pairwise disjoint sets U ,
V , and W of size n each, nondeterministically guess a subset M ⊆ R of size n, and
for each subset M guessed, check deterministically whether or not it is a tripartite
matching of R.

The intuition behind the NP-hardness proof is best understood by first looking
at the approach taken by the nurse on duty in the delivery room from Story 3.62
above. How does she solve the tripartite matching problem? First, she attaches name
tags to everybody in the room, making sure that they cannot be removed. Suppose
the mothers are labeled m1, m2, . . . , mn, the fathers are labeled f1, f2, . . . , fn, and
the babies are labeled b1, b2, . . . , bn. Let b̄1, b̄2, . . . , b̄n be another set of n babies,
where each b̄i is a clone7 of bi. Then, she arranges them in two circles such that the
2n parents form the inner circle in which fathers and mothers alternate. In the outer
circle, the n babies and their n clones alternate. For n = 4, Figure 3.6 (right) shows
these two circles in which persons standing next to each other are connected so as to
form 2n triangles. Every father is connected with two mothers and two babies, and
every mother is connected with two fathers and two babies.

For each i (modulo n = 4), father fi claims to be married to mother mi+1 and
to have the ith child together with her. Mother mi, however, insists that she is the
wife of fi and that she has the ith baby together with him. These two contradictory
assertions are depicted in Figure 3.6 (right). The assertion of father fi is shown by
the triangle with corners fi, mi+1, and b̄i, and the assertion of mother mi is shown
by the triangle with corners mi, fi, and bi.

Each of the 2n triangles represents one potential family, and the nurse has to
determine which of the triangles are the original n families and which are not. The
only way to obtain n disjoint families is to choose either every triangle containing a
baby bi, or every triangle containing a cloned baby b̄i. By taking 3n blood samples
and using the results of her DNA tests, the nurse can make the right choice, assigning
every father to his true spouse and child and thus restoring the n original families.
The remaining n babies (and this is the sad side of the nurse’s approach to solving
this problem—and of baby cloning in general) are sent to foster homes.

7 Again, the technical details of how to clone babies—and the discussion of related ethical
questions—are beyond the scope of this book.
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Fig. 3.6. Left: Marriage problem Right: Truth-setting gadget

Complexity theorists do not know much about DNA testing. Fortunately, how-
ever, they are familiar with the satisfiability problem. To show NP-hardness of 3-DM,
we now give a formal reduction from 3-SAT to 3-DM.

Given a boolean formula ϕ(x1, x2, . . . , x�) = C1 ∧ C2 ∧ · · · ∧ Cn, where
the clauses Cj of ϕ have exactly three literals, the goal is to construct an instance
〈R, U, V, W 〉 of 3-DM such that R ⊆ U × V ×W , where U , V , and W are pairwise
disjoint, nonempty sets of equal size, and the following equivalence holds:

ϕ is satisfiable ⇐⇒ R contains a tripartite matching of size ||U ||. (3.18)

R consists of various types of triples, each corresponding to a certain intention.
All triples of the same type are bundled into one component. The first component,
call it X , contains those triples in R whose form enforces a certain truth assignment
to the variables of the formula ϕ making sure that this assignment is consistent for all
clauses of ϕ. That is, if some variable occurs in distinct clauses, then the same truth
value is assigned to all these occurrences. That is why this component X is called
the “truth-setting” gadget of R.

We now define the sets U , V , and W and construct the components of the rela-
tion R, beginning with X . For each variable xi in ϕ, create 2n elements bi

1, b
i
2, . . . , b

i
n

and b̄i
1, b̄

i
2, . . . , b̄

i
n in U , where n is the number of clauses of ϕ. Here, bi

j represents the
occurrence of xi in Cj , the jth clause of ϕ, and b̄i

j represents the occurrence of ¬xi

in Cj . Since the literals do not occur in all clauses, some bi
j or b̄i

j do not correspond
to the occurrence of any literal in ϕ. The elements bi

j and b̄i
j form the outer circle of

the graph shown in Figure 3.6 (right), for n = 4 and dropping the superscripts.
In addition, for each variable xi in ϕ, create n elements mi

1, m
i
2, . . . , m

i
n in V

and n elements f i
1, f

i
2, . . . , f

i
n in W , which form the inner circle of the graph shown

in Figure 3.6 (right). Construct the truth-setting gadget presented in this figure by
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connecting the elements mi
j , f i

j , and bi
j to form a triangle, and the elements f i

j ,
mi

j+1, and b̄i
j to form another triangle.

The triangles in the gadget thus constructed correspond to triples in R. The mi
j

and f i
j from the inner circle occur in the one gadget corresponding to the variable xi

only, whereas the bi
j and b̄i

j from the outer circle will occur in other gadgets as well.

Formally, the truth-setting gadget X has the form X =
⋃�

i=1 Xi, where for each
variable xi in ϕ, Xi = Fi ∪ Ti is defined by the following two sets of triples:

Fi = {(bi
j, m

i
j , f

i
j) | 1 ≤ j ≤ n};

Ti = {(b̄i
j, m

i
j+1, f

i
j) | 1 ≤ j < n} ∪ {(b̄i

n, mi
1, f

i
n)}.

Since none of the elements mi
j and f i

j , where 1 ≤ i ≤ 
 and 1 ≤ j ≤ n, from the
inner circle will occur in any triple outside of Xi = Fi ∪ Ti, any matching M of R
must contain exactly n triples from Xi, either all triples from Fi or all triples from Ti.
Intuitively, this choice between triples from Fi and triples from Ti for the matching
forces us to make a choice between setting the variable xi false and setting xi true.
Since all occurrences of xi in the formula ϕ are represented in the gadget Xi, this
choice is consistent for the entire formula. Hence, any matching M of R specifies a
truth assignment of ϕ such that, for each i ∈ {1, 2, . . . , 
}, the variable xi is set to
true if and only if M ∩Xi = Ti.

Next, we add to R the set Y =
⋃n

j=1 Yj of triples such that each Yj checks the
satisfiability of the clause Cj in ϕ. That is why Y is called the “satisfiability” com-
ponent of R. For each clause Cj , create two elements, vj ∈ V and wj ∈ W , that
occur only in Yj . In addition, Yj contains three more elements from

⋃�
i=1{bi

j}∪{b̄i
j}

corresponding to the three literals in Cj and possibly occurring also in other com-
ponents of R. Formally, for each clause Cj of ϕ, define the satisfiability component
of R by the following set of triples:

Yj = {(bi
j , vj , wj) | xi occurs in Cj} ∪ {(b̄i

j, vj , wj) | ¬xi occurs in Cj}.
Since none of the elements vj and wj , 1 ≤ j ≤ n, will occur in any triple of R

outside of Yj , any matching M of R must contain exactly one triple from Yj , either
(bi

j , vj , wj) or (b̄i
j , vj , wj). However, M contains a triple from Yj with either bi

j (if xi

occurs in Cj) or b̄i
j (if ¬xi occurs in Cj) if and only if that element is not contained

in the triples from M ∩ Xi, which is the case if and only if the truth assignment
chosen by M via the truth-setting gadget satisfies clause Cj .

So far, U contains 2n
 elements, but both V and W contain only n
+n elements.
Adding n(
 − 1) further elements both to V and to W ensures that these three sets
have the same size. In particular, add the elements vn+1, vn+2, . . . , vn� to V , add the
elements wn+1, wn+2, . . . , wn� to W , and add the following set of triples to R:

Z = {(bi
j, vk, wk) | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n and n + 1 ≤ k ≤ n
}

∪ {(b̄i
j, vk, wk) | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n and n + 1 ≤ k ≤ n
}.

The point is that whenever there exists a matching of R − Z that satisfies all con-
straints imposed by the truth-setting gadget and the satisfiability component of R,
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this matching leaves exactly n(
−1) elements from U uncovered, which can now be
matched with a unique pair (vk, wk) occurring in Z . This extension of the matching
of R− Z yields a matching of R.

To summarize, the sets U , V , and W are defined by:

U = {bi
j | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n} ∪ {b̄i

j | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n};
V = {mi

j | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n} ∪ {vk | 1 ≤ k ≤ n
};
W = {f i

j | 1 ≤ i ≤ 
 and 1 ≤ j ≤ n} ∪ {wk | 1 ≤ k ≤ n
},
and the relation R ⊆ U × V ×W is defined by

R = X ∪ Y ∪ Z.

Note that R contains exactly 2n
 + 3n + 2n2
(
 − 1) triples and the structure
of R can be easily determined from the structure of the given formula ϕ. Thus, the
reduction is polynomial-time computable. Equation (3.18) follows from the remarks
made during the construction of R; a formal proof of (3.18) is left to the reader as
Exercise 3.17.

Definition 3.64 (Set Covering, Set Packing, and Exact Cover By 3-Sets).
For any set U , let P(U) be the power set of U , i.e., the set of subsets of U . Define
the decision version of the set covering problem by

SetCovering =

⎧⎨⎩〈S, U, k〉
k ∈ N, U is a finite set, S ⊆ P(U),
and there exist k sets S1, S2, . . . , Sk

in S such that U =
⋃k

i=1 Si

⎫⎬⎭ .

Given any set U and any collection S ⊆ P(U), let κ(S) denote the maximum
number of pairwise disjoint sets in S. Define the decision version of the set packing
problem by

SetPacking = {〈S, U, k〉 | k ∈ N, U is a finite set, S ⊆ P(U), and κ(S) ≥ k} .

Define the decision version of the exact cover by 3-sets problem by

X-3-Cover =

⎧⎨⎩〈S, U〉
U is a set with ||U || = 3m for some m ∈ N, S ⊆ P(U),
||S|| = 3 for each S ∈ S, and there exist m pairwise
disjoint sets S1, S2, . . . , Sm ∈ S such that U =

⋃m
i=1 Si

⎫⎬⎭ .

Theorem 3.65. SetCovering, SetPacking, and X-3-Cover each are NP-complete.

Proof. Again, membership in NP is easy to see for each of these problems. To
prove NP-hardness, it is enough to observe that each of these problems generalizes
the 3-DM problem. In particular, 3-DM is the special case of the X-3-Cover problem
in which the given universe U can be partitioned into three pairwise disjoint sets of
equal size, say A, B, and C, such that each set S in the given collection S contains
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exactly one element from each of A, B, and C. The problem X-3-Cover, in turn,
is the special case of the SetCovering problem in which the given universe U has
3m elements, every set S in the given collection S contains exactly three elements,
and the given constant k equals m. A similar argument works for the SetPacking
problem; see Exercise 3.18.

To conclude the section on NP-completeness, we turn to certain knapsack prob-
lems. Knapsack problems are single-line integer linear programming problems of the
form:

Maximize
n∑

i=1

sixi

subject to
n∑

i=1

sixi ≤ T, where xi ∈ Z.

In general, integer linear programming is the problem of finding an integer solution
to a given system of linear inequalities in n variables and with integer coefficients.
One may thus think of a knapsack problem as an optimization problem with the ob-
jective to fill a knapsack of capacity T with items of sizes si such that the largest
possible utilization is achieved. Theorem 3.67 below shows NP-completeness of the
very special variant of the knapsack problem in which xi ∈ {0, 1}, for each i, and
in which equality with the target capacity T is required. It follows that the gen-
eral knapsack problem (with xi being integers and with requiring T being an upper
bound only) as well as the even more general integer linear programming problem
are NP-hard. Both are also NP-complete; the difficult part of the proof is showing
that integer linear programming is in NP. In contrast, the linear programming prob-
lem, which is the same as integer linear programming except that solutions need not
be integers, can be solved in polynomial time by H. Lenstra’s algorithm [Len83], see
also Hačijan [Hač79].

We now define the above-mentioned 0-1 restriction of the knapsack problem,
which is known as the subset-of-sums problem, SOS for short. This problem has
been used for certain cryptographic applications. In particular, cryptosystems were
proposed whose security is based on the hardness of the SOS problem and variants
thereof; see Section 8.5. Some of those systems were broken, whereas others are still
in use. Moreover, the SOS problem is closely related to lattice-based cryptography,
see the references in Section 8.8.

Definition 3.66 (Subset-of-Sums Problem). The subset-of-sums problem, SOS, is
defined as follows: Given a sequence s1, s2, . . . , sn, T of positive integers (encoded
in binary), does there exist a boolean vector x = (x1, x2, . . . , xn) in {0, 1}n such
that

n∑
i=1

xisi = T ?

The numbers si are called the sizes, and T is the target sum. Formalized as a set of
yes-instances, this decision problem has the following form:
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SOS =
{
〈s1, s2, . . . , sn, T 〉 s1, s2, . . . , sn, T ∈ N− {0}, and there is

some x ∈ {0, 1}n such that
∑n

i=1 xisi = T

}
.

Theorem 3.67. SOS is NP-complete.

Proof. The proof that SOS belongs to NP is left to the reader as Exercise 3.19. To
prove NP-hardness, we reduce the NP-complete problem X-3-Cover to SOS. We are
given a set U of cardinality 3m and a collection S ⊆ P(U) of subsets of U such
that every set in S has exactly three elements. Our goal is to construct an instance
〈s1, s2, . . . , sn, T 〉 of the SOS problem such that some of the sizes si sum up to
exactly T if and only if U can be partitioned into m pairwise disjoint sets from S.

It is convenient to view the elements of the universe U as positive integers, i.e.,
U = {1, 2, . . . , 3m}. Let n be the number of sets in the given collection S, i.e.,
S = {S1, S2, . . . , Sn}. Think of each set Si in S as a bit vector si of dimension 3m.
For example, let U = {1, 2, . . . , 6}, and consider the collection S = {S1, S2, S3}
with three sets, where

S1 = {1, 3, 6} corresponds to s1 = (1, 0, 1, 0, 0, 1);
S2 = {3, 4, 6} corresponds to s2 = (0, 0, 1, 1, 0, 1);
S3 = {2, 4, 5} corresponds to s3 = (0, 1, 0, 1, 1, 0).

Interpret the bit vectors si as positive integers si in (n + 1)-ary representation.
The base n + 1 is chosen in order to avoid problems with the carry in the addition of
the integers represented by the si. That is, for each i with 1 ≤ i ≤ n, the integer si

corresponding to the set Si is defined by

si =
∑
j∈Si

(n + 1)3m−j.

In the above example, we have

s1 = 45 + 43 + 40 = 1089;
s2 = 43 + 42 + 40 = 81;
s3 = 44 + 42 + 41 = 276.

The universe U , which contains all integers j with 1 ≤ j ≤ 3m, thus corresponds
to the vector 1 = (1, 1, . . . , 1) of dimension 3m. Hence, defining the target sum T
to be the integer represented by this vector in base n + 1:

T =
3m−1∑
j=0

(n + 1)j ,

it follows that U can be partitioned into m pairwise disjoint sets from S if and only
if
∑n

i=1 xisi = T for suitably chosen coefficients xi ∈ {0, 1}. In particular, xi = 1
if and only if Si is one of the sets participating in the partition of U . In the above
example, U = S1∪S3 with S1 and S3 being disjoint sets from S and, for the boolean
coefficient vector x = (1, 0, 1), we have s1 + s3 = 1365 = T .
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3.6 Inside NP

3.6.1 P versus NP and the Graph Isomorphism Problem

Does P equal NP? Nobody knows. This famous question has annoyed complexity
theorists since the beginnings of this field, and still no solution to this central ques-
tion seems to be within reach. Given the importance of the classes P and NP, it is
natural to speculate. A vast majority of complexity theorists believe that P �= NP;
see the P =? NP poll conducted by Gasarch in 2002 [Gas02]. If it ever turns out that
P = NP is true indeed, then the world of computational complexity is richer by one
important insight, yet at the same time it is poorer in that it has lost much of its rich
structure. For example, P = NP would make Chapter 5 completely pointless (except
for Section 5.6 that is concerned with alternating Turing machines). Chapter 5 stud-
ies some interesting hierarchies of complexity classes that are based on NP, and a
collapse of NP to P implies that all these hierarchies also collapse to P.

The P versus NP question is also of central importance in cryptography. In par-
ticular, P = NP implies that most of the cryptosystems currently in use in fact are
useless, since their security is based on the assumption that certain problems such
as the factoring problem are hard to solve. The factoring problem asks for the prime
decomposition pe1

1 pe2
2 · · · pek

k of a given integer n, along with primality certificates
for its prime factors pi. As we will see in Chapter 7, integer factoring can be done
in nondeterministic polynomial time, yet there is no efficient deterministic algorithm
known for solving it. However, if P = NP, factoring could be done in deterministic
polynomial time. On the other hand, the existence of an efficient factoring algorithm
does not imply P = NP in any obvious way. In this regard, the factoring problem
parts company with the NP-complete problems.

We know from Lemma 3.36 that P = NP if and only if any one NP-complete
problem is in P. Thus, if P �= NP, no NP-complete problem can be in P. A natural
question arises: Assuming P �= NP, can there exist NP problems that are neither in P
nor NP-complete? Ladner proved that the answer to this question is in the affirmative.
The proof of his result is omitted here, since it will be proven later on: Theorem 3.68
is a special case of a result by Schöning stated as Theorem 5.88 in Section 5.7.

Theorem 3.68 (Ladner).
P �= NP if and only if there exist sets in NP that are neither in P nor NP-complete.

By Theorem 3.68, if P �= NP, then there exist problems in NP that are neither
in P nor NP-complete. However, the problems constructed in the proof of this result
are not overly natural problems. Are there any natural NP problems that are neither
in P nor NP-complete? The primality problem, which asks whether or not a given
integer is prime, was considered to be one good candidate for such a problem. How-
ever, Agrawal, Kayal, and Saxena [AKS02] showed that this problem in fact is in P.
Efficient primality tests are important for many cryptosystems including the RSA
system; see Chapter 7.

Another good candidate is the graph isomorphism problem, see Definition 2.49
in Section 2.4. The following fact is easy to prove; see Exercise 3.20.
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Fact 3.69 GI is in NP.

Chapter 6 will provide evidence that GI indeed is a problem in NP that seems
to be not NP-complete. On the other hand, it does share many properties with the
NP-complete sets. For example, just like all “natural” NP-complete problems, GI is
self-reducible. Self-reducibility is a very important property and has been studied in
a wide variety of contexts. For example, the results presented in Section 3.6.2, and in
particular Theorem 3.75, make extensive use of the self-reducibility of NP-complete
problems such as SAT; see also the remarks in Section 3.8.

Intuitively, a set A is self-reducible if there exists an efficient algorithm for solv-
ing A, which uses the set A itself as an oracle. If this algorithm could simply query
the oracle about its input string, then every set would be self-reducible and thus this
notion would be trivial. To prevent this from happening, only queries about strings
that are “smaller” than the input string are allowed in a self-reduction. If simply the
length of strings is meant by “smaller,” then self-reductions might depend on the
encoding used, which is not desirable. A variety of formal concepts capturing self-
reducibility have been proposed in the literature, among which the notion proposed
by A. Meyer and Paterson [MP79] has turned out to be the most useful. Their for-
mal approach is useful to “obtain full generality and to preserve the concept under
polynomially computable isomorphisms” [JY90, p. 84], see also Section 3.6.2.

Definition 3.70 (Self-Reducibility).

1. A partial order <pwl on Σ∗ is polynomially well-founded and length-related if
and only if the following two conditions hold:
(a) Every strictly decreasing chain is finite, and there is a polynomial p such

that every finite <pwl-decreasing chain is shorter than p of the length of its
maximum element.

(b) There exists a polynomial q such that for all x, y ∈ Σ∗, x <pwl y implies
that |x| ≤ q(|y|).

2. A set A is self-reducible if and only if there exist a polynomially well-founded
and length-related order <pwl on Σ∗ and a DPOTM M such that A = L(MA)
and on any input x ∈ Σ∗, M queries only strings y with y <pwl x.

Theorem 3.71. Both SAT and GI are self-reducible.

We will not give a formal proof of Theorem 3.71 here. Rather, we merely give
an intuitive outline for the satisfiability problem. Given a boolean formula ϕ, let ϕ0

and ϕ1 be the formula that results from ϕ when setting its first variable to false and
true, respectively. Intuitively, it is clear that ϕ0 and ϕ1 are smaller than ϕ, since they
have one variable fewer than ϕ.

Now, construct the self-reducibility tree for a given instance ψ to SAT as follows:
The root is marked by ψ, and each vertex of the tree that is marked by some formula
ϕ gets two children that are marked by ϕ0 and ϕ1, respectively. The depth of the
tree is bounded by the number of variables, say n, and the number of its leaves
is bounded by 2n. The leaves contain formulas that can be evaluated immediately,
since they don’t have any variables anymore. Moreover, since for each formula ϕ,
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ϕ ∈ SAT ⇐⇒ ϕ0 ∈ SAT ∨ ϕ1 ∈ SAT,

the formula ψ at the root is satisfiable if and only if there exists a path from the root
to some leave such that every formula on this path is satisfiable. That is why the
procedure just described is called a “disjunctive” self-reduction.

3.6.2 The Berman–Hartmanis Isomorphism Conjecture and One-Way
Functions

An isomorphism between any two sets, A and B, is a bijection (i.e., a one-to-one,
onto mapping) between A and B. The Cantor–Bernstein Theorem in set theory says
that A and B are isomorphic if and only if there is an injection from A into B and an
injection from B into A. In recursive function theory, it is known that all sets many-
one complete in RE are pair-wise isomorphic; see the book [Rog67] by H. Rogers.
Note that “many-one complete” is here meant in the recursion-theoretic sense, i.e.,
the reduction must be computable, but not necessarily polynomial-time computable.
The natural question arises of whether or not a polynomial-time analog of this result
is true for the NP-complete sets.

Definition 3.72 (P-Isomorphism).
A function ϕ : Σ∗ → Σ∗ is a p-isomorphism if and only if

1. ϕ is bijection on Σ∗, i.e., ϕ is a total, one-to-one, onto function on Σ∗, and
2. both ϕ ∈ FP and ϕ−1 ∈ FP.

Any two sets A and B are p-isomorphic if and only if A≤p
m B via some reduction ϕ

that is a p-isomorphism.

In other words, A is p-isomorphic to B if and only if there exists a polynomial-
time computable and polynomial-time invertible permutation ϕ on Σ∗ such that
ϕ(A) = B and ϕ(A) = B, where ϕ(X) = {ϕ(x) | x ∈ X} for any set X .

In 1977, Berman and Hartmanis [BH77] proved that all the then known NP-
complete problems are pairwise p-isomorphic. Their results led them to the following
famous conjecture.

Conjecture 3.73 (Isomorphism Conjecture of Berman and Hartmanis).
All NP-complete sets are pairwise p-isomorphic.

The Berman–Hartmanis isomorphism conjecture states that all the NP-complete
problems in fact are just one problem appearing in many different guises. The im-
portance of Conjecture 3.73 is obvious in light of the following result.

Theorem 3.74. If all NP-complete sets are pairwise p-isomorphic, then P �= NP.

Proof. To prove the contrapositive, suppose that P = NP. Then, by Lemma 3.37,
all nontrivial (i.e., distinct from ∅ and Σ∗) problems in P are≤p

m-complete for NP. In
particular, all nontrivial finite sets in P are ≤p

m-complete in NP. However, two finite
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sets with a distinct number of elements cannot be isomorphic. Thus, they cannot be
p-isomorphic.

Theorem 3.74 shows that any proof of the Berman–Hartmanis isomorphism con-
jecture would also solve the P versus NP question. Thus, a proof of Conjecture 3.73
seems to be out of reach currently. Even the weaker conjecture that if P �= NP then all
NP-complete sets are pairwise p-isomorphic, which is the converse of Theorem 3.74,
seems not to be within reach. Berman and Hartmanis [BH77] offered an even weaker
conjecture: If P �= NP, then no sparse set is ≤p

m-complete in NP.
Sparse sets have been intensely studied and are central to many results in com-

plexity theory. For any language S and any n ∈ N, define the set of strings of length
up to n by S≤n = {x | x ∈ S and |x| ≤ n}. A language S is said to be sparse if and
only if there exists a polynomial p such that for each n ∈ N, ||S≤n|| ≤ p(n); see also
Definition 5.58. Observe that none of the known NP-complete problems is sparse.
Moreover, no nonsparse set can be mapped to a sparse set by a p-isomorphism. Con-
sequently, the statement of Conjecture 3.73 implies that no sparse set is≤p

m-complete
in NP.

Based on some groundwork by Berman [Ber78] and Fortune [For79] (see Sec-
tion 3.8), this weaker conjecture of Berman and Hartmanis was resolved by Ma-
haney [Mah82]. The proof of Mahaney’s result, which in particular exploits the
self-reducibility of the satisfiability problem, is omitted here. Mahaney’s result was
strengthened later on by Ogihara and Watanabe [OW91]; see Section 5.9.

Theorem 3.75 (Mahaney).
If P �= NP, then no sparse set is ≤p

m-complete in NP.

An important intermediate step towards the ultimate proof of Theorem 3.75 is
stated below. Theorem 3.76 provides a related result for sparse sets with an easy
census function. The census function of any set L maps each number n (given in
unary) to the number of elements in L up to length n; that is, censusL(1n) = ||S≤n||
for each n.

Theorem 3.76. For each sparse set S with censusS ∈ FP, if S ∈ NP then S ∈ NP.

Proof. Let M be some NPTM for S. On input x of length n, an NPTM N for S
works as follows:

Step 1: Compute k = censusS(1n).
Step 2: Nondeterministically guess a sequence s = (s1, s2, . . . , sk) of pairwise dis-

tinct strings each having length at most n.
Step 3: For each sequence s guessed and successively for each string si in s, non-

deterministically simulate M on input si to verify that each si is in S. Reject if
at least one such test fails.

Step 4: Accept if and only if x is not in s.

Since M is an NPTM and since k is polynomially in n and can be computed in time
polynomially in n, N is an NPTM. Clearly, L(N) = S. Thus, S is in NP.
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Let coNP = {L | L ∈ NP} be the class of complements of NP sets. The open
question of whether or not NP equals coNP is almost as famous as the P versus NP
question. Although a proof of NP �= coNP seems not to be within reach by current
techniques, it is considered very unlikely that NP is closed under complementation.
Thus, Corollary 3.77 says that it is very unlikely that a sparse set with an easy census
function is ≤p

m-complete in NP.

Corollary 3.77. If S is a sparse ≤p
m-complete set in NP with censusS ∈ FP, then

NP = coNP.

A rival view to Conjecture 3.73 was taken by Joseph and P. Young [JY85]. Based
on the notion of creative sets from recursive function theory,8 they defined the k-
creative sets for NP by requiring that the productive functions for NP sets be one-
to-one and computable (yet not necessarily invertible) in polynomial time and that
the sets Ri (corresponding to the definition of creativity given in Footnote 8) need
not cover all of NP but only those NP sets accepted by NTMs that run in time p for
polynomials p with fixed degree k.

With this definition in hand, they proved in [JY85] that every k-creative set for
NP is ≤p

m-complete in NP. Furthermore, every one-to-one, polynomial-time com-
putable, “honest” function is a productive function for some k-creative set. Here, a
function f : Σ∗ → Σ∗ is said to be honest if and only if there exists a polyno-
mial p such that for each y ∈ Rf there exists some x ∈ Df such that y = f(x)
and |x| ≤ p(|y|). That is, honest functions do not shrink their inputs more than
polynomially. Honesty is required to prevent the notion of non-FP-invertibility in
Definition 3.78 below from being trivialized.

The following notion of a one-way function is based on the worst-case model
in complexity theory. Cryptographic one-way functions require a stronger notion of
noninvertibility that is based on average-case complexity and on inverters that are
randomized (as opposed to deterministic) algorithms.

Definition 3.78 (One-Way Function).
Let f : Σ∗ → Σ∗ be any one-to-one function. Recall that Rf denotes the range of f .

1. We say that f is FP-invertible if and only if there exists a function g ∈ FP such
that for each y ∈ Rf , f(g(y)) = y.

2. We say that f is a one-way function if and only if f is honest, f ∈ FP, and f is
not FP-invertible.

Based on their above-mentioned results [JY85], Joseph and P. Young conjectured
that if one-way functions exist, then not all k-creative sets are p-isomorphic to SAT,
and hence the Berman–Hartmanis isomorphism conjecture fails. Specifically, they
stated Conjecture 3.79 below.

8 A recursively enumerable set A is creative if and only if there is a function f ∈ IR such that
for each recursively enumerable set Ri, Ri ⊆ A implies f(i) ∈ A − Ri. The idea is that
A cannot be recursively enumerable, since for each candidate Ri that potentially might be
equal to A, f produces an element f(i) witnessing that A �⊆ Ri. That is why f is called a
productive function for A.



3.6.2. The Berman–Hartmanis Isomorphism Conjecture and One-Way Functions 111

Conjecture 3.79 (One-Way/Isomorphism Conjecture of Joseph and Young).
If there exist one-way functions, then there exist NP-complete sets that are mutually
non-p-isomorphic.

In [JY85, You83], the question is raised of whether also the converse of Conjec-
ture 3.79 holds. Kurtz, Mahaney, and Royer [KMR87] stated this converse implica-
tion as a conjecture.

Conjecture 3.80 (One-Way Conjecture of Kurtz, Mahaney, and Royer).
If there exist mutually non-p-isomorphic NP-complete sets, then there exist one-way
functions.

Hartmanis and L. Hemaspaandra [HH91] established a relativized counterexam-
ple to Conjecture 3.80: There exists an oracle relative to which there are mutually
non-p-isomorphic NP-complete sets, yet there exist no one-way functions. Similarly,
J. Rogers [Rog97] provided a relativized counterexample to Conjecture 3.79: In some
relativized world, the isomorphism conjecture holds (i.e., all NP-complete sets are
pairwise p-isomorphic), and yet one-way functions do exist. We will not pursue this
line of research any further here, but we refer to Section 3.8 for more details and
pointers to the literature.

Closely related to the existence of one-way functions is the complexity class UP
that was introduced by Valiant [Val76].

Definition 3.81 (Unambiguous Polynomial Time).
UP is the class of sets L for which there exists an NPTM M such that:

1. for each input x, M(x) has at most one accepting computation path, and
2. L = {x ∈ Σ∗ |M(x) has an accepting computation path}.

NTMs satisfying the first of the two properties above are said to be unambiguous
Turing machines (or categorical Turing machines).

It follows from the definition that P ⊆ UP ⊆ NP; none of the inclusions is known
to be proper. The question of whether or not P equals UP can be characterized in
terms of the existence of one-way functions.

Theorem 3.82. The following three statements are pairwise equivalent:

1. P �= UP.
2. There exist one-way functions.
3. There exists a set B ∈ P of boolean formulas such that each formula in B has

at most one satisfying assignment and B ∩ SAT is not in P.

Proof. 1. We prove the equivalence of the first and the second statement. Sup-
pose that P �= UP. Let L be any set in UP − P, and let M be some unambiguous
NPTM accepting L. For each string x ∈ L, let αM (x) denote the unique accepting
computation path of M(x), encoded as a binary string. Define the function f by

f(x) =
{

y0 if x = αM (y)
x1 otherwise.
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It is easy to check that f is total, one-to-one, honest, and polynomial-time com-
putable. If f were FP-invertible, L could be decided in P by computing, given a
string y, the value of f−1(y0); a contradiction. Thus, f is a one-way function.

Conversely, we prove the contrapositive: Suppose that P = UP, and let f be any
total, honest, one-to-one function in FP. We have to show that f is FP-invertible. For
any function g, define the projection of g by

Πg = {〈x, y〉 | x ∈ Dg and y ≤ g(x)},
where≤ denotes the standard lexicographic ordering on Σ∗. Note that for each func-
tion g that is polynomially length-bounded (i.e., there is some p ∈ IPol such that for
each x, |g(x)| ≤ p(|x|)), it holds that Πg ∈ P if and only if g ∈ FP; see Exer-
cise 3.21.

Consider the inverse function f−1. Since f is honest and one-to-one, Πf−1 is in
UP as witnessed by the following unambiguous NPTM: On input 〈x, y〉, unambigu-
ously compute f−1(x) and accept if and only if y ≤ f−1(x). By assumption, Πf−1

is in P. Thus, f−1 is in FP. Hence, there exists no one-way function.
2. We prove the equivalence of the first and the third statement. Suppose that

there exists a set B in P of boolean formulas such that each formula in B has at most
one satisfying assignment and B ∩ SAT is not in P. Define an NPTM N as follows:
On input ϕ, N deterministically checks that ϕ is a boolean formula in B, and if so,
it guesses an assignment t of ϕ, and accepts if and only if t satisfies ϕ. Clearly, N is
an unambiguous NPTM accepting B ∩ SAT. Hence, B ∩ SAT is a set in UP− P.

Conversely, suppose that P �= UP. Let L be any set in UP − P, let M be some
unambiguous NPTM accepting L, and let fM be the Cook reduction constructed in
Theorem 3.49. Thus, for each input x, fM (x) = FM,x is a boolean formula such
that:

x ∈ L ⇐⇒ FM,x ∈ SAT. (3.19)

Since M is an unambiguous NPTM, FM,x has at most one satisfying assignment for
each x ∈ Σ∗.

A careful inspection of the proof of Theorem 3.49 reveals that the Cook reduction
is “parsimonious,” i.e., the number of distinct accepting computation paths of M(x)
equals the number of distinct satisfying assignments of FM,x. Furthermore, both the
machine program of M and the input x are encoded into the formula FM,x. Thus,
given any formula ϕ, one can decide in polynomial time whether or not ϕ equals
FM,x for some string x. Hence, the set B = {FM,x | x ∈ Σ∗} is in P. However,
B ∩ SAT is not in P, since otherwise L ∈ P, a contradiction.

Corollary 3.83. UP has ≤p
m-complete sets if and only if there exists a set B ∈ P of

boolean formulas such that each formula in B has at most one satisfying assignment
and B ∩ SAT is ≤p

m-complete in UP.

Proof. The implication from right to left is immediate. Conversely, to prove the
implication from left to right, let L be some complete language for UP, and let M
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be some unambiguous NPTM accepting L. As in the proof of Theorem 3.82, the
set B = {FM,x | x ∈ Σ∗} is in P, where FM,x is the result of the Cook reduction
applied to x ∈ Σ∗. Since M is an unambiguous NPTM and since the Cook reduction
is parsimonious, B∩SAT is in UP. Moreover, (3.19) from the proof of Theorem 3.82
implies that L≤p

m B ∩SAT via the Cook reduction. Hence, B ∩SAT is≤p
m-complete

in UP.

Theorem 3.84. The following three statements are pairwise equivalent:

1. P �= UP ∩ coUP.
2. There exist onto one-way functions.
3. There exists a set B ∈ P such that:

a) B ⊆ SAT,
b) every formula in B has exactly one satisfying assignment, and
c) no FP function can find the satisfying assignment to each ϕ ∈ B, i.e., the

function f defined by

f(ϕ) =
{

the unique satisfying assignment to ϕ if ϕ ∈ B
0 if ϕ �∈ B

(3.20)

is not polynomial-time computable.

Proof. 1. The equivalence of the first and the second statement of this theorem can
be proven analogously to the proof of Theorem 3.82; see Exercise 3.23.

2. We prove the equivalence of the first and the third statement. Let L be some set
in (UP∩ coUP)− P, and let M and M̄ be unambiguous NPTMs accepting L and L,
respectively. Define an NPTM N as follows: On input x, N nondeterministically
branches for one step guessing whether x ∈ L or x �∈ L. On the one branch, N
simulates M(x); on the other branch, N simulates M̄(x). Hence,

L(N) = L(M) ∪ L(M̄) = L ∪ L = Σ∗.

Let FN,x be the result of the Cook reduction with respect to N applied to x ∈ Σ∗.
Since both M and M̄ are unambiguous NPTMs, N is also an unambiguous NPTM.
Since the Cook reduction is parsimonious, FN,x has at most one satisfying assign-
ment for each x ∈ Σ∗.

Define B = {FN,x | x ∈ Σ∗}. As in the proof of Theorem 3.82, B ∈ P. Since
L(N) = Σ∗, B ⊆ SAT. Thus, the first two conditions, (3.a) and (3.b), of the third
item are met by B. To prove the third condition, (3.c), note that from a given sat-
isfying assignment to FN,x it is easy to determine whether x ∈ L or x �∈ L was
guessed in the initial nondeterministic branching of N(x). Thus, if the function f
defined in Equation (3.20) were polynomial-time computable, then L would be in P,
a contradiction. Hence, f �∈ FP, which proves (3.c).

Conversely, suppose that B is a set in P satisfying the three conditions, (3.a)
through (3.c), in the third item of the theorem.
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For any boolean formula ϕ(x1, x2, . . . , xn) and for any (partial) assignment t =
(a1, a2, . . . , ak) to the variables of ϕ, let ϕt be the formula that results from plugging
the ai into ϕ; thus, ϕt depends only on the remaining variables. Define the set B̂ by

B̂ =
{
〈ϕ, t〉 ϕ ∈ B, t is a (partial) assignment to ϕ, and

ϕt has a unique satisfying assignment

}
.

Clearly, B̂ is in UP. If B̂ were also in P, then a satisfying assignment for each formula
in B could be constructed, using B̂ and the self-reducibility of SAT. This would
contradict the third condition that B satisfies. Hence, B̂ �∈ P.

To see that B̂ ∈ coUP, note that

〈ϕ, t〉 �∈ B̂ ⇐⇒ ϕ �∈ B ∨ (ϕ ∈ B ∧ ϕ̄t has a unique satisfying assignment),

where ϕ̄t is defined to be the formula resulting from ϕ by picking up all assignments
that contradict t. For example, if t = (a1, a2, . . . , ak), then

ϕ̄t = ϕ(¬a1) ∨ ϕ(a1,¬a2) ∨ · · · ∨ ϕ(a1,a2,...,ak−1,¬ak).

Thus, ϕ̄t has at most one satisfying assignment. Hence, B̂ ∈ (UP ∩ coUP)− P.

3.7 Exercises and Problems

Exercise 3.1 (a) Prove that every k-tape DTM running in time t can be simulated
by an equivalent one-tape DTM running in time O(t2).

(b) Prove the analogous result for nondeterministic Turing machines.

Exercise 3.2 Look at Definition 3.2. Replace the condition “timeM (n) ≤ t(n)” in
the definition of the complexity class DTIME(t) by “timeM (n)≤ae t(n),” and re-
place the condition “spaceM (n) ≤ s(n)” in the definition of the complexity class
DSPACE(s) by “spaceM (n)≤ae s(n).” Do these changes in the definition yield dif-
ferent complexity classes? What about the nondeterministic classes NTIME(t) and
NSPACE(s) from Definition 3.4?

Exercise 3.3 Show that the deterministic and nondeterministic time and space func-
tions from Definitions 3.1 and Definition 3.3 are Blum complexity measures.

Exercise 3.4 Look at the proof of Theorem 3.10. Suppose you are given a DTM M ′

that does not satisfy any of the conditions the DTM M in that proof is supposed to
satisfy. Construct a DTM M that is equivalent to M ′ (i.e., L(M) = L(M ′)) and
satisfies each of the following conditions: (a) M has only one tape that (b) is infinite
in just one direction, (c) the tape cells are enumerated by 1, 2, etc., and (d) M ’s
head makes a left turn only on even-numbered cells. An informal description of M
suffices.
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Exercise 3.5 Define the following functions:

c(n) = n; d(n) = 5n; e(n) = n log n; f(n) = n2;
g(n) = n ((n mod 2) + n((n + 1) mod 2)) ;
h(n) = n (n(n mod 2) + (n + 1) mod 2) .

(a) Prove that c � d and d � c and c ≺ e and d ≺ e ≺ f .

(b) Prove that g≺io h and g!io h and g � f and g≺io f and g io f .

Exercise 3.6 (a) Show that the following functions:

"log n#, n2, 2n, and n!

are space-constructible and, except "log n#, are time-constructible.

(b) Show that if s1 : N → N and s2 : N → N are space-constructible functions,
then so are the functions

s1(n) + s2(n), s1(n) · s2(n), 2s1(n), and s1(n)s2(n).

(c) Show that if t1 : N → N and t2 : N → N are time-constructible functions, then
so are the functions

t1(n) + t2(n), t1(n) · t2(n), 2t1(n), and t1(n)t2(n).

Exercise 3.7 (a) Prove Corollary 3.18.

(b) Use appropriate results from Sections 3.3 and 3.4 to strengthen Corollary 3.32
to:

NLINSPACE ⊂ PSPACE.

(c) Show that for each constant k > 1,

L ⊂ DSPACE((log n)k) ⊂ DSPACE((log n)k+1)
⊂ POLYLOGSPACE ⊂ LINSPACE
⊂ DSPACE(nk) ⊂ DSPACE(nk+1)
⊂ PSPACE ⊂ DSPACE(2k·n)
⊂ DSPACE(2(k+1)n) ⊂ EXPSPACE.

Exercise 3.8 Let M be a DTM with k working tapes that, on inputs of length n,
works in space s(n) and in time t(n). Construct a one-tape DTM N simulating M
such that:

(a) L(N) = L(M);
(b) N works in space s(n);
(c) N works in time (t(n))2.

Hint: Subdivide N ’s working tape into k tracks. If neccessary, use the linear speed-
up theorem to get rid of constants.
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Exercise 3.9 Prove Lemma 3.25: For each set L ⊆ Σ∗,

1. L ∈ E ⇐⇒ Tally(L) ∈ P, and

2. L ∈ NE ⇐⇒ Tally(L) ∈ NP.

Exercise 3.10 Show that NP ⊆ E if and only if for each L ∈ NP, Tally(L) ∈ P.

Exercise 3.11 Prove Lemma 3.36:

1. A≤p
m B implies A≤p

m B, yet in general it is not true that A≤p
m A.

2. The relation≤p
m is both reflexive and transitive, yet not antisymmetric.

Note: Reflexivity and transitivity are defined in Exercise 3.24. Antisymmetry
of a relation≤ means that whenever A ≤ B and B ≤ A, it follows that A = B.

3. P, NP, and PSPACE are ≤p
m-closed.

4. If A≤p
m B and A is C-hard for some complexity class C, then B is C-hard.

5. Let C andD be any complexity classes. If C is≤p
m-closed and B is≤p

m-complete
for D, then D ⊆ C if and only if B ∈ C. In particular, if B is NP-complete, then
P = NP if and only if B ∈ P.

Exercise 3.12 (a) Prove Theorem 3.40: L and NL are ≤log
m -closed.

(b) Prove that GAPacyclic is in NL; see Lemma 3.47.

Exercise 3.13 Look at the construction of the boolean formula f(x) = Fx in the
proof of Cook’s Theorem; see Theorem 3.49.

(a) Argue that the Cook reduction f can be computed in polynomial time.

(b) Argue that the Cook reduction f can be computed even in logarithmic space.

Exercise 3.14 (a) Prove Lemma 3.53: For each graph G and for each subset U
of V (G), the following are equivalent:

1. U is a vertex cover of G.

2. U = V (G)− U is an independent set of G.

3. U = V (G)−U is a clique of the co-graph of G, which is defined as the graph
with vertex set V (G) and with the following set of edges: {{u, v} | u, v ∈
V (G) and {u, v} �∈ E(G)}.

(b) Apply Lemma 3.53 to prove that the problems Clique, IS, and VC are pair-wise
≤p

m-equivalent, i.e., for any two problems A and B chosen among Clique, IS,
and VC, A≤p

m B and B≤p
m A.

(c) Show that Clique, IS, and VC are problems in NP.

Exercise 3.15 Theorem 3.56 says that 3-Colorability is NP-complete. Prove
(3.14) and (3.15) from the proof of this theorem.

Exercise 3.16 Prove that 2-Colorability is in P.

Exercise 3.17 Look at the proof of Theorem 3.63, which says that 3-DM is NP-
complete. Argue formally that (3.18) from this proof is true:

ϕ is satisfiable ⇐⇒ R contains a tripartite matching M of size ||U ||.
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Hint: Use the implicit remarks made during the construction of the ternary relation
R in that proof.

Exercise 3.18 In the proof of Theorem 3.65, the claim is made that the 3-DM problem
is a restriction of the SetPacking problem. Why is this claim true?

Exercise 3.19 Prove that SOS is in NP; see Theorem 3.67.

Exercise 3.20 Prove Fact 3.69: GI is in NP.

Exercise 3.21 Prove the claim made in the proof of Theorem 3.82: For each function
g that is polynomially length-bounded (i.e., there is some p ∈ IPol such that for
each x, |g(x)| ≤ p(|x|)), it holds that Πg ∈ P if and only if g ∈ FP. Here, Πg is
defined by

Πg = {〈x, y〉 | x ∈ Dg and y ≤ g(x)}.
Hint: The direction from right to left is trivial, and the direction from left to right
employs an easy binary search algorithm. The proof can be found in [Mil76].

Exercise 3.22 Recall that coNP = {L |L ∈ NP} is the class of complements of NP
sets.

(a) Name five problems of your choice (and define them formally) that are ≤p
m-

complete for coNP.

(b) Does the class NP ∩ coNP have ≤p
m-complete sets?

(c) What about NP ∪ coNP?

Exercise 3.23 Prove the equivalence of the first two statements of Theorem 3.84:
P �= UP ∩ coUP if and only if there exist onto one-way functions.

Exercise 3.24 Based on Definition 3.72, define the following relation on sets:

A ∼=p B ⇐⇒ A is p-isomorphic to B.

Prove that ∼=p is an equivalence relation, i.e., it satisfies the following properties:

• reflexivity: for each A, A ∼=p A;

• symmetry: for each A and B, if A ∼=p B then B ∼=p A;

• transitivity: for each A, B, and C, if both A ∼=p B and B ∼=p C, then A ∼=p C.

Problem 3.1 (Lower Bound Proofs by Crossing Sequences)
(a) Design a DTM M with one input tape and one working tape that decides the set

S = {x2|x|x | x ∈ {0, 1}∗} in real-time. That is, on input z, M ’s input head is
scanning z from left to right, the computation halts after exactly |z| steps, and
M accepts z if and only if z ∈ S. Describe M both informally and formally.
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(b) Show that any DTM with only one working tape and no separate input tape
requires time at least quadratic in the input size for solving the set S above.

Hint for (b): Let M with L(M) = S be a DTM as above, and let x = uv be
any input string of length n.

A sequence of states of M , denoted by cs(u|v) = (s1, s2, . . . , sn), is called the
crossing sequence of M(x) at the cell-boundary between u and v if and only if
M ’s head crosses this cell-boundary exactly n times during the computation of
M(x) and M is in state si during the ith crossing.

Lemma 3.85. If uv ∈ L(M) and yz ∈ L(M) and cs(u|v) = cs(y|z), then
uz ∈ L(M) and yv ∈ L(M).

Prove Lemma 3.85. Then, using Lemma 3.85, show that timeM (n)>io c ·n2 for
some constant c. To this end, use the notion of a short crossing sequence with
respect to n, which is a crossing sequence with less than n/ log q − 1 states,
where q > 1 is the number of M ’s states. Show that there are less short crossing
sequences with respect to n than strings of length 3n in S.

Problem 3.2 (Primality Problem)
(a) Prove that the primality problem is in coNP.

(b) Can you also prove membership of this problem in NP?

Hint: The first known NP algorithm for the primality problem is due to Pratt,
and its nontrivial proof can be found in [Pra75].

See Section 7.2 for results that improve the above assertions. In particular, note the
outstanding result by Agrawal, Kayal, and Saxena [AKS02] that the primality prob-
lem even is in P, stated as Theorem 7.27; see also Problem 7.2.

3.8 Summary and Bibliographic Remarks

General Remarks: There are many very good textbooks and monographs on com-
plexity theory. There are many very good books on cryptology. The present book
is not meant to replace but to complement these books—each of which focuses on
either complexity theory or cryptology—by emphasizing the interrelation between
these two areas and taking a unified approach.

In complexity theory, the following books have become or are about to become
classics: the books by Balcázar, Dı́az, and Gabarró [BDG95, BDG90], Bovet and
Crescenzi [BC93], Du and Ko [DK00], Garey and Johnson [GJ79], L. Hemaspaandra
and Ogihara [HO02], Homer and Selman [HS01], Papadimitriou [Pap94] and Stei-
glitz [PS82], Reischuk [Rei90], Wagner and Wechsung [WW86, Wec00], and We-
gener [Weg87, Weg03]. Vollmer [Vol99] has written a very useful book about circuit
complexity. Brandstädt et al. [BLS99] provide a very comprehensive survey of graph
classes and their algorithmic complexity, a follow-up to Golumbic’s text [Gol80]. A
survey of algorithms in complexity theory can be found in [Rot04a].
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Specific Remarks: The beginnings of computational complexity theory are marked
by the work of Hartmanis, Lewis, and Stearns. Their groundbreaking papers [HS65,
SHL65, HLS65, LSH65] focus on robustness of the multitape Turing machine
model, introduce the complexity measures time and space, and establish their funda-
mental properties. In particular, the linear tape-compression and speed-up theorems
and the hierarchy theorems for time and space are due to them; Theorem 3.19, the
strongest version of the time hierarchy theorem known, was obtained by Hennie
and Stearns [HS66]. Originally, their result is formulated as follows (where the con-
structibility requirements are omitted here for better readability): If t1 log t1≺io t2
then DTIME(t2) �⊆ DTIME(t1). In contrast, Theorem 3.19 states their result as fol-
lows: If t1≺io t2 then DTIME(t2 log t2) �⊆ DTIME(t1). The two formulations are
equivalent; a grateful acknowledgment for this observation is owed to Wechsung,
who generously shared his personal notes with the author, see also [Wec00, WW86].

Stearns [Ste90] wrote a nice treatise on the intellectual adventures, excitement,
and fascination of those early years. In recognition of their work, which established
the foundations for the field of computational complexity theory, Juris Hartmanis
and Richard Stearns received the prestigious Turing Award in 1993.

The elegant theory of abstract complexity measures, which are now called Blum
complexity measures, was developed by Blum [Blu67]. In 1995, Manuel Blum too
won the Turing Award, in recognition of his contributions to the foundations of com-
putational complexity theory and its application to cryptography and program check-
ing.

Book’s upward separation technique [Boo74], which led to Theorem 3.26, was
strengthened in two regards: with respect to the language witnessing the separation
and with respect to the range of applicability to complexity classes other than NP
and NE. Hartmanis, Immerman, and Sewelson [Har83b, HIS85] proved that NE = E
if and only if every sparse language in NP is in P.9 To this end, they developed
a clever encoding of sparse sets by tally sets. Buhrman, E. Hemaspaandra, and
Longpré [BHL95] discovered an even more powerful tally encoding of sparse sets.
Using this stronger tally encoding, Rao, Rothe, and Watanabe [RRW94] extended the
result of Hartmanis et al. [Har83b, HIS85] to several pairs of exponentially related
complexity classes other than NP and NE. The main result of Rao et al. [RRW94]
is a general condition sufficient to yield upward separation by sparse sets. In partic-
ular, this sufficient condition shows that FewP contains a sparse set not in P if and
only if FewE �= E, where FewE and E are the exponential-time analogs of FewP
and P. This result refutes a conjecture of Allender [All91], who suspected that FewP
defies upward separation in suitable relativized worlds. It is still open whether the
analogous result for UP is true. There is a number of results showing the limitations
of the upward separation technique, including the work by Allender [All91] and by
Hemaspaandra and Jha [HJ95]; see [All91, HJ95, RRW94] for related results and a
more comprehensive list of references. Theorem 3.29, which establishes a quadratic

9 Recall that a language is said to be sparse if and only if it has at most polynomially many
strings at each length; see also Definition 5.58. Thus, every tally set is a sparse set, since
tally sets have at most one string per length.
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upper bound on the cost of trading nondeterminism for determinism, is due to Sav-
itch [Sav70].

Complexity theory arose from the desire to understand efficient (or “feasible”)
computation and its limitations. Most central to complexity theory are thus the funda-
mental complexity classes P and NP, deterministic and nondeterministic polynomial
time. Cobham [Cob64] and Edmonds [Edm65] were the first to perceive the class P
as the most sensible formal embodiment of the informal term of “feasible” computa-
tion. Interestingly, Gödel addressed the issue of defining “efficient computation” al-
ready in 1956. His rediscovered letter to von Neumann stresses the importance of the
number of steps that a Turing machine needs for solving some problem. Moreover,
he gave two examples of polynomial time bounds, linear time and quadratic time,
as instances of “efficient computation” as opposed to the exponential time bounds
required by brute-force algorithms. Hartmanis [Har89] and Sipser [Sip92] surveyed
the history of the P versus NP question, discussing also Gödel’s letter.

Cook laid the foundations for the theory of NP-completeness by proving The-
orem 3.49, which provides the first NP-completeness result. For his seminal pa-
per [Coo71], he received the Turing Award in 1982. His result that SAT is NP-
complete was independently discovered by Levin [Lev73]. Cook also established
Theorem 3.51: 3-SAT is NP-complete.

Following Cook’s pathbreaking result, the exploration of the boundaries and na-
ture of the class of NP-complete problems has been one of the most active and im-
portant research areas in computer science. Most notably, Karp [Kar72] introduced
the now standard methodology for proving problems NP-complete with respect to
the ≤p

m-reducibility, which led to the classification of thousands of problems as be-
ing NP-complete. These problems are viewed as computationally intractable. For
this achievement and for his contributions to the theory of algorithms including the
development of efficient algorithms for network flow and other combinatorial opti-
mization problems, Karp received the Turing Award in 1985. Theorems 3.54, 3.63,
3.65, and 3.67 are due to him.

The proof of Theorem 3.56 is from Stockmeyer [Sto73], see also Garey, Johnson,
and Stockmeyer [GJS76]. Theorem 3.58 is due to Garey, Johnson, and Tarjan (as
cited in [GJ79]); the proof presented here is due to Kaplan and R. Shamir [KS94].
The literature on NP-completeness results is so extensive and this topic is covered by
so many books that we do not go into further detail here. One of the best sources on
the theory of NP-completeness is still the classic book by Garey and Johnson [GJ79];
see also Johnson’s ongoing NP-completeness column [Joh81].

For many NP-complete problems, it is known that they can be efficiently solved
for suitably restricted instances. Thus, the question arises of precisely where the
boundary between easily solvable instances and hard instances lies. For illustration,
we state some such results for the example of the domatic number problem:10 By the
construction given in the proof of Theorem 3.58, this problem remains NP-complete

10 For graph-theoretical notions and special graph classes not defined here, we refer
to the monograph by Brandstädt et al. [BLS99], a follow-up to the classic text by
Golumbic [Gol80].
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even if the given graph belongs to certain special classes of perfect graphs, includ-
ing circular-arc graphs (see also [Bon85]), split graphs (which in particular contain
the chordal and co-chordal graphs), and bipartite graphs (which in particular con-
tain the comparability graphs). In contrast, DNP is known to be polynomial-time
solvable for certain other graph classes, including strongly chordal graphs (which
in particular contain the interval graphs and the path graphs) [Far84] and proper
circular-arc graphs [Bon85]. Furthermore, approximability properties of virtually all
important NP-complete problems have been studied in depth; see, for example, the
books [ACG+03, Vaz03, Pap94]. To state one such result for the domatic number
problem, Feige, Halldórsson, Kortsarz, and Srinivasan [FHKS02] showed that every
graph G with n vertices has a domatic partition with (1−o(1))(min-deg(G)+1)/ lnn
sets that can be found in polynomial time. Thus, there is a (1+o(1)) lnn approxima-
tion algorithm for the domatic number δ(G). This is a tight bound, since the domatic
number cannot be approximated within a factor of (1 − ε) lnn, where ε > 0 is any
fixed constant, unless NP ⊆ DTIME(nlog log n).

The development of the theory of NP-completeness entailed the search for com-
pleteness results for other complexity classes as well, including the identification
of ≤log

m -complete problems for P and NL. Theorem 3.43 was proven independently
by Savitch [Sav73] and by Jones [Jon75], who thus found the first ≤log

m -complete
problem for NL, namely GAP. Lemmas 3.46 and 3.48, which imply that 2-SAT is
coNL-complete, are due to Jones, Lien, and Laaser [JLL76]. Theorem 3.45 follows
from this result by virtue of the equality NL = coNL, which was proven indepen-
dently by Immerman [Imm88] and Szelepcsényi [Sze88]; see Theorem 3.33 and its
Corollary 3.34. Problems ≤log

m -complete for P can be found in [Coo74, JL76]; see
also Theorem 5.72 in Section 5.6. Logarithmically space-bounded reducibilities such
as ≤log

m were studied by Ladner and Lynch [LL76].
Theorem 3.68 is due to Ladner [Lad75]. It is the complexity-theoretic analog of

the solution to Post’s problem in computability theory, which asks whether there are
more than two recursively enumerable Turing degrees. Post’s problem was indepen-
dently solved by Friedberg and Muchnik in 1956. The Friedberg–Muchnik Theorem
says that there exist recursively enumerable sets that are neither decidable nor com-
plete for RE, the class of recursively enumerable sets.

The graph isomorphism problem (see Definition 2.49) has been intensely studied
in complexity theory. Still, it has eluded every attempt of classification as yet. GI
is one of the most prominent candidates of a problem that is neither in P nor NP-
complete, and Chapter 6 will provide some evidence in favor of this view. The best
source on results and the state of the art for this problem is the book [KST93] by
Köbler, Schöning, and Torán.

Self-reducibility has appeared in a variety of guises, and many different no-
tions of self-reducibility have been introduced and intensely studied. Most no-
tably, the still growing body of results on self-reducibility is due to the work
by Schnorr [Sch76, Sch79], A. Meyer and Paterson [MP79], Balcázar [Bal90],
Buhrman, van Helden, and Torenvliet [BT96, BvHT93], E. Hemaspaandra, Naik,
Ogihara, and Selman [Sel88a, Sel79, Sel82a, Sel82b, HNOS96]. For an overview
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of results on self-reducibility, we refer to the surveys by Goldsmith, Joseph, and
Young [GJY87, JY90].

One example of a topic for which the notion of self-reducibility is central is a
property dubbed “search reducing to decision,” see [HNOS96] and the references
cited therein. This means that if a decision problem (e.g., GI) is efficiently solvable
and if this decision problem is self-reducible, then an actual solution to it (an isomor-
phism between the given graphs in the example of GI) can be constructed efficiently.

Gál, Halevi, Lipton, and Petrank [GHLP99] did some interesting work relating
the complexity of finding partial solutions of hard NP problems to that of finding
complete solutions. This property might be dubbed “complete search reducing to
partial search.” In particular, they showed for various NP problems A that, given
an instance x in A, computing a small fraction of a solution for x is no easier than
computing a complete solution for x. For example, given two isomorphic graphs,
computing roughly logarithmically many pairs of vertices that are mapped onto each
other by a complete isomorphism ϕ between the graphs is as hard as computing ϕ
itself [GHLP99]. Große, Rothe, and Wechsung [GRW02] optimally improved this
result by showing that computing even a single pair of vertices that are mapped onto
each other by a complete isomorphism ϕ between two isomorphic graphs is as hard
as computing ϕ itself; see also Problem 5.3. The proof of this result is inspired by
the proof that GI is self-reducible.

The Berman–Hartmanis isomorphism conjecture [BH77] is one of the most in-
tensely studied questions in complexity theory. Their work on p-isomorphic sets
in NP initiated various lines of research and many further results. The impor-
tance of this conjecture and of the work it has triggered can be seen from the
mere number of survey and research papers on these subjects, including the pa-
pers by Mahaney [Mah86, Mah89], P. Young [You90, You92], Kurtz, Mahaney,
and Royer [KMR90, KMR87, KMR88], L. Hemaspaandra, Ogihara, and Watan-
abe [HOW92], and Arvind et al. [AHH+93]. In particular, the work on the ques-
tion of whether or not NP can have sparse ≤p

m-complete sets culminated in Ma-
haney’s [Mah82] resolution of another conjecture by Berman and Hartmanis stated
as Theorem 3.75. His result is based on previous work by Berman [Ber78], who
proved that if P �= NP then there are no tally coNP-hard sets, and by Fortune [For79],
who proved that if P �= NP then there are no sparse coNP-hard sets. Theorem 3.76 is
due to Hartmanis and Mahaney [HM80]. Section 5.9 gives more details on follow-
up results of Theorem 3.75, and in particular states Ogihara and Watanabe’s [OW91]
improvement of Theorem 3.75 to reductions more general than ≤p

m.
The question of whether or not there can exist sparse complete sets was also in-

vestigated for complexity classes other than NP and for reductions other than ≤p
m.

For exponential time classes, A. Meyer (cf. [BH77]) proved by diagonalization that
neither E nor NE have sparse ≤p

m-complete sets. Based on evidence similar to the
results leading to Conjecture 3.73, Hartmanis [Har78] raised the analogous question
also for the classes NL and P, where the notion of p-isomorphisms has to be replaced
by log-space computable isomorphisms. Building on breakthrough results by Ogi-
hara [Ogi95], Cai and Sivakumar resolved the conjectures of Hartmanis both for P
and for NL:
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• If L �= P, then no sparse set is ≤log
m -complete in P; see [CS99].

• If L �= NL, then no sparse set is ≤log
m -complete in NL; see [CS00].

Further results related to complexity-bounded isomorphisms and the isomor-
phism conjecture were obtained by Allender [All88], Ganesan and Homer [GH92],
Hartmanis [Har83a], Homer and Selman [HS89], Ko, Long, and Du [KLD86], Ma-
haney and P. Young [MY85], and Watanabe [Wat91].

The isomorphism conjecture was also intensely studied with respect to rela-
tivizations. Combining previous constructions by Kurtz (in an unpublished paper)
and Rackoff [Rac82], Hartmanis and L. Hemaspaandra [HH91] provided an oracle
relative to which the isomorphism conjecture fails and no one-way functions exist,
thus providing a relativized counterexample to Conjecture 3.80. Kurtz, Mahaney,
and Royer [KMR89] proved that the isomorphism conjecture fails relative to a ran-
dom oracle, and obtained further relativized results in [KMR87]. Extending previous
results by Goldsmith and Joseph [GJ86], Fenner, Fortnow, and Kurtz [FFK92] con-
structed an oracle relative to which the isomorphism conjecture holds. They raised
the question of whether there is a relativized world in which the isomorphism con-
jecture holds and yet P �= UP, i.e., there exist one-way functions. This question was
answered by J. Rogers [Rog97] who thus obtained a relativized counterexample to
Conjecture 3.79.

Valiant [Val76] introduced the class UP, see Definition 3.81. In their work on
P-printable sets11 and on sparse sets in P, Allender and Rubinstein [AR88, All86]
generalized UP by defining the class FewP. A language is in FewP if and only if
it is accepted by an NPTM that never has more than polynomially many accepting
paths. Theorem 3.82 in particular says that one-to-one one-way functions exist if and
only if P �= UP. Analogously, Allender [All86, All85] proved that polynomial-to-one
one-way functions exist if and only if P �= FewP; see [RH02] for a number of related
results. The study of one-way functions in complexity theory was initiated by Groll-
mann and Selman [GS88] and others. The notion introduced in Definition 3.78 and
the equivalence of the first two items in Theorems 3.82 and 3.84 are due to them and,
independently, to Berman [Ber77] and Ko [Ko85]. The equivalence of the first and
third items of both these theorems is due to Hartmanis and L. Hemaspaandra [HH88];
see also [RH02]. Corollary 3.83 is also from [HH88]. In addition, this paper presents
an oracle relative to which UP has no complete language, and another oracle relative
to which P �= UP �= NP and UP has a complete language.

That P �= UP ∩ coUP implies the third item of Theorem 3.84 is the UP ana-
log of the Borodin–Demers Theorem. Borodin and Demers [BD76] proved that if
P �= NP ∩ coNP, then there exists a set S in P of satisfiable boolean formulas
such that no polynomial-time computable function can print a satisfying assignment
for each formula in S. A number of related results were obtained by Fenner, Fort-
now, Naik, and J. Rogers [FFNR96] and, independently, by L. Hemaspaandra, Rothe,
and Wechsung [HRW97a, HRW97b, RH02]. For example, in [HRW97a], the class
EASY∀

∀ is defined as the class of all NP sets L such that every NPTM accepting

11 Informally speaking, a set is P-printable if all its elements up to a given length can be
printed in polynomial time.



124 3. Foundations of Complexity Theory

L always (i.e., for each input) has polynomial-time computable certificates. Note
that EASY∀

∀ ⊆ P. Using this notation, the Borodin–Demers Theorem becomes: If
P �= NP ∩ coNP, then P �= EASY∀

∀. Moreover, characterizations of EASY∀
∀ and re-

lated classes are given in terms of Kolmogorov complexity. In [RH02], the UP and
FewP analogs of EASY∀

∀ are investigated.
Relatedly, L. Hemaspaandra and Rothe [HR00, RH02] studied the question of

whether the existence of one-way permutations can be characterized by some sepa-
ration of standard complexity classes, a question raised also in [GS88]. A one-way
permutation is a total, one-to-one, onto one-way function. The ultimate answer to this
question was given by Homan and Thakur [HT02, HT03b]: One-way permutations
exist if and only if P �= UP ∩ coUP.

Related to the study of complexity classes of sets such as P and NP is the analo-
gous study of complexity classes of functions. For example, FP is the function analog
of P. In his seminal papers [Val79a, Val79b], Valiant introduced the function classes
#P and #P1 that capture the complexity of counting the number of NP solutions:
#P is the class of functions that count the number of solutions to NP problems (see
also Section 6.4), and #P1 is the class of functions that count the number of solutions
of tally NP sets. That is, the only difference between #P and #P1 functions is that
the former have inputs in binary and the latter have inputs in unary representation.

For example, consider the problem of computing the permanent of a given matrix.
Denoting the (i, j) entry of an n× n integer matrix A by ai,j , the permanent of A is
defined as perm(A) =

∑
π∈Sn

∏n
i=1 ai,π(i). Valiant [Val79a] proved that computing

the permanent is #P-complete, i.e., perm ∈ #P and #P ⊆ FP perm, where perm is
used as a function oracle. In contrast, the determinant of a matrix can be computed
in polynomial time by Gaussian elimination. More recent results about the hardness
of computing the permanent were obtained by Cai, Pavan, and Sivakumar [CPS99].

#P1 contains interesting natural problems as well. For example, consider the
self-avoiding walk problem (see, e.g., Welsh’s book [Wel93]), a classical problem
of statistical physics and polymer chemistry. The self-avoiding walk problem is to
compute, given an integer n in unary, the number of self-avoiding walks on the two-
dimensional grid having length n and rooted at the origin. Valiant [Val79b] asked
whether this problem is #P1-complete. This question is still open. Liśkiewicz, Ogi-
hara, and Toda [OT01, LOT03] gave a partial answer to this question by proving
certain variants of the self-avoiding walk problem #P-complete in two-dimensional
grid graphs and in hypercube graphs.

The most central question regarding #P and #P1 is whether or not they are
contained in FP. Köbler [Köb89] proved that #P = FP is equivalent to P = PP,
where PP denotes “probabilistic polynomial time,” a class to be defined and studied
in Chapter 6. Thus, it is very unlikely that every #P function can be computed in FP.
More results about the important class #P and other functional complexity classes
can be found in the excellent surveys by Selman [Sel94] and Fortnow [For97], in
Chapter 9 of Wechsung’s book [Wec00], and also in Chapter 6.

If #P1 ⊆ FP then all tally NP sets are in P, which implies NE = E by
Book’s upward separation result stated here as Theorem 3.26. Goldsmith, Ogihara,
and Rothe [GOR98, GOR00] proved even more unlikely complexity class collapses
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from the hypothesis #P1 ⊆ FP. In particular, they proved that #P1 ⊆ FP implies
P = BPP and PH ⊆ ⊕P, where PH is the polynomial hierarchy (see Definition 5.29
in Section 5.2) and BPP and ⊕P are defined in Chapter 6. Moreover, they showed
that #P1 ⊆ FP if and only if every P set has an easy (i.e., polynomial-time com-
putable) census function. The main result in [GOR00] is that every #P1

PH function

can be computed in FP#P1
#P1

. Consequently, every P set has an easy census function
if and only if every set in the polynomial hierarchy does.

Census functions are a central notion in complexity theory and have proven
useful in many contexts, including the Berman–Hartmanis isomorphism conjecture
(see [BH77] and Section 3.6.2), the work on the existence of Turing-hard sparse sets
for various complexity classes (see [KL80, KS85, BBS86a, HR97b] and Section 5.9),
the results relating the computation times for NP sets to their densities and the re-
sults on P-printability (see [HY84, AR88, GH96]), the upward separation technique
(see [Har83b, HIS85, All91, RRW94, HJ95] and Section 3.3), the results on posi-
tive relativization and relativization to sparse oracles (see [Lon85, LS86, BBS86a]),
the collapse of the strong exponential-time hierarchy established by L. Hema-
spaandra [Hem89], and the above-mentioned work on #P1 relating tally NP sets
to easy census functions [GOR00].



4

Foundations of Cryptology

“But,” said I, returning him the slip, “I am as much in the dark as ever. Were all the jewels of Golconda
awaiting me upon my solution of this enigma, I am quite sure that I should be unable to earn them.”
“And yet,” said Legrande, “the solution is by no means so difficult as you might be led to imagine
from the first hasty inspection of the characters. These characters, as any one might readily guess,
form a cipher—that is to say, they convey a meaning; but then from what is known of Kidd, I could not
suppose him capable of constructing any of the more abstruse cryptographs. I made up my mind, at
once, that this was of a simple species—such, however, as would appear, to the crude intellect of the
sailor, absolutely insoluble without the key.”

(From “The Gold-Bug” by Edgar Allan Poe, Random House, Inc., 1965)

4.1 Tasks and Aims of Cryptology

Cryptography is the art and science of encrypting texts and messages such that unau-
thorized decryption is prevented. Cryptanalysis is the art and science of breaking ex-
isting cryptosystems, i.e., determining the encryption keys used and deciphering en-
crypted texts and messages without authorization. Cryptology comprises both these
fields, cryptography and cryptanalysis.

Cryptography

A typical cryptographic scenario is depicted in Figure 1.1 in Chapter 1. Alice and
Bob are communicating over an insecure channel such as a public telephone line
or the internet. Erich is eavesdropping on their conversation. To protect themselves
against eavesdropping, Alice and Bob encrypt their messages using a cryptosystem.

Definition 4.1 (Cryptosystem).

• A cryptosystem is a quintuple S = (M, C, K, E ,D) such that:
1. M , C, and K are sets, where M is the message space (or “plaintext space”

or “cleartext space”), C is the ciphertext space, and K is the key space.
2. E = {Ek | k ∈ K} is a family of functions Ek : M → C that are used for

encryption, and D = {Dk | k ∈ K} is a family of functions Dk : C → M
that are used for decryption.
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3. For each key e ∈ K , there exists a key d ∈ K such that for each message
m ∈M :

Dd(Ee(m)) = m. (4.1)

• A cryptosystem is called symmetric (or “private-key”) if d = e, or if d can at
least be “easily” computed from e.

• A cryptosystem is called asymmetric (or “public-key”) if d �= e, and it is “prac-
tically infeasible” to compute d from e. Here, d is the private key, and e is the
public key.

One can also use different key spaces for encryption and decryption, which re-
sults in a slight modification of the above definition.

Cryptosystems usually take the form of a dialog or a conversation between the
parties involved, where a “party” can be either an individual or a computer. Such a
dialog is called a cryptographic protocol and consists of the messages transmitted
back and forth between Alice and Bob in order to fulfill certain cryptographic tasks,
such as agreeing on a joint secret key for a symmetric cryptosystem. Protocols can
be viewed as algorithms the execution of which requires several (authorized) parties.

Cryptanalysis

Cryptanalysis aims at breaking ciphertexts and cryptosystems. In particular, a crypt-
analyst tries to determine the keys used in a cryptographic protocol. Depending on
the information available to the cryptanalyst, one can distinguish several types of
attacks, which characterize certain levels of security (or vulnerability) of the cryp-
tosystem considered:

• Ciphertext-only attack: The cryptanalyst knows some ciphertexts only from
which he tries to determine the corresponding plaintexts or keys. This is the
weakest form of an attack. A cryptosystem not resistant to it is not worth much.

• Known-plaintext attack: The cryptanalyst knows some pairs of ciphertexts and
corresponding plaintexts from which he tries to determine the keys used or to
decipher other ciphertexts.

• Chosen-plaintext attack: The cryptanalyst can choose plaintexts at will and
learns the corresponding ciphertexts from which he tries to determine the keys.

• Chosen-ciphertext attack: The cryptanalyst has obtained temporary access to
the decryption machinery and can choose a ciphertext to construct the corre-
sponding plaintext.

• Key-only attack: This type of attack is particularly relevant to public-key cryp-
tosystems. The cryptanalyst knows the public key only, but has not yet received
any ciphertexts. He tries to determine the corresponding private key. A differ-
ence to the former types of attack is that the attacker now has as much time as he
wishes to perform his computations. Therefore, public-key cryptosystems require
a higher level of protection such as very large keys to be secure. Thus, public-key
cryptosystems are often less efficient than symmetric cryptosystems.
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Of course, this is only a very rough classification. One might wonder whether
also the cryptosystem used should be kept secret. Certainly, hiding the system used
might make the task of the cryptanalyst considerably harder. However, it would be
silly and highly dangerous to rely on the cryptanalyst’s inability to learn which cryp-
tosystem is used. The history of cryptology is full of incidents in which somebody
trusted on the secrecy of the cryptosystem used, and yet attackers were able to spy
it out. That is why Kerckhoffs’s principle is adopted, which was first formulated
by the Dutch philologist and cryptologist Jean Guillaume Hubert Victor François
Alexandre Auguste Kerckhoffs von Nieuwenhof (1835 until 1903) in his book “La
cryptographie militaire.”

Principle 4.2 (Kerckhoffs’s Principle) The security of a cryptosystem must not
depend on the secrecy of the system used. Rather, the security of a cryptosystem may
depend only on the secrecy of the keys used.

Crucially, cryptosystems are used to keep confidential information and data se-
cret. Secrecy is one central task of crytography, although not the only one.

Authentication and Digital Signatures

Another important task of cryptology is authentication. For example, documents such
as contracts should be signed in a way that cannot be forged; the signature thus
authenticates the document. Handwritten signatures are usually very hard to forge.
However, if the document is transmitted electronically, it must be authenticated by a
digital signature: Alice wants to sign her (encrypted) messages to Bob such that

(a) Bob can verify that indeed she is the sender of the message, and
(b) also third parties (who perhaps do not trust Bob) can convince themselves of the

authenticity of her signature.

Neither Erich nor any other party should be able to forge Alice’s digital signature.
Property (a) is already achieved by symmetric authentication codes. The specific
asymmetry of digital signatures is expressed by property (b). It is this property (b)
that makes digital signatures so useful and necessary for secure e-commerce, for
example, since conflicts of interest between Alice and Bob are then not only possible
but even to be expected.

An authentication code provides a method of ensuring the integrity of a message.
We are now confronted not only with a passive but with an active attacker: In addi-
tion to eavesdropping on the conversation between Alice and Bob, Erich might now
try to tamper with the messages transmitted (substitution attack), or he might try to
introduce a message of his own into the channel, hoping it is accepted as authentic by
Bob (impersonation attack). These types of active attacks are also known as “man-
in-the-middle” or “intruder-in-the-middle” attacks. Furthermore, note that not only
documents such as email messages but also individuals may require authentication.

Related to the above types of active attacks, one can distinguish the following
authentication problems:
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• Message integrity: How can one be sure that no intruder has tampered with the
message received?

• Message authentication: How can one be sure that a message indeed originated
from the sender asserted and was not introduced by an intruder?

• User authentication: How can one be sure of the identity of an individual?

In the subsequent sections and chapters, we will be concerned with a variety of
methods and protocols trying to solve these problems.

4.2 Some Classical Cryptosystems and Their Cryptanalysis

In this section, some classical symmetric cryptosystems are introduced, and a very
rough classification of such cryptosystems is given. Out of the huge variety of cryp-
tosystems that have been proposed to date, only a very small number will be pre-
sented in this chapter. Modern public-key cryposystems are introduced later on, see
Chapters 7 and 8.

4.2.1 Substitution and Permutation Ciphers

Let Σ be some alphabet. Messages are elements of Σ∗, where Σ∗ denotes the set of
strings over Σ. In many cryptosystems, messages m ∈ Σ∗ are subdivided into blocks
of equal length, say n, and are then encrypted block-wise. The single blocks of m are
elements of Σn, except possibly the last block, which may be shorter. Block ciphers
map from Σn to Σn. There a various methods of how to encrypt large messages
block-wise, see Section 4.2.3.

Definition 4.3 (Block Cipher and Substitution Cipher).

• A block cipher is a cryptosystem in which both the plaintext space and the cipher-
text space is Σn, the set of length n strings over some alphabet Σ. The number
n is called the block length (or sometimes the period) of the system.

• A substitution cipher is a block cipher with block length one.

Since every encryption function has some corresponding decryption function, the
encryption functions of a block cipher are injective. An injective function mapping
from Σn onto Σn is a bijection. Hence, we have proven the following claim.

Observation 4.4 The encryption functions of a block cipher are permutations.

By Observation 4.4, the most general block cipher can be described as follows.
Fix an alphabet Σ and a block length n, and define the message space and ciphertext
space by M = C = Σn. Let the key space K be given by the set of all permuta-
tions of Σn. For each key π ∈ K , the encryption function Eπ and the decryption
function Dπ, which both map from Σn to Σn, are defined by:

Eπ(x) = π(x);
Dπ(y) = π−1(y),
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where π−1 is the inverse permutation. If Σ has m letters, then the key space contains
as many as (mn)! elements. However, this cryptosystem is impracticable, since one
needs the permutation π to decrypt the message. Representing π ∈ K by a table con-
taining π(x) for each x ∈ Σn, one obtains a table of size mn. That is why it is more
reasonable to use only those permutations that result from interchanging the position
of cleartext letters. This is the permutation cipher, also known as the transposition
cipher. Unlike substitution ciphers, the permutation cipher does not replace plaintext
letters by other letters from the ciphertext alphabet. Rather, plaintext letters merely
move to a new position in the ciphertext, but remain unchanged otherwise.

Example 4.5 (Permutation Cipher). Let Σ be some alphabet, and let n ∈ N be the
block length. Let M = C = Σn, and let the key space K = Sn be the permutation
group on n elements. For each key π ∈ Sn, the encryption function Eπ and the
decryption function Dπ, which both map from Σn to Σn, are defined by:

Eπ(x1x2 · · ·xn) = xπ(1)xπ(2) · · ·xπ(n);
Dπ(y1y2 · · · yn) = yπ−1(1)yπ−1(2) · · · yπ−1(n).

Here, the key space has n! elements, and every key can be encoded by a sequence of
n numbers.

We now describe some concrete block ciphers. Consider the alphabet Σ =
{A, B, . . . , Z}, which in many cases will be used both for the plaintext and ciphertext
space as well as for the key space. Many cryptosystems are based on simple arith-
metic operations such as the arithmetics modulo some number; see Problem 2.1. To
carry out these operations with letters as if they were numbers, identify Σ with the
ring Z26 = {0, 1, . . . , 25}, see Example 2.35. The number 0 represents A, the num-
ber 1 represents B, and so on. This encoding of the plaintext alphabet by integers and
the decoding of Z26 back to Σ is not part of the actual encryption and decryption,
respectively.

One of the simplest block ciphers is the shift cipher, which has block length one
and is thus a substitution cipher.

Example 4.6 (Shift Cipher). The shift cipher is a monoalphabetic symmetric cryp-
tosystem. Let K = M = C = Z26. The shift cipher encrypts messages by shifting
(modulo 26) each character of the plaintext by the same number k of letters in the
alphabet, where k ∈ Z26 is the key. Shifting each character of the ciphertext back
using the same key k reveals the original message. That is, for each key k ∈ Z26, the
encryption function Ek and the decryption function Dk, which both map from Z26

to Z26, are defined by:

Ek(x) = (x + k) mod 26;
Dk(y) = (y − k) mod 26.

For example, if we choose the key k = 17 = R, the message “BRUTUS FORCE
EASILY BREAKS CAESAR” is encrypted as shown in Table 4.1.
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Table 4.1. Example of an encryption by the shift cipher with key k = 17

For the special case of k = 3, the shift cipher is also called the Caesar cipher,
since the Roman dictator Gaius Julius Caesar is said to have used this cipher to keep
military messages secret, see Section 4.5. Shift ciphers are very simple substitution
ciphers, since every plaintext letter stays at the same position in the text but is sub-
stituted by a certain letter from the ciphertext alphabet.

Since the key space is very small, shift ciphers–and in particular the Caesar
cipher—can easily be broken by brute force: By simply checking each of the 26
possible keys, one can easily detect the one yielding a meaningful plaintext, pro-
vided that the ciphertext is long enough to allow a unique deciphering. Thus, the
shift cipher is vulnerable by ciphertext-only attacks, the weakest form of an attack.

Another example of a substitution cipher is the affine cipher whose encryption
functions are affine functions, i.e., mappings of the form

E(x) = ax + b mod m

for a, b ∈ Z26. The integers a and b form the key. For the special case of a = 1, the
affine cipher degenerates to the shift cipher.

Example 4.7 (Affine Cipher). The affine cipher is a monoalphabetic symmetric
cryptosystem. Let M = C = Z26 and K = {(a, b) ∈ Z26 × Z26 | gcd(a, 26) = 1}.
The affine cipher encrypts messages letter by letter. For each key (a, b) ∈ Z26×Z26

with gcd(a, 26) = 1, the encryption function E(a,b) and the decryption function
D(a−1,b), which both map from Z26 to Z26, are defined by:

E(a,b)(x) = ax + b mod 26;

D(a−1,b)(y) = a−1(y − b) mod 26,

where a−1 is the inverse element of a in Z26, i.e., aa−1 ≡ a−1a ≡ 1 mod 26. Note
that a−1 can easily be determined by the extended algorithm of Euclid; see Figure 2.2
in Chapter 2.

For example, choose the encryption key k = (5, 7). Note that 21 is the inverse
element of 5 modulo 26, since 5 · 21 = 105 = 1 + 4 · 26 ≡ 1 mod 26. Hence, the
decryption key is k′ = (21, 7). Consider the message m and its encryption c in Ta-
ble 4.2. The first plaintext letter is a “T,” which is encoded as 19. The corresponding
first letter of the ciphertext is determined by

E(5,7)(19) = 5 · 19 + 7 ≡ 24 mod 26.

Thus, the ciphertext letter “Y,” which corresponds to 24, encrypts “T.”
Let us check if the decryption key k′ = (21, 7) correctly deciphers this letter:

D(21,7) = 21(24− 7) = 357 ≡ 19 mod 26.
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Yes, it does. In general, if y is a ciphertext letter encrypting a plaintext letter x with
key (a, b), we have

y ≡ ax + b mod 26 ⇐⇒ ax ≡ y − b mod 26
⇐⇒ a−1ax ≡ a−1(y − b) mod 26
⇐⇒ x ≡ a−1(y − b) mod 26,

which satisfies (4.1). The remaining ciphertext is given in Table 4.2.

m T H E E L E C T I V E A F F I N I T I E S B Y G O E T H E
c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

Table 4.2. Example of an encryption by the affine cipher with key k = (5, 7)

Cryptanalysis of the Affine Cipher

For the alphabet Z26, the affine cipher has only 26 · ϕ(26) keys, since the number of
choices for b ∈ Z26 is 26 and the number of choices for a ∈ Z26 coprime with 26
is ϕ(26), where ϕ is the Euler function from Definition 2.36. Thus, a ciphertext-only
attack breaks the affine cipher by brute force, i.e., by an exhaustive search of the key
space.

The following example demonstrates a known-plaintext attack in which two
plaintext letters and their encryptions are known. The attack uses simple linear alge-
bra, see Problem 2.1 in Chapter 2.

Example 4.8 (Known-Plaintext Attack Against the Affine Cipher). Suppose that the
cryptanalyst knows the ciphertext c from Table 4.2 in the previous example, and he
also knows the first two plaintext symbols, “T” and “H,” corresponding to the first
two ciphertext letters, “Y” and “Q.” He can then determine the keys as follows:

• Since “Y” encrypts “T” and “Q” encrypts “H,” one obtains the congruences:

19a + b ≡ 24 mod 26; (4.2)

7a + b ≡ 16 mod 26; (4.3)

• (4.3) is equivalent to b ≡ 16 − 7a mod 26. Substituting this into (4.2) gives
19a + 16− 7a ≡ 24 mod 26 and thus 12a ≡ 8 mod 26, which implies

6a ≡ 4 mod 13. (4.4)

• Multiplying (4.4) with the inverse element 11 of 6 modulo 13 yields

a ≡ 44 ≡ 5 mod 13.

• It follows that a = 5 and b = 7.
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Both the shift cipher and the affine cipher are monoalphabetic, since every letter
in the plaintext is always replaced by the same letter in the ciphertext. The method
of frequency counts is often useful for breaking monoalphabetic cryptosystems. It
exploits the redundancy of the natural language used for encryption. In many lan-
guages, the letter “E” occurs, statistically significant, most frequently. For example,
the “E” occurs with a percentage of 12.31% in English, of 15.87% in French, of
13.15% in Spanish, of 11.79% in Italian, and even of 18.46% in German texts, pro-
vided they are long and “typical” enough. Thus, if a typical German text of sufficient
length is encrypted by the shift cipher and the letter “Y,” which is rather rare in Ger-
man, occurs with the highest frequency, then it is most likely that “Y” encrypts “E,”
and “U” (k = 20) is thus the key used.

Letters occurring with high frequency Total

Letter E T A O N I S R H
Frequency in % 12.31 9.59 8.05 7.94 7.19 7.18 6.59 6.03 5.14 70.02%

Letters occurring with medium frequency

Letter L D C U P F M W Y
Frequency in % 4.03 3.65 3.20 3.10 2.29 2.28 2.25 2.03 1.88 24.71%

Letters occurring with low frequency

Letter B G V K Q X J Z
Frequency in % 1.62 1.61 0.93 0.52 0.20 0.20 0.10 0.09 5.27%

Table 4.3. Frequencies of letters in long, typical English texts

Some languages have other letters that occur with the highest frequency; for ex-
ample, “A” is the most frequent letter in average Finnish texts, with a percentage of
12.06%, see Salomaa’s textbook [Sal96]. Table 4.3 shows the frequencies of the let-
ters in typical English texts of sufficient length; the values are taken from [Gai39]. It
must be emphasized, though, that the letter frequencies compiled in different books
vary from source to source. This fact is not surprising; it merely highlights the dif-
ficulty to define what a “typical” text in a natural language is. Evidently, the type
of text makes a difference, be it poetry, prose, a newspaper article, a technical text,
a scientific text, pidgin English, a dialect, and so on. Nonetheless, some properties
of the letter distribution are common for all the frequency tables. For example, the
letter “E” always tops the English frequency table and is always followed by “T”;
the order of some other letters may vary from table to table.

Example 4.9 (Cryptanalysis of the Affine Cipher by Frequency Counts). Suppose
that cryptanalyst Erich intercepted the ciphertext

c = Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

from Example 4.7, and he suspects that Alice encrypted her message by the affine
cipher, which is monoalphabetic. He is smart enough to analyze c by counting the
frequencies with which the single letters occur, and obtains Table 4.4.
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Letter B Y V Q G K R I H U T M X L Z
Frequency 7 4 4 2 2 1 1 1 1 1 1 1 1 1 1

Table 4.4. Frequencies of letters in the ciphertext from Example 4.7

Since “B” occurs with highest frequency, followed by “Y” and “V,” Erich guesses
that “B” encrypts “E,” and that “Y” and “V” each encrypt one of the letters “T,” “A,”
“O,” “N,” or “I.” Checking these possibilities, he concludes that it is most likely that
“Y” encrypts “T,” since the first three letters “T?E” are very likely to be the common
English word “THE,” which gives him another letter: “Q” encrypts “H.” Moreover,
it is most likely that “V” encrypts “I,” since “...ITIES” is a typical ending of English
nouns; see Table 4.5. Continuing in this trial and error way, and using the statistical
information about the frequencies of letters in typical English texts from Table 4.3,
Erich finally decrypts the complete message and the keys used.

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

V is A T H E E ? E ? T A ? E ? ? ? A ? A T A E ? ? ? ? ? E T H E
V is O T H E E ? E ? T O ? E ? ? ? O ? O T O E ? ? ? ? ? E T H E
V is N T H E E ? E ? T N ? E ? ? ? N ? N T N E ? ? ? ? ? E T H E
V is I T H E E ? E ? T I ? E ? ? ? I ? I T I E ? ? ? ? ? E T H E

m T H E E L E C T I V E A F F I N I T I E S B Y G O E T H E

Table 4.5. Guessing in the frequency counts method: “B” is “E,” “Y” is “T,” and “Q” is “H”

It must be emphasized, however, that the text in the above sample message is
extremely short, which means that Erich was lucky to be able to decipher the text
using letter frequency tables. On the other hand, short messages can always be bro-
ken by brute force; not even a computer may be needed to do the work if they are
short enough. The frequency counts method works the better the longer the message
is. However, it is not guaranteed to work for each message; it only provides some
statistical evidence that might help the cryptanalyst.

In addition to counting the frequency of single letters occurring in some text, one
may also count the frequency of letter pairs (digrams), of letter triples (trigrams), and
so on. Digrams and trigrams follow a certain probability distribution in long, typical
texts of a given natural language as well, and their occurrence in a ciphertext created
by a monoalphabetic cryptosystem may give additional hints for the cryptanalyst.

4.2.2 Affine Linear Block Ciphers

In contrast to monoalphabetic ciphers, polyalphabetic ciphers can replace plaintext
letters by distinct ciphertext letters depending on their position in the text. One fa-
mous such polyalphabetic system was invented by the French diplomat and cryptog-
rapher Blaise de Vigenère (1523 until 1596). His cipher works like the shift cipher,
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except that the ciphertext letter encrypting any given plaintext letter X varies with
the position of X in the plaintext.

Example 4.10 (Vigenère Cipher). This symmetric polyalphabetic cryptosystem
uses a so-called Vigenère square, a matrix consisting of 26 rows and as many
columns, see Table 4.6. Every row contains the 26 letters of the alphabet, shifted
(according to the arithmetics modulo 26) by one position to the left row by row. In
other words, the single rows (and the single columns as well) can be viewed as the
shift cipher with the keys 0, 1, . . . , 25. Which row of the Vigenère square is used for
the encryption of a plaintext symbol depends on its position in the text.

0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 4.6. Vigenère square: Plaintext “H” is encrypted with key “E” as “L”

Messages are subdivided into blocks of length n, and are then encrypted block-
wise. That is, K = M = C = Zn

26, where n is the block length of the system. For
each key k ∈ Zn

26, the encryption function Ek and the decryption function Dk, both
mapping from Zn

26 to Zn
26, are defined by:
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Ek(x) = (x + k) mod 26
Dk(y) = (y − k) mod 26,

where addition and subtraction with k modulo 26 are carried out character-wise.
More concretely, the key k ∈ Zn

26 is written symbol by symbol above each block
x ∈ Zn

26 of the plaintext. If the last block has less than n symbols, use less symbols
of the key accordingly. Let si denote the ith symbol of any given string s. To encrypt
the ith plaintext symbol xi, with the ith key symbol ki sitting on top of it, use the ith

row of the Vigenère square as if it were the shift cipher with key ki. Observe that one
and the same plaintext symbol can thus be encrypted by distinct ciphertext symbols.

key E L L A E L L A E L L A E L L A E L L A E L L A E L L A
message H U N G A R I A N I S A L L G R E E K T O G E R M A N S
ciphertext L F Y G E C T A R T D A P W R R I P V T S R P R Q L Y S

Table 4.7. Example of an encryption by the Vigenère cipher with key ELLA

For example, choose the period n = 4 and the key k = ELLA. Table 4.7 shows
the encryption of a plaintext consisting of seven blocks into a ciphertext using the
Vigenère cipher with this key. The first letter of the plaintext, “H,” has the key symbol
“E” above it. The “H”-column intersects with the “E”-row of the Vigenère square at
“L,” which is thus the first symbol of the ciphertext, see Table 4.6.

Observe that the same plaintext symbol can indeed be encrypted by distinct ci-
phertext symbols. For example,

• the plaintext letter “A” occurs four times and is encrypted by “A” twice, by “E”
once, and by “L” once;

• the plaintext letter “E” occurs three times and is encrypted by “I” once and by
“P” twice;

• the plaintext letter “G” occurs three times and is encrypted by “G” once and by
“R” twice;

• the plaintext letter “N” occurs three times and is encrypted by “R” once and by
“Y” twice;

• the plaintext letter “R” occurs three times and is encrypted by “C” once and by
“R” twice.

This observation also shows two weaknesses of the key chosen:

1. two letters of the key ELLA are equal, and
2. one letter of the key is “A,” which does not alter the corresponding cleartext

letters.

The Vigenère cipher is a special case of an affine linear block cipher, which
generalizes the affine cipher. Before defining affine linear block ciphers, we recall
some elementary notions from linear algebra; see also Definition 2.34 in Section 2.4.
In particular, affine linear block ciphers require operations on matrices over the
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ring Zm, i.e., the matrix entries are elements of Zm and the matrix operations are
based on the arithmetics modulo m, see Problem 4.1 in Section 2.6.

Definition 4.11 (Inverse Matrix, Determinant, and Adjoint Matrix).

• Let ui = (0, . . . , 0, 1, 0, . . . , 0) denote the ith unity vector of length n, i.e., the
ith coordinate of ui is one, and the jth coordinate of ui is zero for all j �= i.

• The (n × n) unity matrix is defined by Un = (ui)1≤i≤n, where the ith row (and
column) of Un is the ith unity vector of length n.

• Consider an (n × n) matrix A over the ring Zm. The (multiplicative) inverse
of A, denoted by A−1, is an (n×n) matrix satisfying that AA−1 = A−1A is the
(n× n) unity matrix Un.

• The determinant of A can be defined recursively:
– for n = 1 and A = (a), detA = a;
– for n > 1 and for each i ∈ {1, 2, . . . , n},

detA =
n∑

j=1

(−1)i+jai,j detAi,j ,

where ai,j is the (i, j)-entry of A, and the ((n − 1) × (n − 1)) matrix Ai,j

results from A by canceling out the ith row and the jth column.
• Define the adjoint matrix of A by Aadj = ((−1)i+j detAj,i).

An (n × n) matrix A over the ring Zm has a multiplicative inverse matrix if
and only if gcd(detA, m) = 1, where detA is the determinant of A. In general, an
(n× n) matrix over the reals is invertible if and only if its determinant is non-zero.

The determinant of a matrix can be computed efficiently, see Problem 4.1. It can
be shown that

A−1 = (det A)−1Aadj.

We now define the affine linear block cipher.

Definition 4.12 (Affine Linear Block Cipher). A block cipher with plaintext and
ciphertext space Zn

m and block length n is said to be affine linear if and only if all its
encryption functions are affine linear. That is, they all are of the following form:

E(A,b)(x) = Ax + b mod m, (4.5)

where A is an (n×n) matrix with entries from Zm such that gcd(det A, m) = 1, and
x, y, and b are vectors in Zn

m; all arithmetics is done modulo m. The corresponding
decryption function is

D(A−1,b)(y) = A−1(y − b) mod m,

where A−1 is the inverse matrix for A.
A linear block cipher is an affine linear block cipher for which b in (4.5) is the

zero vector.
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As mentioned above, the Vigenère cipher is affine linear. A classical example of
a linear cipher is the Hill cipher, invented by Lester Hill in 1929. In fact, the Hill
cipher is the most general linear block cipher.

Example 4.13 (Hill Cipher). Let Σ be an alphabet with m letters, and let n be the
block length. The plaintext and cipher text space is M = C = Zn

m. The key space K
is the set of all (n×n) matrices A with entries from Zm such that gcd(detA, m) = 1.
This condition ensures that the matrices are invertible, since the inverse matrix A−1

is used as the decryption key corresponding to the encryption key A. The encryption
function EA and the decryption function DA−1 are defined by:

EA(x) = Ax mod m;
DA−1(y) = A−1y mod m.

The Hill cipher works best if the size m of the alphabet is a prime number. To achieve
this, one usually adds the blank � (encoded as 26), the comma (encoded as 27), and
the full stop (encoded as 28) to the 26 letters of the English alphabet, which are
encoded by the numbers 0, 1, . . . , 25. Thus, m = 29 is a prime number and all
arithmetics is done over Z29.

Choose the block length n = 2 and an invertible (2 × 2) matrix A, and compute
the inverse matrix A−1 in the arithmetics modulo 29. For example,

A =
(

3 4
7 2

)
and A−1 =

(
21 16
28 17

)
.

Suppose you want to encrypt the message: “THE FOOL ON THE HILL.” Table 4.8
shows the encryption of this plaintext with key A.

plaintext T H E � F O O L � O N � T H E � H I L L
plaintext encoded 19 7 4 26 5 14 14 11 26 14 13 26 19 7 4 26 7 8 11 11

ciphertext encoded 27 2 0 22 13 5 28 4 18 7 27 27 27 2 0 22 24 7 19 12

ciphertext , C A W N F . E S H , , , C A W Y H T M

Table 4.8. Example of an encryption by the Hill cipher

We now show that the permutation cipher introduced in Example 4.5 is linear.
Thus, it is a special case of the Hill cipher.

Theorem 4.14. The permutation cipher is linear.

Proof. Let π ∈ Sn be a permutation. Let Un = (ui)1≤i≤n be the (n × n) unity
matrix whose ith row is ui, the ith unity vector of length n. Let Mπ be the matrix
whose ith row is uπ(i). This matrix can be obtained from Un by permutating its rows
according to π. Hence, the jth column of Mπ is uπ(j), and it follows that

(xπ(1), xπ(2), . . . , xπ(n)) = Mπx

for each vector x = (x1, x2, . . . , xn) in Σn.



140 4. Foundations of Cryptology

Cryptanalysis of the Vigenère Cipher

Depending on the block length chosen, the key space of the Vigenère cipher can be
rather large: it has mn elements, where m is the number of letters in the alphabet.
The method of frequency counts, which is often used to break monoalphabetic sys-
tems, is not applicable to polyalphabetic systems whose period (i.e., block length) is
not known. Thus, like similar periodic cryptosystems with an unknown period, the
Vigenère cipher appeared to resist the cryptanalysis by counting and analyzing the
frequency of letters, digrams, and trigrams in the ciphertext.

In 1863, the German cryptanalyst Friedrich Wilhelm Kasiski found a method to
break the Vigenère cipher. His achievement marks a breakthrough in the history of
cryptanalysis, since previously the Vigenère cipher was considered unbreakable. In
particular, Kasiski showed how to determine the period from repetitions of the same
substring in the ciphertext.

Kasiski’s method was independently invented by Charles Babbage, a British ge-
nius and well-known eccentric who also invented an early prototype of the computer;
see Section 4.5. Before explaining the method in detail, we show how to break even
polyalphabetic cryptosystems if the period is known. In that case, the problem of
breaking the polyalphabetic cryptosystem can be reduced to the problem of breaking
a monoalphabetic cryptosystem by the method of frequency counts.

Suppose that the period is n = 7. Arrange the ciphertext C0C1C2 · · ·Ck, where
each Cj is a letter, in seven columns such that the ith column consists of the letters
Cj with subscript j ∈ {i, i + 7, i + 2 · 7, . . .}, where i ∈ Z7 and j ≤ k; see
Table 4.9. Since all letters in the ith column are encrypted by the same key symbol
as in a monoalphabetic system, an ordinary frequency count will work to decrypt the
ciphertext column by column and to determine the single key symbols. Of course,
this method is the more likely to be successful the longer the ciphertext is.

C0 C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11 C12 C13

C14 C15 C16 C17 C18 C19 C20

...
...

...
...

...
...

...
Ck−8 Ck−7 Ck−6 Ck−5 Ck−4 Ck−3 Ck−2

Ck−1 Ck

Table 4.9. Cryptanalysis of a polyalphabetic system with period 7

The following example explains Kasiski’s method.

Example 4.15 (Kasiski’s Method). Suppose you have intercepted the ciphertext
shown in Table 4.10, and you know that it has been encrypted by the Vigenère cipher.
The ciphertext has 373 letters, and you do not know the period (i.e., the length of the
key) used. Analyzing the ciphertext carefully, you will find that some sequences of
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letters occur repeatedly in the text. Some of these repeated three-letter patterns are
highlighted using different gray levels in Table 4.10.

L E B L D V R Y L T U U H T N H P U T N
I H U E Y T A L L N S W Y E R P V Y W L
T D U Y D L R I E E P N X S E B I H R W
P Y N Z O Z M Y E U C A Z T S W I H R A
C D C N A J G B E F D U L N A C S U Y D
L E F L U V H Y O A C D U W I R E N Z K
A A M L S Z E X X E X F C H A K I H W O
K E Q T T W G Y C T G U X P S I E C Y B
T C U F S T I B L D S E X T C P T Y O A
Q O I V O U P I P M H T I S E G E P P N
I H I F G W T B P Y L E L P T H E F T O
I S U Y D X S U T D N E M T L D V Y O H
T R V F T X T W Z U A D H P V T R Q Z R
Z B Y N A J S Y D H T W U D F P R N Z O
X N X P L A I A P N I F I C M T A H O A
A I W P T D K F L S P G L P E S A H O T
W E H H E E U N Z N H O G P B D X C Y G
V L I G E H A H O G T R N C U S E M E E
X N V C O Z E G J N D S Y

Table 4.10. Kasiski’s method: ciphertext obtained by the Vigenère cipher

If one such pattern occurs repeatedly, this can be either due to the fact that the
same plaintext string was encrypted using the same letters of the key, or it may be
a pure coincidence. Suppose it is not coincidental. Hence, the distance between re-
peatedly occurring patterns will tell you something about the key length used. By
distance, we mean the number of positions some pattern has to be shifted to coincide
with another one. For example,

• the pattern “AHO” occurs three times with distances 20 and 30;
• the pattern “UYD” occurs three times with distances 55 and 125;
• the pattern “ACD” occurs twice with distance 30;
• the pattern “IHR” occurs twice with distance 20;
• the pattern “BLD” occurs twice with distance 165.

If the repeated occurrence of a pattern is no coincidence, then the key length (i.e., the
period of the system) must divide all distances. For example, a distance of 20 means
that the period is either 2 or 4 or 5 or 10 or 20. Since also 30 is a distance between
patterns, the potential periods 4 and 20 are eliminated. Among the remaining possible
periods, 2 and 5 and 10, only the period 5 divides the distances 55, 125, and 165.
Thus, we have determined the key length 5.

Now we can try to find the key and to decipher the message. This can be done
by the method described above: Knowing the period, we can reduce this task to
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the task of breaking a monoalphabetic system by frequency counts. Rearranging the
ciphertext in five columns, we obtain five monoalphabetic encryptions. In particular,
the second column has 75 letters, see Table 4.11.

E R U P H A W V D R N I Y M A I D G U S E H D E A
E F I E G U E C I E T O P T E H T E E S S E V R T
D R B S W R N I F A I K G A E U O X L A R E N E S

Table 4.11. Kasiski’s method: second column of the ciphertext rearranged

Observe that the letter “E” occurs most frequently: 14 times, which corresponds
to a percentage of 10.5%. But this means that the letters in the second column have
not been encrypted at all! Analyzing the fifth column gives the same result. Thus, the
second and the fifth letter of the key is an “A.” In other words, whoever encrypted
this message did not learn his lesson from Example 4.10, since he used the same
letter twice in the key, and he used an “A.”

Continuing in this way, we finally obtain the key used: “PAULA.” Table 4.12
shows the complete decrypted message, a twenties memory of Woody Allen reading
as follows with punctuation:

We had great fun in Spain that year and we travelled and wrote and Hem-
ingway took me tuna fishing and I caught four cans and we laughed and
Alice Toklas asked me if I was in love with Gertrude Stein because I had
dedicated a book of poems to her even though they were T.S. Eliot’s and I
said, yes, I loved her, but it could never work because she was far too intelli-
gent for me and Alice Toklas agreed and then we put on some boxing gloves
and Gertrude Stein broke my nose.

(From “A Twenties Memory” by Woody Allen, Random House, Inc., 1971)

Cryptanalysis of Other Affine Linear Block Ciphers

Affine linear block ciphers are easy to break by known-plaintext attacks, i.e., for an
attacker who knows some sample plaintexts with the corresponding encryptions, it
is not too hard to find the key used to encrypt these plaintexts. They are even more
vulnerable to chosen-plaintext attacks where the attacker can choose some pairs of
corresponding plaintexts and encryptions, which may be useful if there are certain
conjectures about the key used. We describe a known-plaintext attack.

Example 4.16 (Known-Plaintext Attack Against the Affine Linear Block Cipher).
Suppose that some key (A,b) has been fixed, that is, the plaintext x ∈ Zn

m is en-
crypted as y = E(A,b)(x) = Ax+b mod m, where A is an (n×n) matrix over Zm

with gcd(detA, m) = 1, and y and b are vectors in Zn
m. As usual, all arithmetics is

carried out modulo m.
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key P A U L A P A U L A P A U L A P A U L A

plaintext W E H A D G R E A T F U N I N S P A I N
ciphertext L E B L D V R Y L T U U H T N H P U T N
plaintext T H A T Y E A R A N D W E T R A V E L L
ciphertext I H U E Y T A L L N S W Y E R P V Y W L
plaintext E D A N D W R O T E A N D H E M I N G W
ciphertext T D U Y D L R I E E P N X S E B I H R W
plaintext A Y T O O K M E T U N A F I S H I N G A
ciphertext P Y N Z O Z M Y E U C A Z T S W I H R A
plaintext N D I C A U G H T F O U R C A N S A N D
ciphertext C D C N A J G B E F D U L N A C S U Y D
plaintext W E L A U G H E D A N D A L I C E T O K
ciphertext L E F L U V H Y O A C D U W I R E N Z K
plaintext L A S A S K E D M E I F I W A S I N L O
ciphertext A A M L S Z E X X E X F C H A K I H W O
plaintext V E W I T H G E R T R U D E S T E I N B
ciphertext K E Q T T W G Y C T G U X P S I E C Y B
plaintext E C A U S E I H A D D E D I C A T E D A
ciphertext T C U F S T I B L D S E X T C P T Y O A
plaintext B O O K O F P O E M S T O H E R E V E N
ciphertext Q O I V O U P I P M H T I S E G E P P N
plaintext T H O U G H T H E Y W E R E T S E L I O
ciphertext I H I F G W T B P Y L E L P T H E F T O
plaintext T S A N D I S A I D Y E S I L O V E D H
ciphertext I S U Y D X S U T D N E M T L D V Y O H
plaintext E R B U T I T C O U L D N E V E R W O R
ciphertext T R V F T X T W Z U A D H P V T R Q Z R
plaintext K B E C A U S E S H E W A S F A R T O O
ciphertext Z B Y N A J S Y D H T W U D F P R N Z O
plaintext I N T E L L I G E N T F O R M E A N D A
ciphertext X N X P L A I A P N I F I C M T A H O A
plaintext L I C E T O K L A S A G R E E D A N D T
ciphertext A I W P T D K F L S P G L P E S A H O T
plaintext H E N W E P U T O N S O M E B O X I N G
ciphertext W E H H E E U N Z N H O G P B D X C Y G
plaintext G L O V E S A N D G E R T R U D E S T E
ciphertext V L I G E H A H O G T R N C U S E M E E
plaintext I N B R O K E M Y N O S E
ciphertext X N V C O Z E G J N D S Y

Table 4.12. Kasiski’s method: Vigenère ciphertext decrypted

Suppose that the cryptanalyst knows n + 1 plaintexts x0,x1, . . . ,xn and the
corresponding ciphertexts y0,y1, . . . ,yn with

yi = Axi + b mod m.

It follows that
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yi − y0 ≡ A(xi − x0) mod m. (4.6)

Define the matrices X and Y by

X = (x1 − x0,x2 − x0, . . . ,xn − x0) mod m;
Y = (y1 − y0,y2 − y0, . . . ,yn − y0) mod m.

That is, the ith column of X is the difference xi−x0 mod m, and the ith column of
Y is the difference yi − y0 mod m, where 1 ≤ i ≤ n. It follows from (4.6) that

AX ≡ Y mod m.

If det X is coprime to m, then X−1 = (det X)−1Xadj, where (detX)−1 denotes
the inverse of detX mod m. Thus, we have

A ≡ Y ((det X)−1Xadj) mod m.

Furthermore, since
b = (y0 −Ax0) mod m,

we have determined the key (A,b) from n + 1 pairs of plaintexts and corresponding
ciphertexts.

If the cryptosystem is even linear, then b = 0, and we may choose x0 = y0 = 0.
For example, let n = 2, and suppose you have intercepted two pairs of plaintexts
and corresponding ciphertexts, say the first two blocks of the encryption by the Hill
cipher given in Table 4.8 from Example 4.13. Table 4.13 shows these two known
pairs: x1 = (19, 7) and y1 = (27, 2), and x2 = (4, 26) and y2 = (0, 22).

plaintext T H E �

plaintext encoded 19 7 4 26

ciphertext encoded 27 2 0 22

ciphertext , C A W

Table 4.13. Breaking the Hill cipher with a known-plaintext attack

Thus, you obtain the matrices X =
(

19 4
7 26

)
and Y =

(
27 0
2 22

)
. Since

detX = 19 · 26 − 4 · 7 = 2 and m = 29 are coprime, you further obtain
(detX)−1 = 15 and

Xadj =
(

26 −4
−7 19

)
=

(
26 25
22 19

)
.

Hence, the key used can be deciphered by

A ≡ Y ((det X)−1Xadj) mod m

=
(

27 0
2 22

)(
15

(
26 25
22 19

))
=

(
27 0
2 22

)(
13 27
11 24

)
=

(
3 4
7 2

)
.
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4.2.3 Block and Stream Ciphers

In Sections 4.2.1 and 4.2.2, various block ciphers were introduced. In this section,
several ways of using block ciphers to encrypt large plaintexts are discussed. Fur-
thermore, block ciphers are compared with stream ciphers.

Triple Encryption

The security of a block cipher can be increased by applying it repeatedly with distinct
keys. This measure can increase the key space considerably. A common way of doing
so is the triple encryption. After choosing three keys, say k1, k2, and k3, a given
plaintext x is encrypted by

y = Ek1 (Dk2(Ek3 (x))),

where Eki are encryption functions and Dki are decryption functions for ki. The
ciphertext y can then be decrypted by

x = Dk3(Ek2 (Dk1(y))).

Electronic Codebook Mode (ECB)

Suppose we are given a block cipher with block length n. Messages are strings in Σ∗,
where Σ is an alphabet, and the key space is K . For each key k ∈ K , Ek is the
encryption function and Dk is the decryption function.

To encode a plaintext m in the electronic codebook mode (ECB), we subdivide it
into blocks of length n, where the last block may have to be padded by random letters
to ensure that n divides |m|. If e ∈ K is the key used for encryption, every block
of length n is encrypted by e. The ciphertext is the resulting sequence of ciphertext
blocks. If d ∈ K is the decryption key corresponding to e, the ciphertext blocks
are decrypted with d one after another, yielding the original plaintext m. All the
examples of block ciphers given in Sections 4.2.1 and 4.2.2 have been encrypted in
the ECB mode.

An obvious disadvantage of the ECB mode is that the same plaintext blocks are
encrypted into the same ciphertext blocks. Thus, regularities in the plaintext yield
regularities in the ciphertext. A cryptanalysist can exploit this information obtained
from the ciphertext, which may be sufficient to break the cipher. For instance, look
at Example 4.15 that describes Kasiski’s method to break the Vigenère cipher. The
highlighted patterns in the ciphertext given in Table 4.10 are a result of using the ECB
mode for the Vigenère cipher. In particular, the ciphertext patterns “AHO,” “UYD,”
and “ACD” each encrypt the plaintext “AND.”

Another disadvantage of the ECB mode is that an attacker can tamper with the
encrypted messages transmitted. Ciphertext blocks can be deleted or the order of the
ciphertext blocks can be altered or, if the key has been determined, additional cipher-
text blocks can be inserted. In each case, the authorized recipient of the message will
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decrypt a different message than the original one. That is why the ECB mode is not
recommended for encrypting long messages. The security of the ECB mode can be
increased by padding all plaintext blocks with random characters.

Example 4.17 (ECB Mode). Consider the permutation cipher with block length 5
and alphabet Σ = {0, 1}. The key space is K = S5. For each key π ∈ S5, the
encryption function Eπ : Σ5 → Σ5 is defined by

Eπ(x1x2 · · ·x5) = xπ(1)xπ(2) · · ·xπ(5).

If the message is m = 100111010101001001, then we subdivide it into four blocks
of length five, where the last block is padded by a suffix of two zeros:

m = 10011 10101 01001 00100.

That is, we obtain the blocks b1 = 10011, b2 = 10101, b3 = 01001, and b4 =
00100. If the key is given by π = (1 2 3 4 5

3 4 1 5 2), the four ciphertext blocks

c1 = Eπ(b1) = 01110 c2 = Eπ(b2) = 10110
c3 = Eπ(b3) = 00011 c4 = Eπ(b4) = 10000

are obtained. Hence, the ciphertext is

c = 01110 10110 00011 10000.

Cipherblock Chaining Mode (CBC)

The cipherblock chaining mode (CBC) avoids the disadvantages of the ECB mode by
working in a “context-sensitive” way; cf. the notion of context-sensitive grammars
from Definition 2.9. That is, the encryption of a plaintext block in the CBC mode
depends not only on the block being encrypted and the key, but also on preceding
blocks. Hence, depending on their context, identical patterns in the plaintext are en-
crypted differently. If an attacker was tampering with the ciphertext, it can no longer
be decrypted properly, which reveals that someone was trying to do something nasty.
The CBC mode is explained by an example.

Example 4.18 (CBC Mode). Let Σ = {0, 1} be an alphabet, n be the block length,
and Sn be the key space. Consider the permutation cipher, and let Eπ be the encryp-
tion function and Dπ−1 be the decryption function for key π ∈ Sn.

Define the logical exclusive-or operation ⊕ : {0, 1}2 → {0, 1} by its truth
table shown in Table 4.14. Note that ⊕ corresponds to the bit vector addition in
the field of remainder classes Z2. Given two vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in {0, 1}n, define x ⊕ y = (x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn).
For convenience, we write vectors from {0, 1}n as strings, dropping parentheses and
commas. For example, if x = 01100 and y = 11001, then x⊕ y = 10101.
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x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Table 4.14. Truth table for the exclusive-or operation

Let n = 5. Consider the key π = (1 2 3 4 5
3 5 1 2 4) ∈ S5 and the same message as in

Example 4.17:
m = 10011 10101 01001 00100

consisting of the blocks b1 = 10011, b2 = 10101, b3 = 01001, and b4 = 00100.
To describe the CBC mode, we choose an initial vector c0 = 11010 in {0, 1}5.

For i with 1 ≤ i ≤ 4, the ith block is encrypted by

ci = Eπ(ci−1 ⊕ bi).

One obtains the four ciphertext blocks

c1 = Eπ(c0 ⊕ b1) = 01010 c2 = Eπ(c1 ⊕ b2) = 11111
c3 = Eπ(c2 ⊕ b3) = 10101 c4 = Eπ(c3 ⊕ b4) = 01100.

Hence, the ciphertext is

c = 01010 11111 10101 01100.

The inverse permutation π−1 = (1 2 3 4 5
3 4 1 5 2) is used as the decryption key, which

satisfies Dπ−1(Eπ(b)) = b for each block b. For i with 1 ≤ i ≤ 4, the ith ciphertext
block is decrypted by

bi = ci−1 ⊕Dπ−1(ci).

Indeed, we have

b1 = c0 ⊕Dπ−1(c1) = 11010⊕Dπ−1(01010) = 11010⊕ 01001 = 10011,

and it can be shown similarly that the other blocks are decrypted correctly.

Identical messages are encrypted differently in the CBC mode by altering the
initial vector. Moreover, since the encryption of plaintext blocks depends on the
preceding blocks, identical plaintext blocks with a different context are encrypted
differently. Attempts at tampering with the ciphertext transmitted, such as changing
the order of ciphertext blocks or deleting blocks or inserting additional blocks, will
be revealed because (authorized) decryption is then impossible. This is a clear ad-
vantage of the CBC mode over the ECB mode. Thus, the CBC mode is useful for
encrypting large texts with a block cipher.

The disadvantage of the CBC mode is that the receiver has to wait for the next
ciphertext block before starting with the decryption. These delays result in a certain
inefficiency, in particular if the block length is large.
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Cipher Feedback Mode (CFB)

The disadvantage of the CBC mode mentioned above can be avoided by the cipher
feedback mode (CFB). The idea is to subdivide the message into blocks shorter than
the block length n of the block cipher used, and to not use the block cipher’s own
encryption function but to encrypt these shorter blocks by adding certain key blocks
modulo 2. These key blocks can almost simultaneously be generated by the sender
and the receiver of the ciphertext. The CFB mode is now explained by an example.

Example 4.19 (CFB Mode). Consider the permutation cipher with alphabet Σ =
{0, 1}, block length n, and key space Sn. In addition, choose some k with 1 ≤ k ≤ n
and an initial vector z0 ∈ {0, 1}n. However, the message m is now subdivided into
d = "|m|/k# blocks b1,b2, . . . ,bd of length k. For each i with 1 ≤ i ≤ d:

Step 1: Compute xi = Eπ(zi−1).
Step 2: Let yi be the string in {0, 1}k consisting of the first k bits of xi ∈
{0, 1}n.

Step 3: Compute ci = bi ⊕ yi.
Step 4: Compute zi = 2kzi−1 + ci mod 2n, i.e., the first k bits are deleted in
zi−1 and ci is attached as a suffix.

The resulting ciphertext consists of the blocks c1, c2, . . . , cd.
Let n = 5 and k = 4, and consider the message from Examples 4.17 and 4.18:

m = 10011 10101 01001 00100. Subdivide the message into five blocks of length k:
b1 = 1001, b2 = 1101, b3 = 0101, b4 = 0010, and b5 = 0100.

If π = (1 2 3 4 5
3 5 1 2 4) ∈ S5 is again our key and z0 = 11010 our initial vector, we

encrypt these blocks as shown in Table 4.15.

i bi xi yi ci zi

0 — — — — 11010
1 1001 00111 0011 1010 01010
2 1101 00011 0001 1100 01100
3 0101 10010 1001 1100 01100
4 0010 10010 1001 1011 01011
5 0100 01011 0101 0001 10001

Table 4.15. Block encryption in the CFB mode

The decryption works almost like the encryption. The only difference occurs in
the third step. For each i with 1 ≤ i ≤ d:

Step 1: Compute xi = Eπ(zi−1).
Step 2: Let yi be the string in {0, 1}k consisting of the first k bits of xi ∈
{0, 1}n.

Step 3: Compute bi = ci ⊕ yi.
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Step 4: Compute zi = 2kzi−1 + ci mod 2n, i.e., the first k bits are deleted in
zi−1 and ci is attached as a suffix.

The decrypted message obtained consists of the blocks b1,b2, . . . ,bd.
Obviously, both the sender and the receiver can determine y1 as soon as the initial

vector z0 is chosen. Then, the sender computes c1 = b1 ⊕ y1 and sends it, and the
receiver computes b1 = c1 ⊕ y1. Then, they can both determine y2, and so on. The
advantage gained in comparison with the CBC mode is that the block length k can
be much shorter than the actual block length n. Thus, there is much less idle time
during which the receiver has to wait for the sender to complete all computations,
and both can encrypt and decrypt almost simultaneously.

Output Feedback Mode (OFB)

The output feedback mode (OFB) is quite similar to the CFB mode. The initialization
and the first three steps of both the encryption and the decryption procedure are
identical. The only difference occurs in the fourth step, which determines the vector
zi for 1 ≤ i ≤ d. For encryption, the OFB mode works as follows:

Step 1: Compute xi = Eπ(zi−1).
Step 2: Let yi be the string in {0, 1}k consisting of the first k bits of xi ∈ {0, 1}n.
Step 3: Compute ci = bi ⊕ yi.
Step 4: Compute zi = xi.

Example 4.20 (OFB Mode). Look at the block encryption in the CFB mode shown
in Table 4.15 from Example 4.19. Table 4.16 gives the corresponding block encryp-
tion in the OFB mode for the same message, key, and initial vector.

i bi xi yi ci zi

0 — — — — 11010
1 1001 00111 0011 1010 00111
2 1101 11001 1100 0001 11001
3 0101 01110 0111 0010 01110
4 0010 10011 1001 1011 10011
5 0100 01101 0110 0010 01101

Table 4.16. Block encryption in the OFB mode

One advantage of the OFB mode over the CFB mode is that if there are transmis-
sion errors in the ciphertext of a message encrypted in the OFB mode, then this error
occurs after decryption only at exactly the same position. In contrast, transmission
errors in ciphertexts encrypted in the CFB mode occur after decryption as long as it
takes to shift the erroneous block out of the vector zi, which depends on the block
lengths n and k.

Exercise 4.7 gives more examples for the various block cipher modes.
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Stream Ciphers

Block ciphers such as the Vigenère cipher or the Hill cipher subdivide the plaintext
into blocks of equal length and encrypt each block using the same key. In contrast,
block ciphers can also be used to encrypt the plaintext blocks in a context-sensitive
way. In the CBC mode, for example, the encryption of blocks depends on the pre-
ceding blocks. This principle is generalized by the notion of a stream cipher. Stream
ciphers generate a continuous stream of keys such that each key may depend on the
preceding keys and on the context of the plaintext already encrypted.

The next example introduces a popular stream cipher based on a linear feed-
back shift register, and thus explains the general idea of stream ciphers. Examples of
cryptanalytic attacks on stream ciphers can be found in Exercises 4.8 and 4.9.

Example 4.21 (Stream Cipher). Let Σ = {0, 1} be the alphabet used. Σ∗ is both
the plaintext space and the ciphertext space. For fixed n ∈ N, the key space is Σn.
Any message m = m1m2 · · ·mz in Σ∗ is encrypted symbol by symbol as follows.
Suppose that z ≥ n. Given a key k = (k1, k2, . . . , kn) in Σn, generate a key stream
s = (s1, s2, . . . , sz , . . .) that is initialized by k for the first n bits:

si = ki for 1 ≤ i ≤ n,

and then continues according to the following linear recursion of order n:

si =
n∑

j=1

ajsi−j mod 2 for i > n, (4.7)

where a1, a2, . . . , an ∈ {0, 1} are fixed coefficients. Denoting the first z bits of the
key stream s by s(z), the encryption function Ek and the decryption function Dk,
both mapping from Σ∗ to Σ∗, are defined by:

Ek(m) = m⊕ s(|m|);
Dk(c) = c⊕ s(|c|),

where⊕ denotes the addition of bit vectors modulo 2. That is, the ith bit of m⊕ s is
mi ⊕ si, the exclusive-or of mi and si; see Table 4.14.

For a concrete example, let n = 5, and fix the coefficients a1 = a3 = a4 = 0
and a2 = a5 = 1. Then, the key stream s is generated by the recursion

si+5 = si+3 + si mod 2. (4.8)

Choosing the key k = (1, 0, 0, 1, 1), one obtains

s = (1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, . . .).

The linear recursion from (4.8) can be efficiently realized by a building block of
hardware, namely a linear feedback shift register as shown in Figure 4.1. The regis-
ters store the last four bits of the key stream s generated. In each recursion step, the
bit from the leftmost register is used as the current key. Then, the bits from the other
registers are shifted by one position to the left. The rightmost register is now fed the
bit that results from adding modulo 2 the bits from those registers with coefficient
ai = 1.
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si si+1 si+2 si+3 si+4

⊕

Fig. 4.1. A linear feedback shift register

4.3 Perfect Secrecy

As mentioned in the last section, the Vigenère cipher was considered unbreakable
until the clever ideas of Kasiski and Babbage proved it insecure. In light of their
achievement, it is natural to ask whether there exist any cryptosystems that provably
guarantee perfect secrecy.

We turn to this question in Section 4.3.1 that describes some of the pioneering
work of Claude Shannon [Sha49], who laid the foundations of modern coding and in-
formation theory. Central to Shannon’s work is the notion of entropy, which is useful
in physics, mathematics, computer science, and other areas. In Section 4.3.2, the no-
tions of entropy and key equivocation are introduced and investigated. Foundations
of probability theory that are crucial here are described in Section 2.5.

4.3.1 Shannon’s Theorem and Vernam’s One-Time Pad

Consider again the scenario given in Figure 1.1 in Chapter 1: Alice and Bob are
communicating over an insecure channel, in the presence of eavesdropper Erich.
Therefore, they use a cryptosystem S = (M, C, K, E ,D), where M , C, and K are
finite sets, and E and D are families of functions used, respectively, for encryption
and decryption; see Definition 4.1.

Consider the following preliminaries and assumptions. The messages are dis-
tributed on M according to a probability distribution PrM that may depend on the
natural language used. For each new message, Alice chooses a new key from K that
is independent of the message to be encrypted. This assumption makes sense, since
Alice is choosing her key before she knows what the plaintext will be.

The keys are distributed according to a probability distribution PrK on K . The
distributions PrM and PrK induce a probability distribution PrM×K on M ×K . That
is, dropping the subscript, for each message m ∈ M and for each key k ∈ K ,

Pr(m, k) = PrM (m) PrK(k)

is the probability that the message m is encrypted with the key k, where m and k are
independent. Some more facts are in order:

• For m ∈ M , let m denote the event {(m, k) | k ∈ K}. Then, Pr(m) = PrM (m)
is the probability that the message m will be encrypted.
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• For k ∈ K , let k denote the event {(m, k) |m ∈ M}. Then, Pr(k) = PrK(k) is
the probability that the key k will be used.

• For c ∈ C, let c denote the event {(m, k) | Ek(m) = c}. Then, Pr(m | c) is the
probability that m is encrypted under the condition that c is received.

Suppose that eavesdropper Erich intercepts a ciphertext c that Alice sent to Bob.
Erich tries to get some information about the corresponding message m encrypted
by c. Since he knows the language used by Alice and Bob, he knows the probability
distribution PrM .

We now define the notion of perfect secrecy.

Definition 4.22 (Perfect Secrecy). A cryptosystem S = (M, C, K, E ,D) is said
to guarantee perfect secrecy if and only if

(∀m ∈M) (∀c ∈ C) [Pr(m | c) = Pr(m)].

That is, a cryptosystem guarantees perfect secrecy if and only if the event that
some message m is encrypted and the event that some ciphertext c is received are
independent: Erich learns nothing about m from knowing c.

We now give an example of a cryptosystem that does not guarantee perfect se-
crecy. Exercise 4.10 asks you to alter this cryptosystem so that it does achieve perfect
secrecy. Example 4.23 will be continued in Examples 4.28 and 4.36.

Example 4.23 (Perfect Secrecy). Consider a cryptosystem S = (M, C, K, E ,D)
such that the plaintext space M , the ciphertext space C, and the key space K are
given by:

• M = {a, b}, where Pr(a) = 1/3 and Pr(b) = 2/3;
• K = {$, #}, where Pr($) = 1/4 and Pr(#) = 3/4;
• C = {x, y}.
The probability that a plaintext letter m ∈ M is encrypted with a key k ∈ K is:

Pr(a, $) = Pr(a) · Pr($) = 1
3 · 1

4 = 1
12 ;

Pr(a, #) = Pr(a) · Pr(#) = 1
3 · 3

4 = 1
4 ;

Pr(b, $) = Pr(b) · Pr($) = 2
3 · 1

4 = 1
6 ;

Pr(b, #) = Pr(b) · Pr(#) = 2
3 · 3

4 = 1
2 .

Let the encryption functions be given by:

E$(a) = y; E$(b) = x; E#(a) = x; E#(b) = y.

Hence, the probability that a ciphertext symbol c ∈ C occurs is:

Pr(x) = Pr(b, $) + Pr(a, #) = 1
6 + 1

4 = 5
12 ;

Pr(y) = Pr(a, $) + Pr(b, #) = 1
12 + 1

2 = 7
12 .
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Then, for each pair (m, c) ∈M×C, the conditional probability Pr(m | c) is different
from the probability Pr(m):

Pr(a |x) = Pr(a,#)
Pr(x) =

3
12
5
12

= 3
5 �= 1

3 = Pr(a);

Pr(a | y) = Pr(a,$)
Pr(y) =

1
12
7
12

= 1
7 �= 1

3 = Pr(a);

Pr(b |x) = Pr(b,$)
Pr(x) =

2
12
5
12

= 2
5 �= 2

3 = Pr(b);

Pr(b | y) = Pr(b,#)
Pr(y) =

6
12
7
12

= 6
7 �= 2

3 = Pr(b).

It follows that the given cryptosystem does not achieve perfect secrecy. In particular,
if Erich sees the ciphertext letter y, the odds are good that the encrypted plaintext
letter was a b.

Shannon’s Theorem gives conditions necessary and sufficient for a cryptosystem
to achieve perfect secrecy.

Theorem 4.24 (Shannon). Let S = (M, C, K, E ,D) be a cryptosystem with
||C|| = ||K|| and Pr(m) > 0 for each m ∈ M . Then, S guarantees perfect se-
crecy if and only if

1. for each m ∈ M and for each c ∈ C, there exists a unique key k ∈ K with
Ek(m) = c, and

2. the keys in K are uniformly distributed.

Proof. Assume that S achieves perfect secrecy. We show that both conditions are
valid.

To prove the first condition, fix an arbitrary message m ∈ M . Suppose that there
is a ciphertext c ∈ C such that no key encrypts m into c. That is, for all k ∈ K , we
have Ek(m) �= c. Thus,

Pr(m) �= 0 = Pr(m | c).
Hence, S does not guarantee perfect secrecy, a contradiction. It follows that

(∀c ∈ C) (∃k ∈ K) [Ek(m) = c].

Now, the assumption ||C|| = ||K|| implies that each ciphertext c ∈ C has a unique
key k with Ek(m) = c.

To prove the second condition, fix an arbitrary ciphertext c ∈ C. For any m ∈M ,
let k(m) be the unique key k with Ek(m) = c. By the Theorem of Bayes (see
Theorem 2.55), it follows that for each m ∈ M :

Pr(m | c) =
Pr(c |m) Pr(m)

Pr(c)
=

Pr(k(m)) Pr(m)
Pr(c)

. (4.9)

Since S guarantees perfect secrecy, we have Pr(m | c) = Pr(m). By (4.9), this
implies Pr(k(m)) = Pr(c), and the latter equality holds independently of m.
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Hence, the probabilities Pr(k) are equal for all k ∈ K , which implies that
Pr(k) = 1/||K||. Thus, the keys in K are uniformly distributed.

Conversely, suppose that both conditions are true. We show that S achieves per-
fect secrecy. Let k = k(m, c) be the unique key k with Ek(m) = c. By the Theorem
of Bayes, it follows that

Pr(m | c) =
Pr(m) Pr(c |m)

Pr(c)

=
Pr(m) Pr(k(m, c))∑
q∈M Pr(q) Pr(k(q, c))

. (4.10)

Since all keys are uniformly distributed by the second condition, it follows that

Pr(k(m, c)) =
1
||K|| .

Moreover, we have that∑
q∈M

Pr(q) Pr(k(q, c)) =

∑
q∈M Pr(q)
||K|| =

1
||K|| .

Substituting this equality in (4.10) gives

Pr(m | c) = Pr(m).

Hence, S guarantees perfect secrecy.

Cryptosystems with perfect secrecy can be designed by satisfying the conditions
in Theorem 4.24. One famous such cryptosystem was invented by Gilbert Vernam in
1917. His symmetric cryptosystem, a block cipher, is known as the one-time pad.

Example 4.25 (Vernam’s One-Time Pad). Fix the alphabet Σ = {0, 1}, and define
the plaintext space, the ciphertext space, and the key space by

M = C = K = {0, 1}n

for some block length n ∈ N. The keys are uniformly distributed on {0, 1}n.
For each key k ∈ {0, 1}n, define the encryption function Ek and the decryption

function Dk, both mapping from {0, 1}n to {0, 1}n, by:

Ek(x) = x⊕ k;
Dk(y) = y ⊕ k,

where ⊕ denotes bit-wise addition modulo 2.
By Shannon’s Theorem, the one-time pad achieves perfect secrecy, since for each

plaintext x ∈ {0, 1}n and for each ciphertext y ∈ {0, 1}n, there exists a unique key
k ∈ {0, 1}n with y = x⊕ k, namely the vector k = x⊕ y.
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The one-time pad has some severe disadvantages that make its usage impractical
in most concrete scenarios. To guarantee perfect secrecy, every key can be used only
once, and it must be as long as the block of the message encrypted by it. If Alice and
Bob were using the same key twice and were to encrypt two (or more) blocks with
it, the one-time pad would not achieve perfect secrecy anymore. Sure enough, since
for every block of the message a new secret key must be exchanged, the one-time
pad lacks efficient key management. This is one reason why it has only limited use
in commercial applications.

Even worse, the one-time pad is not secure against known-plaintext attacks if the
same key is used twice. Knowing a message x and a corresponding ciphertext y,
Erich can determine the key used simply by computing

x⊕ y = x⊕ x⊕ k = k.

Due to its perfect secrecy and despite its drawbacks, the one-time pad has been
employed in real-world applications in a diplomatic and military context. Allegedly,
it has been used for the hotline between Moscow and Washington, see p. 316
in [Sim79]. Evidently, in situations where unconditional security does matter, cryp-
tosystems that provably guarantee perfect secrecy—such as the one-time pad—are
of great importance.

4.3.2 Entropy and Key Equivocation

When discussing the notion of perfect secrecy in Section 4.3.1, we assumed that a
new key is used whenever a new plaintext is to be encrypted, and that the key and the
plaintext are independent random variables. In contrast, we now ask what happens if
more than one plaintext is encrypted with the same key. How much information can
a cryptanalyst gain from the fact that keys are reused repeatedly? How likely is it that
this information can be employed for a successful ciphertext-only attack? Actually,
what is “information,” and how can one measure it? The answer to the latter question
is: “Entropy.”

Entropy

The notion of entropy originates from physics, where it is used to describe the de-
gree of chaos (or disorder, the opposite of ordered structure) in the universe or in
any closed system. In the world of physics, entropy refers to manifest order or struc-
ture, as opposed to the regular, precise movement of microscopic particles, which is
not considered as manifest order. The second principle of thermodynamics says that
the entropy of any closed system increases with the passing of time, unless it is a
“reversible” system in which case the entropy remains constant.

What does this have to do with cryptography? Entropy is so fundamental a no-
tion that it occurs not only in physics but also in mathematics, computer science,
and other fields. For example, it is a central notion in Shannon’s information and
coding theory and in the related theory of data compression. In algorithmics, it can
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be used to analyze the running time of randomized algorithms, to estimate the aver-
age search time in the data structure of optimal search trees, to estimate the average
length of the linked lists for hash tables that resolve collisions by chaining, and so
on. Whenever a random experiment such as tossing a coin is conducted, entropy
measures the information gained by knowing the result of this experiment. The other
way round, entropy is a measure of the uncertainty removed by conducting this ex-
periment. Roughly speaking, uncertainty corresponds to chaos, whereas information
corresponds to order. Not surprisingly, entropy is also useful in cryptography.

We now define the notion of entropy and state some useful properties for future
reference. Consider a random experiment with finitely many results. We call such a
result an event. If these events occur with one of the probabilities p1, p2, . . . , pn, then
we can assign a certain number to this random experiment, namely its entropy.

Definition 4.26 (Entropy). Let X be a random variable that can take on n pos-
sible values from the set X = {x1, x2, . . . , xn}. For each i with 1 ≤ i ≤ n, let
pi = Pr(X = xi) be the probability that X takes on the value xi. Define the entropy
of X by

H(X) = −
n∑

i=1

pi log pi. (4.11)

By convention, we set 0 log 0 = 0.

Formally, the weighted sum in (4.11) has the form of an expectation value, see
Section 2.5. The entropy expresses the degree of uncertainty associated with the
result of the given experiment before it has been conducted. Conversely, it can be
viewed as a measure for the average amount of information gained by conducting
the experiment, i.e., after knowing its result. In other words, if the ith event occurs
in this experiment, the information gained amounts to

− log pi = log
1
pi

.

If events are independent, then their probabilities are multiplied. Hence, by the loga-
rithm laws, the corresponding amounts of information gained can be added up. Note
that all logarithms are base 2; as usual, this choice is arbitrary because changing the
base would change the amount of the entropy only by a constant factor, cf. Exer-
cise 2.4.

Example 4.27 (Entropy). Tossing a coin is a random experiment with two possible
outcomes: heads or tails. Let X be a random variable that gives the result of this
experiment: X = 1 if the coin came down heads after being tossed, and X = 0
if it came down tails. If it is a fair coin, both these events occur with probability
p1 = p2 = 1/2. Since

H(X) = −
(

1
2

log
1
2

+
1
2

log
1
2

)
=

1
2

log 2 +
1
2

log 2 = 1,
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the random experiment of tossing a coin has an information content of precisely one
bit, which is either 1 for heads or 0 for tails.

However, if the coin is biased, say with the probabilities p1 = 1/4 for heads and
p2 = 3/4 for tails, the entropy of this experiment decreases to about 0.8113 bit.

The following example illustrates how one can describe the various components
of a cryptosystem by their entropies.

Example 4.28 (Entropy of a Cryptosystem: Example 4.23 continued).
Consider the cryptosystem S = (M, C, K, E ,D) defined in Example 4.23. One can
think of a key as a random variable K that takes on values in K = {$, #}, and
thus one can compute its entropy. Similarly, let M and C be random variables that
describe the plaintext and ciphertext, respectively, and take on values in M and in C.

The entropies of K, M, and C can be computed as follows:

H(K) = −
(

1
4

log
1
4

+
3
4

log
3
4

)
=

1
4

log 4 +
3
4

log
4
3

= 2− 3
4

log 3 ≈ 0.8113;

H(M) = −
(

1
3

log
1
3

+
2
3

log
2
3

)
=

1
3

log 3 +
2
3

log
3
2
≈ 0.9183;

H(C) = −
(

5
12

log
5
12

+
7
12

log
7
12

)
=

5
12

log
12
5

+
7
12

log
12
7
≈ 0.9799.

Theorem 4.31 below collects a number of useful properties of entropy. Its proof is
omitted except for the first statement. The remaining statements are left to the reader
as Exercise 4.12. To prove the first statement of Theorem 4.31, we need Jensen’s
inequality that is stated without proof as Lemma 4.30 below.

Definition 4.29. A real-valued function f is said to be concave on the interval I ⊆ R

if and only if for all x, y ∈ I ,

f

(
x + y

2

)
≥ f(x) + f(y)

2
.

The function f is said to be strictly concave on the interval I ⊆ R if and only if for
all x, y ∈ I with x �= y,

f

(
x + y

2

)
>

f(x) + f(y)
2

.

Lemma 4.30 (Jensen’s Inequality). If f is a continuous function that is strictly
concave on the real interval I , and if the positive real numbers p1, p2, . . . , pn satisfy

n∑
i=1

pi = 1,

then
n∑

i=1

pif(xi) ≤ f

(
n∑

i=1

pixi

)
.
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Theorem 4.31 (Properties of Entropy). Let X be a random variable that can
take on n possible values from the set X = {x1, x2, . . . , xn}. For each i with 1 ≤
i ≤ n, let pi = Pr(X = xi) be the probability that X takes on the value xi.

1. H(X) ≤ log n, with equality if and only if (p1, p2, . . . , pn) =
(

1
n , 1

n , . . . , 1
n

)
.

2. H(X) ≥ 0, with equality if and only if pi = 1 for some i, and pj = 0 for j �= i.
Here, H(X) = 0 means that the experiment’s result is completely determined,
i.e., there is no uncertainty about it and it does not provide any information.

3. If Y is a random variable that can take on n + 1 possible values from the set
Y = {y1, y2, . . . , yn+1} such that Pr(Y = yi) = pi for 1 ≤ i ≤ n and
Pr(Y = yn+1) = 0, thenH(Y) = H(X).

4. If π ∈ Sn is an arbitrary permutation of the set {1, 2, . . . , n} and if Y is a
random variable with Pr(Y = xi) = pπ(i), 1 ≤ i ≤ n, thenH(Y) = H(X).

5. Grouping Property: If Y and Z are random variables such that Y can take on
n− 1 possible values with the probabilities p1 + p2, p3, . . . , pn and Z can take
on two possible values with the probabilities p1/(p1 + p2) and p2/(p1 + p2),
thenH(X) = H(Y) + (p1 + p2)H(Z).

6. Gibb’s Lemma: Let Y be a random variable that can take on n possible values
with the probabilities q1, q2, . . . , qn (i.e., 0 ≤ qi ≤ 1 and

∑n
i=1 qi = 1), then

H(X) ≤ −
n∑

i=1

pi log qi,

with equality if and only if (p1, p2, . . . , pn) = (q1, q2, . . . , qn).
7. Subadditivity: Let Z = (X1,X2, . . . ,Xn) be a random variable whose possi-

ble values are n-tuples of the form (x1, x2, . . . , xn), i.e., xi is the value of the
random variable Xi. Then,

H(Z) ≤ H(X1) +H(X2) + · · ·+H(Xn),

with equality if and only if the random variables Xi are independent, i.e.,

Pr(X1 = x1,X2 = x2, . . . ,Xn = xn) =
n∏

i=1

Pr(Xi = xi).

Proof. We restrict ourselves to proving the first statement, leaving the remaining
statements to the reader, see Exercise 4.12. Observe that the function log x is strictly
concave on the interval (0,∞). By Jensen’s inequality (Lemma 4.30), it follows that

H(X) = −
n∑

i=1

pi log pi =
n∑

i=1

pi log
1
pi

≤ log
n∑

i=1

(
pi

1
pi

)
= log n.

Furthermore, we have equality if and only if pi = 1/n for each i with 1 ≤ i ≤ n.
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Based on the notion of conditional probability from Definition 2.54, we now
define conditional entropy. Intuitively, conditional entropy measures the amount of
information about a random variable X revealed by a random variable Y. This notion
will be useful to quantify the information that cryptanalyst Erich can learn about the
key used from knowing a certain ciphertext.

Definition 4.32 (Conditional Entropy). Let X and Y be two random variables
such that X can take on n possible values from the set X = {x1, x2, . . . , xn} and
Y can take on m possible values from the set Y = {y1, y2, . . . , ym}.

For each i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m, define the conditional
probabilities pij and the probabilities qj by:

pij = Pr(X = xi |Y = yj);
qj = Pr(Y = yj).

For fixed j, 1 ≤ j ≤ m, let Xj denote the random variable on X that is distributed
according to p1j , p2j, . . . , pnj . Clearly,

H(Xj) = −
n∑

i=1

pij log pij .

Define the conditional entropy by

H(X |Y) =
m∑

j=1

qjH(Xj) = −
m∑

j=1

n∑
i=1

qjpij log pij .

Intuitively, the conditional entropy H(X |Y) is the weighted average (with re-
spect to the probability distribution on Y ) of the entropies H(Xj) for all j with
1 ≤ j ≤ m. This notion will be applied to cryptosystems in Example 4.36 below.

The proof of the following two statements is straightforward and thus omitted;
see Exercise 4.13.

Theorem 4.33. H(X,Y) = H(Y) +H(X |Y).

Corollary 4.34. H(X,Y) ≤ H(X), with equality if and only if X and Y are inde-
pendent.

Key Equivocation

The properties of entropy and conditional entropy are now applied to cryptosystems.
It was noted in Example 4.28 that, given a cryptosystem S = (M, C, K, E ,D), one
can think of a key, a plaintext, and a ciphertext as a random variable K, M, and C,
respectively. Hence, one can compute their entropies.

We are now interested in determining the conditional entropy H(K |C), which
is called the key equivocation of S, and is interpreted as the amount of information
about the key used that is revealed by the ciphertext observed. The following result
tells us how to compute the key equivocation of a given cryptosystem.
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Theorem 4.35. Let S = (M, C, K, E ,D) be a cryptosystem, and let K, M, and C
be random variables corresponding to K , M , and C. Then,

H(K |C) = H(K) +H(M)−H(C).

Proof. By applying Theorem 4.33 with X = C and Y = (K,M), we obtain

H(C,K,M) = H(K,M) +H(C |K,M).

Since S is a cryptosystem, a given key k ∈ K and a given plaintext m ∈ M uniquely
determine the ciphertext c = Ek(m). Hence,H(C |K,M) = 0. It follows that

H(C,K,M) = H(K,M).

However, since the random variables K and M are independent, the subadditivity of
entropy (Property (7) in Theorem 4.31) implies that H(K,M) = H(K) + H(M).
Thus,

H(C,K,M) = H(K,M) = H(K) +H(M). (4.12)

Similarly, a given key k ∈ K and a given ciphertext c ∈ C uniquely determine the
plaintext m = Dk(c). Hence,H(M |K,C) = 0. It follows that

H(C,K,M) = H(K,C). (4.13)

By Theorem 4.33, the equalities (4.12) and (4.13) imply that

H(K |C) = H(K,C)−H(C)
= H(C,K,M)−H(C)
= H(K) +H(M)−H(C),

which proves the theorem.

To illustrate Theorem 4.35, we compute the key equivocation of the cryptosystem
defined in Example 4.23.

Example 4.36 (Key Equivocation: Examples 4.23 and 4.28 continued).
Consider the cryptosystem from Example 4.23. In Example 4.28, we estimated the
entropies associated with the random variables K, M, and C corresponding to
the key space, plaintext space, and ciphertext space as follows: H(K) ≈ 0.8113,
H(M) ≈ 0.9183,H(C) ≈ 0.9799. By Theorem 4.35, we obtain

H(K |C) = H(K) +H(M)−H(C)
≈ 0.8113 + 0.9183− 0.9799 (4.14)

= 0.7497.

The key equivocation of this cryptosystem can also be determined directly by ap-
plying the conditional entropy from Definition 4.32. Using the Theorem of Bayes
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(Theorem 2.55), we first determine the conditional probabilities Pr(K = k |C = c)
for each k ∈ K = {$, #} and c ∈ C = {x, y}:

Pr($ |x) =
Pr(b, $)
Pr(x)

=
2
5
; Pr(# |x) =

Pr(a, #)
Pr(x)

=
3
5
;

Pr($ | y) =
Pr(a, $)
Pr(y)

=
1
7
; Pr(# | y) =

Pr(b, #)
Pr(y)

=
6
7
.

Note that it is a pure coincidence that our cryptosystem satisfies:

• Pr($ |x) = 2/5 = Pr(b |x),
• Pr(# |x) = 3/5 = Pr(a |x),
• Pr($ | y) = 1/7 = Pr(a | y), and
• Pr(# | y) = 6/7 = Pr(b | y).

In general, this is not the case. For example, it is not necessarily the case that the key
space and the plaintext space are of the same size.

Now, we can compute the key equivocation according to Definition 4.32:

H(K |C) =
5
12

(
2
5

log
5
2

+
3
5

log
5
3

)
+

7
12

(
1
7

log 7 +
6
7

log
7
6

)
≈ 0.7497,

confirming the result in (4.14) that was yielded by Theorem 4.35.

4.4 Exercises and Problems

Exercise 4.1 (a) Decrypt the following ciphertext that was encrypted by the per-
mutation cipher:

O�HWEARCD�ETE�H T ARHCTECA “ T�R�BEHDE I R I N�”KI “ �

�BL L L ” L I �U�?�TAMRMUH�ONAQU�RT I NETA�NNTARO?N I

Hint: First determine the key used. The answer to the encrypted message is
encrypted as “HTOB” by the permutation cipher using a different key.

(b) Let π1 be the key from Exercise 4.1(a). Choose two more keys:

π2 =
(

1 2 3 4 5 6 7 8
2 1 8 6 4 5 3 7

)
and π3 =

(
1 2 3 4 5 6 7 8 9 10 11
8 11 2 1 10 5 3 7 4 6 9

)
.

Encrypt the plaintext from Exercise 4.1(a) by triple encryption using the keys π1,
π2, and π3; see Section 4.2.3. What is the size of the key space?

Exercise 4.2 Table 4.17 gives a ciphertext obtained by the affine cipher.

(a) Determine the key and the plaintext by the frequency counts method.

Hint: The plaintext is a German poem by Christian Morgenstern, taken from
“Ausgewählte Werke I,” Gustav Kiepenheuer Verlag, 1985. The frequencies of
letters in typical German texts can be found, e.g., in [Beu02].
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PWMU DZUIFDMZ WERXMNR XSZIF XUM REIFD
XSZIF UFZMO ZSCVBO HMZMRQDMR OIFEIFD

BNUMOOD WMUOOMO CGRXNUIFD
ODUNN SRX FMUDMZ

ESB UFZMR
WENXWMQ

SO
W

Table 4.17. A ciphertext obtained by the affine cipher for Exercise 4.2(a)

(b) The title of the poem in Table 4.17 has been encrypted by the affine cipher (using
a different key) into the following ciphertext:

JMU DHMYBDUH

Determine the key and decrypt the ciphertext according to the known-plaintext
attack in Example 4.8. The first two letters of the plaintext are “DI.”

Exercise 4.3 Table 4.18 shows two ciphertexts you have intercepted, c1 and c2. You
know that both encrypt the same plaintext and that one is encrypted by the shift
cipher, the other one by the Vigenère cipher. Determine the keys and decipher both
ciphertexts.

c1 W K L V V H Q W H Q F H L V H Q F U B S W H G E B F D H V D U V N H B
c2 N U O S J Y A Z E E W R O S V H P X Y G N R J B P W N K S R L F Q E P

Table 4.18. Two ciphertexts encrypting the same plaintext for Exercise 4.3

Hint: After deciphering the texts you will see that one of the ciphers used yields
a true, the other one a false statement. Is the method of frequency counts useful
perhaps?

Exercise 4.4 Consider the encryption of the plaintext “THE FOOL ON THE HILL”
by the Hill cipher given in Ecample 4.13, see Table 4.8.

(a) Prove that A−1 =
(

21 16
28 17

)
indeed is the inverse matrix of A =

(
3 4
7 2

)
mod-

ulo 29, i.e., prove that AA−1 = A−1A = U2 mod 29.

(b) Check that the ciphertext given in Table 4.8 properly decrypts into this plaintext
using the decryption key A−1.

(c) Encrypt the entire text of the Beatles song “THE FOOL ON THE HILL” with
block length 3 and a matrix of your choice. Determine the inverse matrix and
check that your ciphertext properly decrypts into the plaintext.

(d) Table 4.19 gives a ciphertext obtained by the Hill cipher with block length two
and using the alphabet Σ = {A, B, C, . . . , Z, �, &, -}. The corresponding plain-
text starts with the following four letters: “THER.” Determine the key and de-
crypt the ciphertext according to the known-plaintext attack in Example 4.16.
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S BQB Q - BK P � RA&GQ - A U S E T H R C - �X R Q N Q B J W& I J K B H & T DM
R && J Q M J KB K P�R �Q - U D QU R W&TOC X P R R R D A K I QR R R && E Q -
S BQB Q - BK P � RA&GQ - A U S E T H R C - �X R Q N Q B J K QND U RW - O S A
B &RY X K BGB K P�R �Q - A K RG� I P N S B A F R C Q - I E XRK A O T R X E P
� Z R C - &RAAWQE R S U B - O D J R S O&P G X P R H K Z O - &VS A & V R T C X
A OQU R HKZ C B KE P HRMKW J CM� B&RY X K B G S B A - R PA Y K Z A Y X Z
R C - � K R R S S R RX S A S B Q B Q - B K P �RA &G Q - A U S E THR C - �X R J D
WC B - X Z RG� Z XR E QR XO - AHQ U R S UB J DWC A WQ - UKS A B H & T I E
K RO& D C R I & B KR R T& T C O &V R I &BRA A K S A A P U X KORW& T E E J K
A UC B D J RHU B T I M�A UY Z ZQ& T OGKR S P - L Q MA Z S E I Y C B X Z O&
S BQB Q - BK P � RA&GQ - A U S E T H R C - �X R J DW C I E XRQ N Q S RWA B
Q - J DW E RA P G S B Q E R HU Z RC - � XR J DWCMG X D Q -

Table 4.19. A ciphertext obtained by the Hill cipher for Exercise 4.4(d)

Hint: The plaintext was taken from the album “We’re only in it for the Money”
by Frank Zappa and the Mothers of Invention, Frank Zappa Music Co., Inc.,
1967.

Exercise 4.5 Table 4.20 shows a ciphertext obtained by the Vigenère cipher, where
spaces between words and punctuation have been dropped. Apply Kasiski’s method
from Example 4.15 to determine the period, the key used, and the original message.

P O U L Q K Z H C T M Z O J G U A Z V Y F P V Y B O P A L O
W Z O J G L V Z Q T N T Z W C S E G O U K Z A J V X M V Q N
W D D B R M V Q Z D E L D I B C G U J S M T I N W K O J G E
S S H M F G J D F L F D W X K I Y L V W Q B U G P W G U X Q
Z N R E C C A S W T N Y L I A H W E W N T Z M W Z I X N G U
K K Y C M X T N O J T F L W A C G N K F D Y E Z K R O S A Q
A L Q V J U N K G U K A V J N W T G M I X B J G O A K H N A
Z N S A R G J E Z V B B A L Z B X F P R V N I L A A M A G U
K S K H P Y I A J E C M B P P V G M A T R O V A C T N E T G
U X T M N L P E P U S A V F M A R R Y Y P M F Z A I L H R P
Q H Y A D R V K A I A Z E Q S L L G V G O J G G U X T M Y U
Y A J Z L A X F G J D G Y I Y M Z H A R M U G Q I F Q E N E
O I D Q S Y D E R O S G O U Z E S F V Y X L O K Y O K L E I
Z V Z A R G U L Q Z G E L I A H P X G P X U P R P G I I L C
A W C Y I M T Y Y K E L J L M V G K Z W G A L E P R Y W I B
U S U B B U G T F H X F W Z K W N W L W

Table 4.20. A ciphertext obtained by the Vigenère cipher for Exercise 4.5

Hint: The plaintext was taken from the short story “A Twenties Memory” by Woody
Allen, Random House, Inc., 1971.

Exercise 4.6 There are a number of other squares similar to the Vigenère square
that can be used for a polyalphabetic block cipher similar to the Vigenère cipher
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from Example 4.10. One famous such cryptosystem is the Beaufort cipher, which
was invented by Admiral Sir Francis Beaufort (1774 until 1857), who also invented
the twelve-level Beaufort scale for measuring wind speed.

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A
A Z Y X W V U T S R Q P O N M L K J I H G F E D C B
B A Z Y X W V U T S R Q P O N M L K J I H G F E D C
C B A Z Y X W V U T S R Q P O N M L K J I H G F E D
D C B A Z Y X W V U T S R Q P O N M L K J I H G F E
E D C B A Z Y X W V U T S R Q P O N M L K J I H G F
F E D C B A Z Y X W V U T S R Q P O N M L K J I H G
G F E D C B A Z Y X W V U T S R Q P O N M L K J I H

H G F E D C B A Z Y X W V U T S R Q P O N M L K J I
I H G F E D C B A Z Y X W V U T S R Q P O N M L K J
J I H G F E D C B A Z Y X W V U T S R Q P O N M L K
K J I H G F E D C B A Z Y X W V U T S R Q P O N M L
L K J I H G F E D C B A Z Y X W V U T S R Q P O N M
M L K J I H G F E D C B A Z Y X W V U T S R Q P O N
N M L K J I H G F E D C B A Z Y X W V U T S R Q P O
O N M L K J I H G F E D C B A Z Y X W V U T S R Q P
P O N M L K J I H G F E D C B A Z Y X W V U T S R Q
Q P O N M L K J I H G F E D C B A Z Y X W V U T S R
R Q P O N M L K J I H G F E D C B A Z Y X W V U T S
S R Q P O N M L K J I H G F E D C B A Z Y X W V U T
T S R Q P O N M L K J I H G F E D C B A Z Y X W V U
U T S R Q P O N M L K J I H G F E D C B A Z Y X W V
V U T S R Q P O N M L K J I H G F E D C B A Z Y X W
W V U T S R Q P O N M L K J I H G F E D C B A Z Y X
X W V U T S R Q P O N M L K J I H G F E D C B A Z Y
Y X W V U T S R Q P O N M L K J I H G F E D C B A Z

Table 4.21. Beaufort square: plaintext “S” is encrypted with key “H” as “A”

The Beaufort cipher is based on the Beaufort square shown in Table 4.21. It looks
just like the Vigenère square in Table 4.6, except that one starts with the letter “Z”
in the first row and then goes backwards through the English alphabet. From row to
row, this order is shifted by one position to the right. The encryption and decryption
works just like the Vigenère cipher, except that one uses the Beaufort square in place
of the Vigenère square.

(a) Suppose you have encrypted a plaintext by the Vigenère cipher with some key.
How would you modify this key to obtain the same ciphertext from the plaintext
using the Beaufort cipher?

(b) Verify your guess for Exercise 4.6(a). To this end, compare the two ciphertexts
obtained from the same plaintext by the Vigenère cipher with some key and by
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the Beaufort cipher with the accordingly modified key. Use the plaintext from
Exercise 4.5 if you were able to decipher the ciphertext in Table 4.20.

Exercise 4.7 (a) Apply the CBC mode to the following block encryptions:

• The Vigenère cipher with key ELLA and the plaintext given in Table 4.7
from Example 4.10. The initial vector in Z4

26 is c0 = ALLE.

• The Vigenère cipher with key PAULA and the plaintext given in Table 4.12.
The initial vector in Z5

26 is c0 = ALUAP.

• The Hill cipher with key A =
(

3 4
7 2

)
and the plaintext given in Table 4.8

from Example 4.13. The initial vector is c0 = �B.

• The Hill cipher with key A =
(

4 3
2 7

)
and the plaintext corresponding to the

ciphertext in Table 4.19 from Exercise 4.4(d). The initial vector is c0 = FZ.

Hint: For the Vigenère encryptions, the exclusive-or operation ⊕ used in the
CBC mode is to be replaced by character-wise addition modulo 26. Similarly,
for the Hill encryptions, replace⊕ by character-wise addition modulo 29.

(b) Apply both the CFB mode and the OFB mode to the permutation cipher with
the alphabet Σ = {0, 1}, block length 6, key π = (1 2 3 4 5 6

6 1 2 5 3 4), and initial vector
z0 = 101001. The plaintext is

m = 100110 111100 001100 010100.

Choose the shorter block length k = 3.

(c) Repeat Exercise 4.7(b) with the shorter block length k = 2.

(d) Using the permutation cipher with the alphabet Σ = {0, 1}, block length 3, and
key

π =
(

1 2 3
3 2 1

)
,

encrypt the plaintext
m = 001 100 111 010

in the ECB, CBC, CFB, and OFB mode. The initial vector is 111. In the CFB
and OFB mode, use the shorter block length k = 2.

Exercise 4.8 Consider the stream cipher that is based on a linear feedback shift
register as shown in Example 4.21.

(a) Let n = 6, and fix the coefficients a2 = a3 = a6 = 0 and a1 = a4 = a5 = 1
in (4.7). Choose the key k = (1, 1, 0, 0, 1, 1). Encrypt the message

m = 101110001101101010011010111001.

(b) Design a known-plaintext attack for breaking this stream cipher.

Hint: This attack is similar to the cryptanalysis of affine linear block ciphers
such as the Hill cipher from Example 4.16. Note that all operations used in this
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stream cipher are linear. Thus, knowing a string of plaintext and a corresponding
string of ciphertext, you can solve a system of linear equations to determine the
values of the n unknown coefficients in the linear recursion (4.7).

Exercise 4.9 Consider the following stream cipher, which realizes one of the ideas
from the infamous encryption machine Enigma that the Deutsche Wehrmacht used
during World War II. The key space is Z26. For some fixed key k ∈ Z26 and for each
i ≥ 1, generate the key stream s by defining its ith element by the rule

si = (k + i− 1) mod 26.

Let π be some fixed permutation of Z26. If s ∈ Z26 is the current element of the key
stream and x is the current plaintext letter, the encryption function Es, which maps
from Z26 to Z26, uses both π and s as follows:

Es(x) = π((x + s) mod 26).

Similarly, the decryption function Ds, which also maps from Z26 to Z26, uses both
s and the inverse permutation π−1 to decrypt the current ciphertext symbol y:

Ds(y) = (π−1(y)− s) mod 26.

(a) Prove that this is a cryptosystem, i.e., prove that (4.1) is satisfied.

(b) Suppose that the permutation π of Z26 is given by(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
11 8 6 1 3 4 5 9 10 2 7 0 14 12 20 13 25 21 15 17 24 18 16 22 19 23

)
.

The following ciphertext was produced by the above stream cipher with π:

FRRMXCBEWMJWDDH TKO UACYKUK QAMT ASVZWO

Find the key used by exhaustive search of the key space, determine the complete
key stream, and decrypt the ciphertext.

Exercise 4.10 Alter the given probabilities in Example 4.23 so as to obtain a cryp-
tosystem that guarantees perfect secrecy.

Exercise 4.11 Prove that the shift cipher guarantees perfect secrecy, provided that
the keys are distributed uniformly, and that a new random key is chosen to encrypt
every new plaintext letter.

Exercise 4.12 Complete the proof of Theorem 4.31.

Exercise 4.13 Prove Theorem 4.33 and Corollary 4.34.

Exercise 4.14 Determine the inverse of the matrix

A =

⎛⎝0 0 1
0 1 1
1 1 1

⎞⎠
modulo 2.
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Exercise 4.15 Determine the determinant detB of the matrix

B =

⎛⎝3 1 2
2 3 1
1 2 3

⎞⎠ .

Problem 4.1 (Computing the Determinant)
(a) Design an algorithm in pseudocode for computing the determinant of a given

matrix over Zm. Implement your algorithm in a programming language of your
choice.

(b) Can you determine the inverse of a given matrix efficiently?

Problem 4.2 (Redundancy of a Language and Unicity Distance)
Let L be a natural language, such as Dutch or English, with the alphabet Σ. Intu-
itively, the entropy of L, denotedHL, measures the entropy per letter of L. If L were
a random language in which each letter occurs with the same probability and inde-
pendent of its context, then L would have the entropy log ||Σ||. However, natural
languages are not random. The fraction of “additional” or “superfluous” letters is
called the redundancy of L and is denoted byRL. Define these notions formally by

HL = lim
n→∞

H(Mn)
n

and RL = 1− HL

log ||Σ|| ,

where Mn is some random variable that is distributed according to the probabilities
with which the length n strings (i.e., all n-grams) in the language L occur.

(a) Let S = (M, C, K, E ,D) be some cryptosystem, where ||M || = ||C|| and the
keys are distributed uniformly. Let L be the language in which plaintexts are
written. Given a ciphertext of length n, a cryptanalyst performing a ciphertext-
only attack may be able to rule out certain keys, but many possible keys remain,
only one of which is correct. Possible yet incorrect keys are called spurious keys.
Let s̃n be the expected number of spurious keys, given a ciphertext of length n.

Find a lower bound for s̃n in terms of the redundancy of L.

Hint: Use the ideas of entropy and conditional entropy.

(b) Define the unicity distance of S to be the value n0 ∈ N for which s̃n0 becomes
zero, i.e., the average size of ciphertext required for uniquely determining the
correct key, provided one has sufficient computation time.

Give an approximation for the unicity distance n0 based on your formula for s̃n.

Problem 4.3 (Deciphering Edgar Allan Poe’s Ciphertext)
Using a monoalphabetic cipher, Edgar Allan Poe created the following ciphertext in
his short story “The Gold-Bug” (Random House, Inc., 1965):
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53‡ ‡ † 3 05 ) ) 6∗ ; 4826 ) 4‡ . ) 4‡ ) ; 806∗ ; 48†8¶60) ) 85 ; 1‡ ( ; : ‡ ∗ 8
†83 ( 8 8 ) 5∗ † ; 46 ( ; 88∗ 96∗ ? ; 8 ) ∗ ‡ ( ; 485 ) ; 5 ∗ †2 : ∗ ‡ ( ; 4956∗2 ( 5
∗ –4 ) 8¶8∗ ; 4069285 ) ; ) 6†8 ) 4‡ ‡ ; 1 ( ‡9 ; 48 0 81 ;8 : 8‡1 ; 48†85 ;
4 ) 485 † 528806∗ 81 ( ‡9 ; 48 ; ( 88 ; 4 ( ‡ ?34 ; 48 ) 4‡ ; 161 ; : 188 ; ‡ ? ;

Determine the key and decrypt the ciphertext. Upon your solution of this enigma, go
and find the hidden treasure and all the jewels of Golconda.

4.5 Summary and Bibliographic Remarks

General Remarks: Among the classics in cryptology are the books by Gold-
reich [Gol99, Gol01], Salomaa [Sal96], Stinson [Sti02], and Welsh [Wel98]. The
book by Schneier [Sch96] provides a very comprehensive collection of literally all
notions and concepts known in cryptology.

Singh [Sin99] has written a very charming, easy-to-read, fascinating book about
the history of cryptography.An older but still valuable source is Kahn’s book [Kah67].
Without claiming this list to be complete, we mention the texts by Bauer [Bau00a,
Bau00b], Beutelspacher et al. [Beu94, BSW01, Beu02], Buchmann [Buc01], and
Luby [Lub96]. More about the design and analysis of stream ciphers can be found in
Rueppel’s book [Rue86]. Micciancio and Goldwasser [MG02] survey the complexity
of lattice problems from a cryptographic perspective.

Survey papers falling into the scope of this book are (in alphabetic order) those by
Beygelzimer et al. [BHHR99], Cai [Cai99], Feigenbaum [Fei92], Goldreich [Gol88],
Goldwasser [Gol89], Kumar and Sivakumar [KS01], Nguyen and Stern [NS01],
Rothe [Rot04c, Rot02], and Selman [Sel92].

Specific Remarks: The beginnings of cryptography date back roughly to the ancient
roots of human civilization. For example, Gaius Julius Caesar reports in his book
“De Bello Gallico” that he transmitted an encrypted message to Q. Tullius Cicero
(the brother of the famous speaker), who was besieged with his legion during the
Gallic Wars (58 until 50 B.C.). The system used was monoalphabetic and replaced
Latin letters by Greek letters. However, it is not clear from Caesar’s report whether
he used the shift cipher with key k = 3 indeed. This information was given later by
Suetonius.

Vigenère’s cipher rests on previous work by the Italian mathematician Leon Bat-
tista Alberti (born in 1404), the German abbot Johannes Trithemius (born in 1492),
and the Italian scientist Giovanni Porta (born in 1535), see Singh [Sin99]. Kasiski’s
achievement of breaking the Vigenère cipher is also attributed to an unpublished
work, done probably around 1854, by the British genius and eccentric Charles Bab-
bage. More about Babbage’s life, work, and ingenious inventions, including an early
prototype of a computer, can be found in [Sin99].

From the example in Table 4.7, we not only learn how the Vigenère cipher
works, but also that using a language that is not widely used, such as Hungarian
or Finnish, often makes illegal decryption harder, and thus results in a higher level
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of security. This is not a purely theoretical observation. During World War II, the US
Navy transmitted important messages using the language of the Navajos, a Native
American tribe. The “Navajo Code” was never broken by the Japanese codebreak-
ers, see [Sin99].

Likewise, Singh’s book [Sin99] is a wonderful source for other exciting stories
from the history of cryptology. For example, it reports on the thrilling struggle be-
tween the German cryptographers and the allied cryptanalysts during World War II.
Eventually, the codebreakers of Bletchley Park, and most notably among them Alan
Turing, succeeded in breaking the German Enigma code, see also Bauer [Bau00a,
Bau00b]. The Enigma-based stream cipher given in Exercise 4.9 modifies a similar
stream cipher due to Stinson [Sti02].

For the solution to Problem 4.2, which deals with the entropy and the redun-
dancy of natural languages and with the unicity distance of cryptosystems, see Stin-
son [Sti02]. Denoting the English language by E, Stinson [Sti02] gives an estimate
of HE ≈ 1.25. That is, the average information content of English texts—including
the book you are currently reading—is about 1.25 bits per letter. Thus, English has
a redundancy of RE ≈ 0.75. That is not to say that you could still read this book
if three out of four letters had been removed.1 Rather, it means that you can apply
an encoding algorithm to compress the text to about one fourth of its original length
without losing any information.

One may wonder why we speak so redundantly if we were able to convey the
same information in another, compressed, language more tersely. It is worth men-
tioning that the redundancy of natural languages is not superfluous, it does have a
purpose. Namely, it allows us to be still able to understand when transmission er-
rors occur, for example those caused by a loud background noise in a bar. Speak-
ing of that, the phrase “It is worth mentioning that” in a preceding sentence of this
paragraph could have easily been dropped without losing much information. And
likewise the phrase “Speaking of that.”

The seminal idea of using the notion of entropy as a measure of information
is due to Shannon [Sha49], who also proved Theorem 4.24 that characterizes the
perfect secrecy of cryptosystems by necessary and sufficient conditions.

In Chapters 7 and 8, we will turn to cryptography again, focusing mainly on
public-key cryptography and its relation to complexity theory, and thus omitting the
presentation of more recent symmetric cryptosystems and block ciphers, notwith-
standing their importance in practice. Many of those systems use very clever ideas.
For example, one of the most popular symmetric, monoalphabetic block ciphers is
the Data Encryption Standard (DES, for short), which is based on certain sophisti-
cated transformations and is described in many textbooks on cryptography. The DES
was developed by IBM and was adopted as a standard in 1977. One problem with this
system is its key length, which is only 56 bits and thus too short by current standards.
The DES was broken in 1999 by exhaustive key search. For more information on the
mathematical properties of the DES obtained from empirical studies, see Kaliski,
Rivest, and Sherman [KRS88].

1 M��� li���y� ���� w����n�t w��k�
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A successor of this block cipher, Triple-DES, has a key length of 112 bits and is
thus more secure. For more information on the Advanced Encryption Standard (AES,
for short), which has been adopted by the National Institute of Standards and Tech-
nology (NIST) as the current encryption standard, see Daemen and Rijmen [DR01].
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Hierarchies Based on NP

Wer reitet so spät durch Nacht und Schnee?
Es ist Gerd Wechsung mit seinem MEE;
Er hat die Formel wohl in dem Arm,
Er faßt sie sicher, er hält sie warm. –

Mein Phi, was birgst du so bang dein Gesicht? –
Siehst, Gerd, denn du den Erlkönig nicht?
Den Erlenkönig mit Kron und so? –
Mein Phi, das ist nur Theta-pe-zwo. –

“Du liebes Phi, komm, geh mit mir!
Gar schöne Spiele spiel ich mit dir;
Und bist du die kleinste Formel am End,
So macht meine Mutter dich äquivalent.”

Mein Gerd, mein Gerd, und hörest du nicht,
Was Erlenkönig mir leise verspricht? –
Sei ruhig, bleibe ruhig, mein Phi!
Orakelmaschinen säuseln doch nie. –

“Gehst, feines Phi, du mit mir schnell?
Meine Töchter erfragen dich parallel;
Meine Töchter sind schön und ganz ohne Makel
Und fragen nach dir ihr NP-Orakel.”

Mein Gerd, mein Gerd, und siehst du nicht dort
Erlkönigs Töchter am düstern Ort? –
Mein Phi, mein Phi, was ich da seh,
Das ist doch wieder bloß Theta-zwo-pe. –

“Ich liebe dich, mich reizt deine schöne Gestalt;
Und bist du nicht willig, so brauch ich Gewalt.” –
Mein Gerd, mein Gerd, jetzt faßt er mich an!
Erlkönig hat mir ein Leids getan! –

Gerd Wechsung grauset’s, er reitet wie nie,
Er hält in Armen das ächzende Phi,
Erreicht den Hof mit Phi, so zart;
In seinen Armen das MEE war hart.

(Based on the poem “Erlkönig”
by Johann W. von Goethe, see also [HW02, Rot04b])

Turning again to complexity theory, this chapter introduces some important com-
plexity hierarchies built upon NP, such as the boolean hierarchy over NP and the
polynomial hierarchy. Complete problems in the levels of these hierarchies are iden-
tified, and the properties of and the relationships between these two hierarchies are
explored. Examples of problems complete for the levels of the boolean hierarchy over
NP include the “exact” variants of NP-complete optimization problems and critical
graph problems. Examples of problems complete for the levels of the polynomial
hierarchy include variants of NP-complete problems involving quantification with a
bounded number of alternating length-bounded quantifiers. Relatedly, the notion of
alternating Turing machines is introduced.

Moreover, this chapter introduces the low hierarchy within NP, which provides
a yardstick for measuring the complexity of NP problems that seemingly are neither
in P nor NP-complete. As an example of such problems, the graph isomorphism
problem will be shown to be low in Chapter 6.
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5.1 Boolean Hierarchy over NP

Many important problems were shown to be NP-complete in Section 3.5.3, among
them the 3-Colorabilityproblem and the domatic number problem, DNP. The goal
now is to study the “exact” variants of these two problems and to determine their
exact complexity.

We start with the exact domatic number problem. Recall from Section 3.5.3 that
DNP is (the decision version of) the problem of partitioning the vertex set of a given
graph G into a maximum number of disjoint dominating sets, where a dominating
set is a subset D of G’s vertex set such that every vertex of V (G) either belongs to
D or is adjacent to some vertex in D.

First, what are the “exact” variants of NP-complete optimization problems such
as the DNP, and why would one want to study them? As a motivation, consider the
following two scenarios in which the domatic number problem arises: it is related
both to the task of distributing resources in a computer network and to the task of
locating facilities in a communication network. In the latter scenario, n cities are
linked via communication channels. A transmitting group is any subset T of the
cities such that each city in T can transmit messages to every city in the network. A
transmitting group is nothing else than a dominating set in the network graph, and
the domatic number of this graph is the maximum number of disjoint transmitting
groups in the network.

In the other scenario, consider a network of n computers. Suppose that resources
are to be allocated in the network such that expensive services are quickly accessible
in the immediate neighborhood of each vertex. If every vertex has only a limited
capacity, then there is a bound on the number of resources that can be supported. In
particular, if every vertex can serve a single resource only, then the maximum number
of resources that can be supported equals the domatic number of the network graph.

Expensive resources should not be wasted. Given a graph G and a positive inte-
ger i, how hard is it to determine whether or not δ(G), the domatic number of G,
equals i exactly? That is, what is the exact complexity of the exact domatic number
problem?

Definition 5.1 (Exact Domatic Number Problem).
For each fixed positive integer i, define the exact domatic number problem by:

Exact-i-DNP = {G |G is a graph and δ(G) = i}.

Fact 5.2 For each fixed i ≥ 3, Exact-i-DNP is NP-hard.

Proof. The proof is given for the case of i = 3 only; see Exercise 5.1 for the case
of i > 3.

For i = 3, consider the reduction f constructed in the proof of Theorem 3.58,
which witnesses that 3-Colorability≤p

m DNP. This reduction maps any given
graph G to the pair 〈H, 3〉 = f(G), where H is a graph satisfying the implica-
tions (3.16) and (3.17) as is shown in that proof:
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G ∈ 3-Colorability =⇒ δ(H) = 3;
G �∈ 3-Colorability =⇒ δ(H) = 2.

Modify this reduction slightly by defining f̂(G) = H , which yields a reduction for
3-Colorability≤p

m Exact-3-DNP. Hence, Exact-3-DNP is NP-hard.

Is Exact-i-DNP NP-complete? That is, is it in NP? The following naive approach
to show membership in NP fails: Given a positive integer i and a graph G, nonde-
terministically guess a partition of G’s vertex set into i pairwise disjoint sets, and
for each partition guessed, verify deterministically that each set in the partition is a
dominating set of G. This approach works fine if δ(G) ≤ i, since the NP algorithm
checks the other condition required for equality: δ(G) ≥ i. However, if δ(G) > i,
then G is not in Exact-i-DNP, yet the NP algorithm above incorrectly accepts G on
some erroneous computation path. Thus, what is needed to accept Exact-i-DNP is an
additional test that δ(G) > i does not hold. This, however, is a coNP predicate.

So, proving an NP upper bound for Exact-i-DNP seems hard, if not impossi-
ble. But then, what is the best upper bound known for this problem? Note that
Exact-i-DNP can be written as the intersection of two sets:

Exact-i-DNP = {G | δ(G) ≥ i} ∩ {G | δ(G) ≤ i}.

The first set, {G | δ(G) ≥ i}, is in NP, whereas the second set, {G | δ(G) ≤ i}, is
in coNP. That is, Exact-i-DNP can be written as the intersection of an NP set and
a coNP set. Motivated by such “exact” variants of NP-complete optimization prob-
lems, Papadimitriou and Yannakakis introduced the complexity class DP, which con-
tains precisely the differences of any two NP sets:

DP = {A−B |A and B are in NP}.

In particular, Exact-i-DNP is in DP, since A−B = A∩B. Again, is it DP-complete?
That is, is it DP-hard? We will see later on that the answer is yes. However, before
showing DP-completeness of the exact domatic number problem, we introduce gen-
eralized versions of this problem and, relatedly, a generalization of DP. Given a graph
G and a set Mk = {i1, i2, . . . , ik} of k positive integers, how hard is it to determine
whether or not δ(G) equals some ij exactly?

Definition 5.3 (Exact Domatic Number Problem (Generalized Version)).
Let Mk ⊆ N be any set of k integers. Define the generalized version of the exact
domatic number problem by:

Exact-Mk-DNP = {G |G is a graph and δ(G) ∈Mk}.

In particular, for each singleton M1 = {i}, we write Exact-i-DNP = {G |δ(G) = i}.
Analogously to the above arguments that Exact-i-DNP is in DP, one can show

that Exact-Mk-DNP can be written as the union of k sets in DP. This observation
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motivates a generalization of DP: the boolean hierarchy over NP. To define this hier-
archy, we use the symbols ∧ and ∨, respectively, to denote the complex intersection
and the complex union of set classes. That is, for classes C and D of sets, define:

C∧D = {A ∩B | A ∈ C and B ∈ D};
C∨D = {A ∪B | A ∈ C and B ∈ D}.

Definition 5.4 (Boolean Hierarchy over NP).
The boolean hierarchy over NP is inductively defined by:

BH0(NP) = P,

BH1(NP) = NP,

BH2(NP) = NP∧coNP,

BHk(NP) = BHk−2(NP)∨BH2(NP) for each k ≥ 3, and

BH(NP) =
⋃
k≥0

BHk(NP).

Note that DP = BH2(NP) = NP∧coNP. A warning is in order here: NP∧coNP
and NP∩ coNP are (most likely to be) distinct complexity classes! Set-theoretically,
the intersection NP ∩ coNP is performed on a different level than the complex inter-
section NP∧coNP of the set classes NP and coNP. That is, NP∧coNP is the set of
intersections of NP sets with coNP sets, whereas NP ∩ coNP is the set of sets that
are both in NP and in coNP. Certainly, if NP equals P, then so do coNP, NP∧coNP,
NP∩coNP, and many other classes; see Exercise 5.3. However, NP = P is considered
to be most unlikely.

The above comment about the complex intersection and union of set classes
applies as well to the co operator, which applied to any class C of sets yields the
class coC = {L | L ∈ C}, the class of complements of the sets in C. For in-
stance, coNP, the class of complements of NP sets, is quite different an animal
than NP = {L | L �∈ NP}, the complement of NP, which contains every set that
is not an NP set.

Definition 5.5 (Boolean Closure). Let C be any class of sets, and let A and B be
any sets. Define the boolean closure of C, denoted by BC(C), to be the smallest class
D of languages containing C and closed under the following boolean operations:

• D is closed under union, i.e., if both A and B are in D, then so is A ∪B;
• D is closed under intersection, i.e., if both A and B are in D, then so is A ∩B;
• D is closed under complement, i.e., if A is in D, then so is A.

In particular, consider BC(NP), the boolean closure of NP. The first two closure
properties (under union and intersection) can also be expressed by NP∨NP = NP
and NP∧NP = NP, respectively, and they are outright true for NP; see Exercise 5.4.
However, the third closure property (under complement) is a major open question
for NP, almost as intractable and as infamous as the P versus NP question. It is
widely believed that NP �= coNP, i.e., that NP is not closed under complement.
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Hence, it is widely believed that NP �= BC(NP); see Exercise 5.5. However, any
proof of NP �= BC(NP) immediately gives a proof of NP �= coNP, which in turn
proves P �= NP.

Classes of sets that are closed under union and intersection and contain ∅ and Σ∗,
such as NP, are called set rings, with the ring operations union and intersection. Set
rings that in addition are closed under complement are called boolean algebras. For
each boolean algebra A, BC(A) = A. Hausdorff [Hau14] introduced the boolean
hierarchy over arbitrary set rings as the “union-of-differences hierarchy,” which is
given for the set ring NP in Definition 5.4.1 Therefore, this boolean hierarchy normal
form is sometimes called the Hausdorff hierarchy; see Section 5.9 for other boolean
hierarchy normal forms and for boolean hierarchies over complexity classes other
than NP.

One of the other boolean hierarchy normal forms hinted at above is the “nested
difference hierarchy,” which coincides, level by level, with the “union-of-differences
hierarchy” from Definition 5.4. Theorem 5.6 below shows that these two boolean
hierarchy normal forms are equivalent for set rings, level by level, and also that
both capture the boolean closure of the underlying set ring. If the underlying set
class is not a set ring, the corresponding equivalences are not so clear. For certain
boolean hierarchy normal forms other than the two discussed here, L. Hemaspaandra
and Rothe prove that closure of the underlying set class under intersection already
suffices to capture the boolean closure of the class; see the discussion in Section 5.9.
An example of a class closed under intersection, yet presumably not closed under
union, is the class UP; see Exercise 5.6.

When writing nested differences of k sets, we agree by convention that we may
omit the parentheses to enhance readability:

A1 −A2 − · · · −Ak−1 −Ak = A1 − (A2 − (· · · − (Ak−1 −Ak) · · · )),

although set difference is not an associative operation.

Theorem 5.6. For each set ring C, the following two statements hold:

1. The nested difference hierarchy over C coincides, level by level, with the union-
of-differences hierarchy over C:

BHk(C) =
{

L
L = A1 −A2 − · · · −Ak for sets Ai in C,
1 ≤ i ≤ k, satisfying Ak ⊆ Ak−1 ⊆ · · · ⊆ A1

}
.

2. BH(C) = BC(C).
Proof. Both statements can be proven by elementary set transformations; see Ex-
ercise 5.7.

1 Substituting any set class C for NP in Definition 5.4 defines the levels BHk(C) of the
boolean hierarchy over C, whose union is BH(C) =

S
k≥0 BHk(C).
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Corollary 5.7. 1. The nested difference hierarchy over NP coincides, level by level,
with the union-of-differences hierarchy over NP:

BHk(NP) =
{

L
L = A1 −A2 − · · · −Ak for sets Ai in NP,
1 ≤ i ≤ k, satisfying Ak ⊆ Ak−1 ⊆ · · · ⊆ A1

}
.

2. BH(NP) = BC(NP).

Theorem 5.8 states the inclusion relations between the levels of the boolean hier-
archy over NP, which follow immediately from Definition 5.4. Figure 5.1 shows this
inclusion structure as a Hasse diagram. That is, containment of a class C in a class
D is indicated by a line going from C upward to D. Incomparable classes—which
means that neither C ⊆ D norD ⊆ C is known to hold—are not connected by a line.
Figure 5.2 shows this inclusion structure as a Venn diagram, where we write BH1

in place of BH1(NP), etc. to enhance readability. Here, darker classes are contained
in lighter classes, and incomparable classes have the same gray level. None of the
inclusions is known to be strict.

P = BH0(NP)

coNP = coBH1(NP)

coDP = coBH2(NP)

coBH3(NP)

BH(NP)

BH3(NP)

BH2(NP) = DP

BH1(NP) = NP

...
...

Fig. 5.1. Boolean hierarchy over NP (Hasse diagram)

Theorem 5.8. For each k ≥ 0,

BHk(NP) ⊆ BHk+1(NP) and coBHk(NP) ⊆ coBHk+1(NP) (5.1)

and, hence, BHk(NP) ∪ coBHk(NP) ⊆ BHk+1(NP).
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· · ·

...

coBH1

BH2BH1

coBH2

coNP

NP P

BH(NP)

coDP

DP

...

· · ·

Fig. 5.2. Boolean hierarchy over NP (Venn diagram)

Story 5.9 Think of the boolean hierarchy as a building; a huge, magnificent, splen-
did pair of twin towers whose floors are the BHk(NP) and coBHk(NP) levels, re-
spectively. How many floors are there? Is BHk(NP) a proper hierarchy consisting of
an infinite number of strictly distinct levels? Or is it finite? No one knows. As so often
in complexity theory, this is an open research question closely tied to the P versus
NP question.

Now imagine some evil terrorist vandalizing through the Boolean Hierarchy
Tower and, with hand grenades and other explosives, damaging the 71st floor so
badly that it is completely destroyed. It is clear what will happen to the building: It
collapses. Theorem 5.10 shows that this is exactly what happens to the boolean hier-
archy: If any one of its levels collapses down to the level preceding it, then the entire
hierarchy collapses down to this specific, finite level. Even if any one of the BHk(NP)
classes were to coincide with its complementary class, coBHk(NP), the same conse-
quence occurs. This property of a hierarchy of complexity classes is dubbed “upward
collapse” or, synonymously, “downward separation.”

Theorem 5.10.

1. For each k ≥ 0, if BHk(NP) = BHk+1(NP), then

BHk(NP) = coBHk(NP) = BHk+1(NP) = coBHk+1(NP) = · · · = BH(NP).

2. For each k ≥ 1, if BHk(NP) = coBHk(NP), then

BHk(NP) = coBHk(NP) = BHk+1(NP) = coBHk+1(NP) = · · · = BH(NP).
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Proof. To prove the first statement, suppose that BHk(NP) = BHk+1(NP) is true
for some fixed k ≥ 0. We prove by induction on n:

(∀n ≥ k) [BHn(NP) = coBHn(NP) = BHn+1(NP)]. (5.2)

The induction base, n = k, follows immediately from (5.1) in Theorem 5.8 and
the hypothesis BHk(NP) = BHk+1(NP):

coBHk(NP) ⊆ BHk+1(NP) = BHk(NP),

which immediately implies coBHk(NP) = BHk(NP).
The induction hypothesis says that (5.2) is true for some n ≥ k. We have to show

that BHn+1(NP) = BHn+2(NP). By an argument analogous to the induction base,
this also implies BHn+1(NP) = coBHn+1(NP).

Let X be any set in BHn+2(NP). Thus, there exist sets A1, A2, . . . , An+2 in NP
such that An+2 ⊆ An+1 ⊆ · · · ⊆ A1 and X = A1 −A2 − · · · −An+2.

Let Y = A2−A3−· · ·−An+2. Thus, Y ∈ BHn+1(NP). By induction hypothesis,
Y is contained in BHn(NP) = BHn+1(NP). Hence, Y = B1 − B2 − · · · − Bn, for
suitable NP sets B1, B2, . . . , Bn satisfying Bn ⊆ Bn−1 ⊆ · · · ⊆ B1. By our choice
of the sets Ai, we have Y ⊆ A1, which implies Y ∩A1 = Y . It follows that

Y = (B1 ∩A1)− (B2 ∩A1)− · · · − (Bn ∩A1).

Each of the sets Bi ∩ A1 is in NP, since NP is closed under intersection; see Exer-
cise 5.4(a). Consequently,

X = A1 − Y = A1 − (B1 ∩A1)− (B2 ∩A1)− · · · − (Bn ∩A1),

is a set in BHn+1(NP), where

(Bn ∩A1) ⊆ (Bn−1 ∩A1) ⊆ · · · ⊆ (B1 ∩A1) ⊆ A1,

which concludes the induction and proves (5.2).
To prove the second statement, suppose that BHk(NP) = coBHk(NP) is true for

some fixed k ≥ 1. We show that this supposition implies BHk+1(NP) = BHk(NP),
thus reducing the second statement to the first statement of the theorem.

Let X = A1−A2−· · ·−Ak+1 be a set in BHk+1(NP), where A1, A2, . . . , Ak+1

are sets in NP satisfying that Ak+1 ⊆ Ak ⊆ · · · ⊆ A1.
Hence, Y = A2 −A3 − · · · −Ak+1 is a set in BHk(NP). By our supposition, Y

is in coBHk(NP) = BHk(NP). Thus, Y is a set in BHk(NP). Let B1, B2, . . . , Bk be
sets in NP such that Y = B1 −B2 − · · · −Bk and Bk ⊆ Bk−1 ⊆ · · · ⊆ B1. Again,
since NP is closed under intersection, each of the sets A1 ∩Bi, 1 ≤ i ≤ k, is in NP.
Furthermore, A1 ∩Bk ⊆ A1 ∩Bk−1 ⊆ · · · ⊆ A1 ∩B1. Hence,

X = A1 − Y = A1 ∩ Y = (A1 ∩B1)− (A1 ∩B2)− · · · − (A1 ∩Bk)

is a set in BHk(NP), which proves that BHk+1(NP) = BHk(NP), and the argument
given in the proof of the first statement of the theorem applies to prove the collapse
BHk(NP) = BH(NP).
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Turning back to the exact domatic number problem, recall that Exact-i-DNP is
in DP for each fixed i. Hence, for each k ≥ 1 and for each set Mk of k positive
integers, Exact-Mk-DNP is contained in BH2k(NP). Do there exist lower bounds for
Exact-Mk-DNPmatching these BH2k(NP) upper bounds? That is, is Exact-Mk-DNP
complete for BH2k(NP)? As mentioned earlier, the answer is yes.

In his seminal paper [Wag87a], Wagner provided a set of conditions sufficient to
prove BHi(NP)-hardness results for each i ≥ 1. Replacing “odd” by “even” in (5.3)
of Lemma 5.11 below, one obtains analogous sufficient conditions for coBHi(NP)-
hardness.

Crucially, the Wagner technique shows how to raise NP lower bounds to lower
bounds for classes above NP. Section 5.3 will provide another condition of Wagner,
which is closely akin to that presented in Lemma 5.11 and which is sufficient to
prove hardness for some complexity class even larger than the boolean hierarchy.
Applications of Wagner’s sufficient conditions will be mentioned in Section 5.9.

Lemma 5.11 (Wagner). Let A be some NP-complete problem, let B be an arbi-
trary problem, and let k ≥ 1 be fixed. If there exists a polynomial-time computable
function f such that, for all strings x1, x2, . . . , xk ∈ Σ∗ satisfying that xj+1 ∈ A
implies xj ∈ A for each j with 1 ≤ j < k, the equivalence

||{i | xi ∈ A}|| is odd ⇐⇒ f(〈x1, x2, . . . , xk〉) ∈ B (5.3)

is true, then B is BHk(NP)-hard.

Proof. Fix some NP-complete problem A and some k ≥ 1, and let B be an arbi-
trary problem. It is enough to prove the theorem for even k only; the case of k being
odd can be proven analogously. Let k = 2m for some m ≥ 1. Suppose there exists
some function f ∈ FP satisfying (5.3) for all strings x1, x2, . . . , xk ∈ Σ∗ for which
xj+1 ∈ A implies xj ∈ A for each j with 1 ≤ j < k.

Let X be an arbitrary set in BHk(NP). By Theorem 5.6, there exist NP sets
Y1, Y2, . . . , Yk such that Yk ⊆ Yk−1 ⊆ · · · ⊆ Y1 and

X = Y1 − Y2 − · · · − Yk =
m⋃

i=1

(Y2i−1 ∩ Y2i). (5.4)

Since A is NP-complete, there exist k reductions r1, r2, . . . , rk in FP such that, for
each x ∈ Σ∗, x ∈ Yj if and only if rj(x) ∈ A, for each j with 1 ≤ j ≤ k.

Hence, since Yk ⊆ Yk−1 ⊆ · · · ⊆ Y1, rj+1(x) ∈ A implies rj(x) ∈ A for each
j with 1 ≤ j ≤ k. By (5.4) and (5.3), for each x ∈ Σ∗,

x ∈ X
(5.4)⇐⇒ ||{i | ri(x) ∈ A}|| is odd
(5.3)⇐⇒ f(〈r1(x), r2(x), . . . , rk(x)〉) ∈ B.

Thus, X ≤p
m B via f ∈ FP. Since X is an arbitrary set in BHk(NP), it follows that

B is BHk(NP)-hard.
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Theorem 5.12 applies Wagner’s sufficient condition from Lemma 5.11 to the ex-
act domatic number problem: For each fixed set Mk containing k noncontiguous
integers not smaller than 4k + 1, Exact-Mk-DNP is complete for BH2k(NP). In par-
ticular, for k = 1, Corollary 5.13 states that Exact-5-DNP is DP-complete.

Theorem 5.12. For fixed k ≥ 1, let Mk = {4k + 1, 4k + 3, . . . , 6k − 1}. Then,
Exact-Mk-DNP is BH2k(NP)-complete.

Corollary 5.13. Exact-5-DNP is DP-complete.

Proof of Theorem 5.12. We have already seen that Exact-Mk-DNP is contained
in BH2k(NP). It remains to prove BH2k(NP)-hardness of Exact-Mk-DNP. To this
end, apply Lemma 5.11 with 3-Colorability being the NP-complete set A and
with Exact-Mk-DNP being the set B from this lemma.

Fix any 2k graphs G1, G2, . . . , G2k satisfying that for each j with 1 ≤ j < 2k,
if Gj+1 is in 3-Colorability, then so is Gj . By the proof of Theorem 3.56, which
provides a reduction from 3-SAT to 3-Colorability, we may assume that:

• for each graph Gj , we have 3 ≤ χ(Gj) ≤ 4, where χ(Gj) denotes the chromatic
number of Gj ;

• none of the graphs Gj contains isolated vertices.

Solve Exercise 5.10 to comprehend why these assumptions can be made without loss
of generality.

Let g ∈ FP be the reduction constructed in the proof of Theorem 3.58, which
reduces 3-Colorability to DNP by mapping any given graph G to the pair 〈H, 3〉 =
g(G), where H is a graph satisfying the implications (3.16) and (3.17):

G ∈ 3-Colorability =⇒ δ(H) = 3;
G �∈ 3-Colorability =⇒ δ(H) = 2.

Applying g to each of the graphs Gj , where 1 ≤ j ≤ 2k, we obtain 2k graphs
Hj = g(Gj), each satisfying the implications (3.16) and (3.17). Hence, for each j,
δ(Hj) ∈ {2, 3}, and δ(Hj+1) = 3 implies δ(Hj) = 3.

Define a polynomial-time computable function f mapping the given graphs
G1, G2, . . . , G2k to a graph H such that the equivalence (5.3) from Lemma 5.11
is satisfied. The graph H is constructed from the graphs H1, H2, . . . , H2k such that
δ(H) =

∑2k
j=1 δ(Hj).

Before the construction is given in general, consider the special case k = 1
first. For k = 1, two graphs are given, H1 = g(G1) and H2 = g(G2). Construct
a gadget connecting H1 and H2 as follows. Recalling the construction from The-
orem 3.58, let T1 with V (T1) = {vT1

q , uT1
q,r, v

T1
r } be any fixed triangle in H1, and

let T2 with V (T2) = {vT2
s , uT2

s,t, v
T2
t } be any fixed triangle in H2. Connect T1 and

T2 using the gadget that is shown in Figure 5.3. That is, add the six new vertices
aT1,T2
1 , aT1,T2

2 , . . . , aT1,T2
6 , and add the new edges shown in that figure by thin lines.

Using pairwise disjoint copies of the gadget from Figure 5.3, connect each pair of
triangles from H1 and H2. Call the resulting graph H . Recall that, for any graph G,
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δ(G) ≤ min-deg(G) + 1, where min-deg(G) denotes the minimum degree of the
vertices of G. (The degree of a vertex v in a graph G is the number of edges incident
to v.) Since the degree of each gadget vertex ai is 5, δ(H) ≤ 6, regardless of the
domatic numbers of H1 and H2. We now show that δ(H) = δ(H1) + δ(H2).

Let D1, D2, . . . , Dδ(H1) be δ(H1) pairwise disjoint sets dominating H1, and let
Dδ(H1)+1, Dδ(H1)+2, . . ., Dδ(H1)+δ(H2) be δ(H2) pairwise disjoint sets dominat-
ing H2. Distinguish the following three cases.

Case 1: δ(H1) = δ(H2) = 3. Consider any fixed Dj , where 1 ≤ j ≤ 3. Since
Dj dominates H1, every triangle T1 of H1 has exactly one vertex in Dj . Fix T1,
and suppose V (T1) = {vT1

q , uT1
q,r, v

T1
r } and, say, V (T1)∩Dj = {vT1

q }; the other
cases are analogous.
For each triangle T2 of H2, say T2 with V (T2) = {vT2

s , uT2
s,t, v

T2
t }, consider

the six gadget vertices aT1,T2
1 , aT1,T2

2 , . . . , aT1,T2
6 connecting T1 and T2 as in

Figure 5.3. Note that exactly one of these gadget vertices, aT1,T2
3 , is not adjacent

to vT1
q . For each triangle T2, add the missing gadget vertex to Dj , and define

D̂j = Dj ∪ {aT1,T2
3 | T2 is a triangle of H2}.

Since every vertex of H2 is contained in some triangle T2 of H2 and since aT1,T2
3

is adjacent to each vertex in T2, D̂j dominates H2. Also, D̂j , which contains Dj ,
dominates H1, and since vT1

q is adjacent to each aT1,T2
i except aT1,T2

3 for each

vT1
r

vT1
q

vT2
t

vT2
s

uT2
s,t

T2T1

aT1,T2

4 aT1,T2

5 aT1,T2

6

aT1,T2

1 aT1,T2

2 aT1,T2

3

uT1
q,r

Fig. 5.3. Exact-5-DNP is DP-complete: gadget connecting two triangles T1 and T2
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triangle T2 of H2, D̂j dominates every gadget vertex of H . Hence, D̂j domi-
nates H .
By a symmetric argument, every set Dj , where 4 ≤ j ≤ 6, dominating H2 can
be extended to a set D̂j dominating the entire graph H . By construction, the sets
D̂j with 1 ≤ j ≤ 6 are pairwise disjoint. Hence, δ(H) = 6 = δ(H1) + δ(H2).

Case 2: δ(H1) = 3 and δ(H2) = 2. As in Case 1, we can add appropriate
gadget vertices to the five given sets D1, D2, . . . , D5 to obtain five pairwise
disjoint sets D̂1, D̂2, . . . , D̂5 such that each D̂i dominates the entire graph H . It
follows that 5 ≤ δ(H) ≤ 6. It remains to show that δ(H) �= 6.
For a contradiction, suppose that δ(H) = 6. Look at Figure 5.3 showing the
gadget between any two triangles T1 and T2 belonging to H1 and H2, respec-
tively. Fix T1 with V (T1) = {vT1

q , uT1
q,r, v

T1
r }. The only way (except for renam-

ing the dominating sets) to partition the graph H into six dominating sets, say
E1, E2, . . . , E6, is to assign to the sets Ei the vertices of T1, of H2, and of the
gadgets connected with T1 as follows:
• assign {vT1

q } ∪ {aT1,T2
3 | T2 is a triangle in H2} to E1;

• assign {uT1
q,r} ∪ {aT1,T2

2 | T2 is a triangle in H2} to E2;

• assign {vT1
r } ∪ {aT1,T2

1 | T2 is a triangle in H2} to E3;
• assign {vT2

s , aT1,T2
6 | T2 is a triangle in H2} to E4;

• assign {uT2
s,t, a

T1,T2
5 | T2 is a triangle in H2} to E5;

• assign {vT2
t , aT1,T2

4 | T2 is a triangle in H2} to E6.
Hence, all vertices from H2 must be assigned to the three dominating sets E4,
E5, and E6, which induces a partition of H2 into three dominating sets. This
contradicts the case assumption that δ(H2) = 2. It follows that δ(H) = 5 =
δ(H1) + δ(H2).

Case 3: δ(H1) = δ(H2) = 2. As in the previous two cases, we can add ap-
propriate gadget vertices to the four given sets D1, D2, D3, and D4 to obtain a
partition of V (H) into four sets D̂1, D̂2, D̂3, and D̂4 such that each D̂i domi-
nates the entire graph H . It follows that 4 ≤ δ(H) ≤ 6. By the same arguments
as in Case 2, δ(H) �= 6. It remains to show that δ(H) �= 5.
For a contradiction, suppose that δ(H) = 5. Look at Figure 5.3 showing the gad-
get between any two triangles T1 and T2 belonging to H1 and H2, respectively.
Suppose H is partitioned into five dominant sets E1, E2, . . . , E5.
First, we show that neither T1 nor T2 can have two vertices belonging to the same
dominating set. Suppose otherwise, and let, say, vT1

q and uT1
q,r be both in E1, and

let vT1
r be in E2; all other cases are treated analogously. This implies that the

vertices vT2
s , uT2

s,t, and vT2
t in T2 must be assigned to the other three dominating

sets, E3, E4, and E5, since otherwise one of the sets Ei would not dominate all
gadget vertices aT1,T2

j , 1 ≤ j ≤ 6. Since T1 is connected with each triangle of
H2 via some gadget, the same argument shows that V (H2) can be partitioned
into three dominating sets, which contradicts the assumption that δ(H2) = 2.
Hence, the vertices of T1 are assigned to three different dominating sets, say
E1, E2, and E3. Then, every triangle T2 of H2 must have one of its vertices in
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E4, one in E5, and one in either one of E1, E2, and E3. Again, this induces a
partition of H2 into three dominating sets, which contradicts the assumption that
δ(H2) = 2. It follows that δ(H) �= 5, so δ(H) = 4 = δ(H1) + δ(H2).

By construction, δ(H2) = 3 implies δ(H1) = 3. Thus, the case “δ(H1) = 2 and
δ(H2) = 3” cannot occur. The case distinction is complete.

Define f(〈G1, G2〉) = H . Note that f is polynomial-time computable and, by
the case distinction above, f satisfies (5.3):

G1 ∈ 3-Colorability and G2 �∈ 3-Colorability

⇐⇒ δ(H1) = 3 and δ(H2) = 2
⇐⇒ δ(H) = δ(H1) + δ(H2) = 5
⇐⇒ f(〈G1, G2〉) = H ∈ Exact-5-DNP.

Applying Lemma 5.11 with k = 1, it follows that Exact-5-DNP is DP-complete,
which directly proves Corollary 5.13.

To prove the general case, fix any k ≥ 1. Recall that we are given the graphs
H1, H2, . . . , H2k that are constructed from G1, G2, . . . , G2k. Generalize the above
construction of graph H as follows.

For any fixed sequence T1, T2, . . . , T2k of triangles, where Ti belongs to Hi, add
6k new gadget vertices a1, a2, . . . , a6k and, for each i with 1 ≤ i ≤ 2k, associate
the three gadget vertices a1+3(i−1), a2+3(i−1), and a3i with the triangle Ti. For each
i with 1 ≤ i ≤ 2k, connect Ti with every Tj , where 1 ≤ j ≤ 2k and i �= j, via the
same three gadget vertices a1+3(i−1), a2+3(i−1), and a3i associated with Ti the same
way T1 and T2 are connected in Figure 5.3 via the vertices a1, a2, and a3. It follows
that the degree of ai is 6k − 1 for each i, so δ(H) ≤ 6k. An argument analogous to
the above case distinction shows that δ(H) =

∑2k
j=1 δ(Hj). Hence,

||{i |Gi ∈ 3-Colorability}|| is odd

⇐⇒ (∃i : 1 ≤ i ≤ k) [ χ(G1) = · · · = χ(G2i−1) = 3 and
χ(G2i) = · · · = χ(G2k) = 4 ]

⇐⇒ (∃i : 1 ≤ i ≤ k) [ δ(H1) = · · · = δ(H2i−1) = 3 and
δ(H2i) = · · · = δ(H2k) = 2 ]

⇐⇒ (∃i : 1 ≤ i ≤ k)

⎡⎣δ(H) =
2k∑

j=1

δ(Hj) = 3(2i− 1) + 2(2k − 2i + 1)

⎤⎦
⇐⇒ (∃i : 1 ≤ i ≤ k) [δ(H) = 4k + 2i− 1]
⇐⇒ δ(H) ∈ {4k + 1, 4k + 3, . . . , 6k − 1}
⇐⇒ f(〈G1, G2, . . . , G2k〉) = H ∈ Exact-Mk-DNP.

It follows that f satisfies (5.3). By Lemma 5.11, Exact-Mk-DNP is BH2k(NP)-
complete.
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In contrast with Corollary 5.13, which says that Exact-5-DNP is DP-complete,
Exact-2-DNP is in coNP; see Exercise 5.8(a). By Theorem 5.10, Exact-2-DNP cannot
be DP-complete unless the boolean hierarchy over NP collapses; see Exercise 5.8(c).
The precise complexity of the problems Exact-3-DNP and Exact-4-DNP is currently
not known: they are both coNP-hard and contained in DP, yet it is not known cur-
rently whether they are complete for either one of these two classes.

The second application of Lemma 5.11 concerns the exact colorability problem.
Recall that χ(G) denotes the chromatic number of graph G, i.e., the smallest number
of colors needed to color the vertices of G such that no two adjacent vertices receive
the same color. By Theorem 3.56 from Section 3.5.3, it is NP-complete to determine
whether or not χ(G) ≤ 3 for a given graph G.

Definition 5.14 (Exact Colorability Problem).
For each fixed positive integer i, define the exact colorability problem by:

Exact-i-Colorability = {G |G is a graph and χ(G) = i}.

Definition 5.15 (Exact Colorability Problem (Generalized Version)).
Let Mk ⊆ N be any set of k integers. Define the generalized version of the exact
colorability problem by:

Exact-Mk-Colorability = {G |G is a graph and χ(G) ∈Mk}.

In particular, we write Exact-i-Colorability = {G |χ(G) = i} for each singleton
M1 = {i}.

Let Mk = {6k + 1, 6k + 3, . . . , 8k − 1}. A straightforward application of
Wagner’s technique shows that, for each k ≥ 1, Exact-Mk-Colorability is
BH2k(NP)-complete. Hence, for the special case of k = 1, Exact-7-Colorability
is DP-complete; see Exercise 5.11. In contrast, the following proposition shows
that, for the special case of k = 1, Exact-3-Colorability is in NP. By Theo-
rem 5.10, Exact-3-Colorability cannot be DP-complete unless the boolean hier-
archy over NP collapses to its first level.

Proposition 5.16. Fix any k ≥ 1, and let Mk be any set of k positive integers
including 3. Then, Exact-Mk-Colorability is in BH2k−1(NP) and thus is not
BH2k(NP)-complete unless the boolean hierarchy over NP collapses.

Proof. See Exercise 5.12.

Again, there is a gap in determining the precise threshold i ∈ {4, 5, 6, 7} for
which the problem Exact-i-Colorability jumps from NP to DP-completeness.
Closing this gap, we will show in Corollary 5.21 below that the minimum number
of colors needed to prove DP-completeness is in fact four: Exact-4-Colorability
is DP-complete. This result follows from the more general statement about the hard-
ness of the generalized exact colorability problem for higher levels of the boolean
hierarchy given in Theorem 5.20 below.
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To this end, we again apply Lemma 5.11, and we apply two known reductions
from 3-SAT to 3-Colorability, which have certain useful properties that are stated
in the following two lemmas. The first reduction is the standard reduction from 3-SAT
to 3-Colorability given in the proof of Theorem 3.56. The second reduction is
due to Guruswami and Khanna [GK00] and, originally, was not motivated by issues
concerning the hardness of exact colorability, but by issues related to the hardness of
approximating the chromatic number of 3-colorable graphs. Intuitively, their result
says that it is NP-hard to 4-color a 3-colorable graph.

Lemma 5.17. There exists a polynomial-time computable function σ that ≤p
m-

reduces 3-SAT to 3-Colorability and satisfies the following two properties:

ϕ ∈ 3-SAT =⇒ χ(σ(ϕ)) = 3; (5.5)

ϕ �∈ 3-SAT =⇒ χ(σ(ϕ)) = 4. (5.6)

Lemma 5.18 (Guruswami and Khanna; cf. proof of Theorem 1 of [GK00]).
There exists a polynomial-time computable function ρ that ≤p

m-reduces 3-SAT to
3-Colorability and satisfies the following two properties:

ϕ ∈ 3-SAT =⇒ χ(ρ(ϕ)) = 3; (5.7)

ϕ �∈ 3-SAT =⇒ χ(ρ(ϕ)) = 5. (5.8)

Proof Sketch. The Guruswami–Khanna reduction, call it ρ, is the composition of
two subsequent reductions: first a reduction from 3-SAT to the independent set prob-
lem, and then from the independent set problem to 3-Colorability. Recall that the
independent set problem asks, given a graph G and an integer m, whether or not the
size of a maximum independent set of G (i.e., of a maximum subset of G’s vertex
set in which no two vertices are adjacent) is at least m.

ti,1

ti,3ti,2

ri

si

Fig. 5.4. Tree-like structure Si in the Guruswami–Khanna reduction

We give only a rough outline of Guruswami and Khanna’s very sophisticated con-
struction, which involves tree-like structures and various types of gadgets connecting
them. Using the standard reduction from 3-SAT to the independent set problem given
in the proof of Theorem 3.54 (see Figure 3.3), construct from the given boolean for-
mula ϕ a graph G consisting of m triangles (i.e., of m cliques of size 3 each) such
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that each triangle corresponds to some clause of ϕ and the vertices of any two dis-
tinct triangles are connected by an edge if and only if they represent some literal and
its negation, respectively, in the corresponding clauses.

1

2

3

Fig. 5.5. Basic template in the Guruswami–Khanna reduction

Denote the m triangles by T1, T2, . . . , Tm. To each Ti in G, there corresponds a
tree-like structure Si that is shown in Figure 5.4, where the three “leaves” ti,1, ti,2,
and ti,3 correspond to the three corners of the triangle Ti. Every individual “vertex”
of the tree-like structures has the form of the basic template shown in Figure 5.5.
Such a template consists of a 3×3 grid such that the vertices in each row and in each
column of the grid induce a 3-clique. The three vertices in the first column of any
such basic template, which are called the “ground vertices,” in fact are shared among
all the basic templates in each of the tree-like structures. Since the ground vertices
form a 3-clique, every legal coloring assigns three distinct colors to them, say 1, 2,
and 3.

(111) (223) (332)

(222) (331) (113)

(333) (112) (221)

(111) (233) (322)

(222) (311) (133)

(333) (122) (211)

(111) (323) (232)

(222) (131) (313)

(333) (212) (121)

(123)

(312) (231) (213) (321)

(132)

ri

siti,1

Fig. 5.6. Connection pattern between the templates of a tree-like structure
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The connection pattern between the five basic templates of a tree-like structure
can be seen in Figure 5.6, which shows a parent “vertex” and its two “children,” each
consisting of the nine vertices in the basic template. In addition, there are two more
triangles. Every vertex of the templates and the triangles is labeled by a triple of col-
ors. The simple rule is that two vertices are connected by an edge if and only if their
labels differ in each coordinate. Figure 5.6 shows this pattern for the “vertices” ri,
ti,1, and si; an analogous pattern applies to si, ti,2, and ti,3.

Before describing how the tree-like structures Si are connected with each other,
we explain the intuitive idea of this construction. Any coloring of Si selects certain
“vertices” of Si. A “vertex” in some Si is said to be selected if and only if at least one
of the three rows in its basic template receives colors that form an even permutation
of {1, 2, 3}, i.e., the first row has colors 1, 2, 3 from left to right, or the second row
has colors 2, 3, 1, or the third row has colors 3, 1, 2. Clearly, for each legal 4-coloring
of Si, every “vertex” is either selected or not selected.

Our goal is to guarantee that any legal 4-coloring of Si selects at least one of the
three “leaves,” ti,1, ti,2, or ti,3. The idea is to enforce that the root ri must be selected,
and that if some internal “vertex,” ri or si, is selected, at least one of its “children”
must be selected. This property is summarized in the following key lemma. The proof
of Lemma 5.19 is left to the reader, see Problem 5.2.

Lemma 5.19. Every legal 4-coloring of Si selects at least one of ti,1, ti,2, or ti,3.

Fig. 5.7. Gadget connecting two “leaves” of the “same row” kind

Finally, we specify how to connect the “leaves” of distinct tree-like structures Si

and Sj , i �= j. For each pair of “vertices,” ti,k and tj,�, that correspond to adjacent
vertices in graph G, appropriate gadgets are inserted to prevent both these “leaves”
being selected simultaneously. (This is necessary, since otherwise any 4-coloring of
the graph we construct would imply that G has an independent set of size m.)

Two kinds of gadgets are used. The first kind of gadget is called the “same row”
kind and can be seen in Figure 5.7. Its purpose is to prevent the two “leaves” being
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simultaneously selected because of the same row; for example, because both have
a third row colored 3, 1, 2. The second kind of gadget is called the “different rows”
kind and can be seen in Figure 5.8. Its purpose is to prevent the two “leaves” being
simultaneously selected because of different rows; for example, because ti,k has a
third row colored 3, 1, 2 and tj,� has a first row colored 1, 2, 3, in some 4-coloring.
Note, however, that there is some legal 3-coloring whenever the third row of ti,k is
colored 3, 2, 1 and the first row of tj,� is colored 1, 3, 2, i.e., whenever ti,k and tj,�
are not selected due to these two different rows.

Fig. 5.8. Gadget connecting two “leaves” of the “different rows” kind

This completes our description of the reduction ρ that transforms the formula ϕ
via the graph G to a graph H = ρ(ϕ). We omit presenting the details of Guruswami
and Khanna’s clever proof of correctness. A rough outline of the idea should be clear
from the above explanations. The details are left to the reader as Problem 5.2.

The above construction guarantees that

• ϕ ∈ 3-SAT implies χ(ρ(ϕ)) = 3, and
• ϕ �∈ 3-SAT implies χ(ρ(ϕ)) = 5.

In other words, the graph H never has a chromatic number of exactly four, no matter
whether or not ϕ is satisfiable. Thus, (5.7) and (5.8) are proven.

Theorem 5.20. For each fixed k ≥ 1, let Mk = {3k + 1, 3k +3, . . . , 5k− 1}. Then,
Exact-Mk-Colorability is BH2k(NP)-complete.

In particular, for k = 1, Theorem 5.20 has the following corollary. Both the
theorem and its corollary can be proven by Wagner’s technique, using Lemma 5.18.

Corollary 5.21. Exact-4-Colorability is DP-complete.

Proof of Theorem 5.20. Fix k ≥ 1. Apply Lemma 5.11 with A being the
NP-complete problem 3-SAT and B being the problem Exact-Mk-Colorability,
where Mk = {3k + 1, 3k + 3, . . . , 5k − 1}.
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Let σ be the standard reduction from 3-SAT to 3-Colorability according
to Lemma 5.17, and let ρ be the Guruswami–Khanna reduction from 3-SAT to
3-Colorability according to Lemma 5.18.

The join operation on graphs, denoted by ��, is defined as follows: Given two
disjoint graphs A and B, their join A �� B is the graph whose vertex and edge set,
respectively, are:

V (A �� B) = V (A) ∪ V (B);
E(A �� B) = E(A) ∪ E(B) ∪ {{a, b} | a ∈ V (A) and b ∈ V (B)}.

Note that χ(A �� B) = χ(A) + χ(B) and �� is an associative operation on
graphs; see Exercise 5.13.

Let ϕ1, ϕ2, . . . , ϕ2k be 2k given boolean formulas satisfying that ϕj+1 ∈ 3-SAT
implies ϕj ∈ 3-SAT for each j with 1 ≤ j < 2k. Define 2k graphs H1, H2, . . . , H2k

as follows. For each i with 1 ≤ i ≤ k, define H2i−1 = ρ(ϕ2i−1) and H2i = σ(ϕ2i).
By (5.5), (5.6), (5.7), and (5.8) from Lemmas 5.17 and 5.18, it follows that

χ(Hj) =

⎧⎨⎩ 3 if 1 ≤ j ≤ 2k and ϕj ∈ 3-SAT
4 if j = 2i for some i ∈ {1, 2, . . . , k} and ϕj �∈ 3-SAT
5 if j = 2i− 1 for some i ∈ {1, 2, . . . , k} and ϕj �∈ 3-SAT.

(5.9)

For each i with 1 ≤ i ≤ k, define the graph Gi to be the disjoint union of the graphs
H2i−1 and H2i. Thus, χ(Gi) = max{χ(H2i−1), χ(H2i)}, for each i, 1 ≤ i ≤ k.
The construction of our reduction f is completed by defining

f(〈ϕ1, ϕ2, . . . , ϕ2k〉) = G,

where the graph G is the join of the graphs G1, G2, . . . , Gk. Thus,

χ(G) =
k∑

i=1

χ(Gi) =
k∑

i=1

max{χ(H2i−1), χ(H2i)}. (5.10)

It follows from our construction that:

‖{i | ϕi ∈ 3-SAT}‖ is odd

⇐⇒ (∃i : 1 ≤ i ≤ k) [ϕ1, . . . , ϕ2i−1 ∈ 3-SAT and ϕ2i, . . . , ϕ2k �∈ 3-SAT]

(5.9), (5.10)⇐⇒ (∃i : 1 ≤ i ≤ k)

⎡⎣∑k
j=1 χ(Gj) = 3(i− 1) + 4 + 5(k − i)

= 5k − 2i + 1

⎤⎦
(5.10)⇐⇒ χ(G) ∈Mk = {3k + 1, 3k + 3, . . . , 5k − 1}
⇐⇒ f(〈ϕ1, ϕ2, . . . , ϕ2k〉) = G ∈ Exact-Mk-Colorability.

Hence, (5.3) is satisfied. By Lemma 5.11, Exact-Mk-Colorability is BH2k(NP)-
complete.

Section 5.9 mentions further applications of Wagner’s technique for proving
BHk(NP) lower bounds.
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5.2 Polynomial Hierarchy

Just like the boolean hierarchy, the polynomial hierarchy is an NP-based hierarchy of
complexity classes. The levels of this hierarchy can be characterized in two equiva-
lent ways: first, by alternating length-bounded∃ and ∀ quantifiers; second, by a stack
of NP oracle machines accessing NP oracles.

We start with the quantifier representation for the hierarchy’s first level, i.e., for
NP itself. NP algorithms typically consist of two phases: a nondeterministic guessing
phase in which potential problem solutions are guessed, followed by a deterministic
checking phase in which the correctness of the solution guessed is verified. Both
phases are polynomial-time bounded.

Problem solutions w that can be verified in deterministic polynomial time are
also referred to as “witnesses” or as “certificates,” for they witness (or certify) mem-
bership of the given instance in the given NP problem. For illustration, consider the
following examples of NP problems.

Example 5.22 (Witnesses for Problems in NP).

• Consider the NP-complete problem SOS. The standard NP machine for SOS
proceeds as follows: Given an instance 〈s1, s2, . . . , sn, T 〉, nondeterministically
guess a solution w ∈ {0, 1}n, w = (w1, w2, . . . , wn), and for each solution w
guessed, compute deterministically the sum

∑n
i=1 wisi, and accept the input if

and only if
∑n

i=1 wisi = T .
• Consider the NP problem GI. The standard NP machine for GI proceeds as fol-

lows: Given an instance 〈G, H〉, where G and H are undirected graphs with n
vertices each, nondeterministically guess a solution π ∈ Sn (i.e., a permutation
of the vertices of G), and for each solution π guessed, check deterministically
whether or not it is an isomorphism (i.e., an edge-preserving bijection) between
the vertices of G and H .

We briefly mention some further examples: solutions of the clique problem, given
an instance 〈G, k〉, are (suitably encoded) size k cliques of the graph G; solutions
of the satisfiability problem are satisfying truth assignments of the given formula;
solutions of the 3-DM problem are tripartite matchings of the given 3-DM instance;
and so on.

Polynomially time-bounded nondeterministic guessing thus corresponds to poly-
nomially length-bounded existential quantification. All NP problems are of this form:
A is in NP (via some NP machine M ) if and only if A comprises precisely those in-
put strings x for which there exists a polynomially length-bounded, polynomial-time
checkable witness w (with respect to M ). In other words, witnesses are nothing else
than accepting computation paths of M(x), suitably encoded as binary strings of
length p(|x|) for some p ∈ IPol. The ith bit of a witness w corresponds to the ith

nondeterministic branching of M(x) along the computation path w.

Definition 5.23 (Witness Set). Let A ∈ NP, and let M be some NP machine
accepting A in time p ∈ IPol. For each x of length n, define the set of witnesses for
“x ∈ A” with respect to M by
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WitM (x) = {w ∈ {0, 1}p(n) | w is an accepting computation path of M(x)}.

Note that x ∈ A if and only if WitM (x) is nonempty.
Theorem 5.24 is the complexity-theoretic analog of the projection theorem from

recursive function theory, which says that any given set is recursively enumerable if
and only if it is the projection of some decidable set; see the second item of The-
orem 2.20 in Section 2.2. This theorem can easily be proven by turning the above
comments into formal arguments. The proof is left to the reader as Exercise 5.16.

Theorem 5.24. A ∈ NP if and only if there exist a set B ∈ P and a polynomial p
such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃w) [|w| ≤ p(|x|) and 〈x, w〉 ∈ B]. (5.11)

For polynomially length-bounded quantifiers, we use the following notation.

Definition 5.25 (Polynomially Length-Bounded Quantifier).
For each predicate B, for each polynomial p, and for each string x, define:

(∃py) [B(x, y)] ⇐⇒ (∃y) [|y| ≤ p(|x|) and B(x, y)];
(∀py) [B(x, y)] ⇐⇒ (∀y) [|y| ≤ p(|x|) implies B(x, y)].

Now, we turn to the NP oracle machine approach. Oracle Turing machines are
formally defined in Definition 2.22 of Section 2.2. In particular, they are useful for
certain search techniques such as binary search or prefix search, as illustrated by the
following example.

Example 5.26 (Prefix Search by an Oracle Turing Machine). The graph isorphism
problem GI was defined in Definition 2.49 of Section 2.4. Let G and H be two given
graphs with n ≥ 1 vertices each. The set ISO(G, H) of isomorphisms between G
and H contains all solutions (or witnesses) of “〈G, H〉 ∈ GI,” with respect to the
standard NPTM for solving GI. Note that

ISO(G, H) �= ∅ ⇐⇒ 〈G, H〉 ∈ GI. (5.12)

We want to find the lexicographically smallest graph isomorphism in ISO(G, H)
if 〈G, H〉 ∈ GI; otherwise, “〈G, H〉 �∈ GI” is to be indicated by returning the empty
string ε. That is, we want to compute the function f that is defined by

f(G, H) =
{

min{π | π ∈ ISO(G, H)} if 〈G, H〉 ∈ GI
ε if 〈G, H〉 �∈ GI.

Here, the minimum is taken with respect to the lexicographical order on Sn, which
is defined as follows. We view a permutation π ∈ Sn as the length n string
π(1)π(2) · · ·π(n) over the alphabet [n] = {1, 2, . . . , n}, and for σ, τ ∈ Sn, we
write σ < τ if and only if there exists a j ∈ [n] such that σ(i) = τ(i) for all
i < j, and σ(j) < τ(j). For example, if σ = (1 2 3 4 5

3 4 1 5 2) and τ = (1 2 3 4 5
3 4 2 1 5), then
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NPre-Iso(G, H) {
if (〈G, H, ε〉 �∈ Pre-Iso) return ε;
else {

π := ε; j := 0;
while (j < n) { // G and H both have n vertices

i := 1;
while (〈G,H, πi〉 �∈ Pre-Iso) {i := i + 1; }
π := πi; j := j + 1;

}
}

return π;
}

Fig. 5.9. Prefix search to find the smallest graph isomorphism in ISO(G, H)

σ = 3 4 1 5 2 < 3 4 2 1 5 = τ , since they coincide in the first two positions and differ
in the third, where σ(3) = 1 < 2 = τ(3).

Canceling some pairs (i, σ(i)) out of a permutation σ ∈ Sn, one obtains a partial
permutation, which can also be viewed as a string over [n] ∪ {∗}, where ∗ indicates
an undefined position. A prefix of length k of σ ∈ Sn, where k ≤ n, is a partial
permutation of σ that contains every pair (i, σ(i)) with i ≤ k, but none of the pairs
(i, σ(i)) with i > k. In particular, if k = 0 then the empty string ε is the (unique)
length 0 prefix of σ, and if k = n then the total permutation σ is the (unique) length n
prefix of itself. For example, if σ = (1 2 3 4 5

3 4 1 5 2), then τ = (1 3 5
3 1 2) is a partial permutation

of σ, and π = (1 2 3
3 4 1) is a prefix of length 3 of σ. As a string over [n]∪{∗}, the partial

permutation τ is written τ = 3 ∗ 1 ∗ 2. For prefixes like π = 3 4 1 ∗ ∗ = 3 4 1, the
placeholders ∗ may be dropped.

If π is a prefix of length k < n of σ ∈ Sn and if w = i1i2 · · · i|w| is a string
over [n] of length |w| ≤ n − k with none of the ij occurring in π, then πw denotes
the partial permutation that extends π by the pairs

(k + 1, i1), (k + 2, i2), . . . , (k + |w|, i|w|).

If in addition σ(k + j) = ij for 1 ≤ j ≤ |w|, then πw is also a prefix of σ. For
example, if π = (1 2 3

3 4 1) is a prefix of σ = (1 2 3 4 5
3 4 1 5 2), then π is extended by each of

the strings w1 = 2, w2 = 5, w3 = 2 5, and w4 = 5 2, but only πw2 = 3 4 1 5 and
πw4 = 3 4 1 5 2 are prefixes of σ.

For any two graphs G and H , define the set of prefixes of isomorphisms
in ISO(G, H) by

Pre-Iso = {〈G, H, π〉 | (∃w ∈ [n]∗) [w = i1i2 · · · in−|π| and πw ∈ ISO(G, H)]}.

Note that for n ≥ 1, the empty string ε does not encode a permutation in Sn, and
that ISO(G, H) = ∅ if and only if 〈G, H, ε〉 �∈ Pre-Iso, which by (5.12) is the case
exactly if 〈G, H〉 �∈ GI. Using Pre-Iso as an oracle set, the DPOTM N in Figure 5.9
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computes the function f by prefix search. Thus, f ∈ FPPre-Iso. It is not difficult to
prove that Pre-Iso is a set in NP; see Exercise 5.17(a). Since Pre-Iso is in NP, we
have f ∈ FPNP. See also Exercise 5.17(b) and Problem 5.3.

The algorithm given in Figure 5.9 describes a Turing reduction to the oracle set
Pre-Iso. Note that polynomial-time Turing reductions can ask polynomially many
queries, whereas polynomial-time many-one reductions ask only one query. More-
over, ≤p

m-reductions accept the given input if and only if this query is answered in
the affirmative, a severe restriction not required for≤p

T-reductions. Hence, the Turing
reducibility is much more flexible than the many-one reducibility.

Definition 5.27 (Polynomial-Time Turing Reducibility and Completeness).
Let Σ = {0, 1} be a fixed alphabet, and let A and B be sets of strings over Σ. Let C
be any complexity class.

1. Define the polynomial-time Turing reducibility, denoted by ≤p
T, as follows:

A≤p
T B if and only if there is a deterministic polynomial-time oracle Turing

machine (DPOTM, for short) M such that A = L(MB).
2. Define the nondeterministic polynomial-time Turing reducibility, denoted ≤NP

T ,
as follows: A≤NP

T B if and only if there is a nondeterministic polynomial-time
oracle Turing machine (NPOTM, for short) M such that A = L(MB).

3. A set B is ≤p
T-hard for C if and only if A≤p

T B for each A ∈ C.
4. A set B is ≤p

T-complete for C if and only if B is ≤p
T-hard for C and B ∈ C.

5. C is said to be closed under the ≤p
T-reducibility (≤p

T-closed, for short) if and
only if for any two sets A and B, if A≤p

T B and B ∈ C, then A ∈ C. The notion
of C being ≤NP

T -closed is defined analogously. The Turing closure of C and the
≤NP

T -closure of C, respectively, are defined by:

PC = {A | (∃B ∈ C) [A≤p
T B]};

NPC = {A | (∃B ∈ C) [A≤NP
T B]}.

The following proposition summarizes some basic properties of the reducibilities
defined above. The proof of Proposition 5.28 is left to the reader as Exercise 5.18. For
the first item of Proposition 5.28, recall that we may view the relations≤p

T and ≤NP
T

as sets of pairs, i.e., ≤p
T = {(A, B) | A≤p

T B} and ≤NP
T = {(A, B) | A≤NP

T B}.
The last item of Proposition 5.28 is analogous to Theorem 3.41. This item says that
if≤NP

T and≤log
m coincide on NP, then NP collapses down to L. In contrast with≤log

m ,
≤p

m, and ≤p
T, it is known that ≤NP

T is not a transitive relation.

Proposition 5.28. 1. ≤log
m ⊆ ≤p

m ⊆ ≤p
T ⊆ ≤NP

T .
2. The relation ≤p

T is both reflexive and transitive, yet not antisymmetric.
3. P and PSPACE are ≤p

T-closed, i.e., PP = P and PPSPACE = PSPACE.
4. NPP = NP and NPPSPACE = PSPACE.
5. If A≤p

T B and A is ≤p
T-hard for a complexity class C, then B is ≤p

T-hard for C.
6. If L �= NP, then there exist sets A and B in NP such that A≤NP

T B, yet A �≤log
m B.
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By Proposition 5.28, PP = P and NPP = NP. Thus, neither for P nor for NP
do P oracle sets provide any additional computational power. What about an NP
oracle set? Does NP equal PNP or even NPNP? Both equalities are considered most
unlikely. That is, NP is most likely neither ≤p

T-closed nor ≤NP
T -closed. In contrast,

NP is closed under polynomial-time positive Turing reductions; see Exercise 5.19.
The naive approach to prove PNP = NP seeks to simulate oracle queries to the

NP oracle B directly. Suppose that the input x is rejected in the PB computation
and that some oracle query, say qi, belongs to B. Thus, the correct oracle answer
for qi is “yes.” Simulating the NP machine M for B on input qi may yield both
accepting computation paths (which are correct, since qi is in B) and (incorrect)
rejecting computation paths. However, the rejecting paths do not “know” that qi ∈
B. Neither do they “know” that they in fact are incorrect, since they cannot “see”
what is happening on the other paths of M(qi). Hence, it might happen that such
an incorrect rejecting path of M(qi) causes an incorrect acceptance of the input x,
which demonstrates that the naive approach to show that PNP = NP fails. In fact, NP
is most likely to be distinct from both PNP and NPNP. This observation motivates the
following definition introducing the polynomial hierarchy.

Definition 5.29 (Polynomial Hierarchy).
The polynomial hierarchy is inductively defined by:

∆p
0 = Σp

0 = Πp
0 = P;

∆p
i+1 = PΣp

i , Σp
i+1 = NPΣp

i , and Πp
i+1 = coΣp

i+1 for i ≥ 0;

PH =
⋃
k≥0

Σp
k .

Note that, in particular, ∆p
1 = PΣp

0 = PP = P and Σp
1 = NPΣp

0 = NPP = NP
and Πp

1 = coΣp
1 = coNP.

Theorem 5.30. 1. For each i ≥ 0, Σp
i ∪Πp

i ⊆ ∆p
i+1 ⊆ Σp

i+1 ∩Πp
i+1.

2. PH ⊆ PSPACE.
3. Each of the classes ∆p

i , Σp
i , Πp

i , and PH is ≤p
m-closed. The ∆p

i levels of the
polynomial hierarchy are even closed under ≤p

T-reductions.

Proof. 1. For each class C, we have C ⊆ PC , since ≤p
T is reflexive by Proposi-

tion 5.28: If A is in C, then A = L(MA) for some DPOTM M , so A is in PC .
Hence, Σp

i ⊆ PΣp
i = ∆p

i+1. Since ∆p
i+1 = co∆p

i+1, we have Πp
i = coΣp

i ⊆ ∆p
i+1.

Moreover, ∆p
i+1 = PΣp

i ⊆ NPΣp
i = Σp

i+1 and ∆p
i+1 = co∆p

i+1 ⊆ coΣp
i+1 = Πp

i+1.
2. We prove by induction on i:

(∀i ≥ 0) [Σp
i ⊆ PSPACE]. (5.13)

The induction base, i = 0, is trivial: Σp
0 = P ⊆ PSPACE. The induction hypoth-

esis says that (5.13) is true for some i ≥ 0: Σp
i ⊆ PSPACE. Then,

Σp
i+1 = NPΣp

i ⊆ NPPSPACE ⊆ PSPACE,
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where the last inclusion, which is also stated in the fourth item of Proposition 5.28,
can be proven analogously to the inclusion NP ⊆ PSPACE proven in Theorem 3.27
plus a direct PSPACE simulation of the oracle queries.

3. The proof of this claim is left to the reader as Exercise 5.20.

P = Σp
0 = Πp

0 = ∆p
0

NP = Σp
1 Πp

1 = coNP

NP ∩ coNP

NP ∪ coNP

Σp
2 ∪Πp

2

∆p
2 = PNP

Σp
2 ∩Πp

2

PH

NPNP = Σp
2 Πp

2 = coNPNP

∆p
3 = PNPNP

Σp
3 ∩Πp

3

...
...

Fig. 5.10. Polynomial hierarchy (Hasse diagram)

Theorem 5.30 states the inclusion relations between the classes of the polynomial
hierarchy. Figure 5.10 shows this inclusion structure as a Hasse diagram. Again, in
this figure, containment of a class C in a class D is indicated by a line going from
C upward to D, and incomparable classes are not connected. Figure 5.11 shows this
inclusion structure as a Venn diagram. Here, darker classes are contained in lighter
classes, and incomparable classes have the same gray level. None of the inclusions
is known to be strict.
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P Σp
2 · · ·

PH

...

. . .

coNP

coNPNP

PNP

Πp
1

Πp
2

NPNP NP Σp
1

∆p
2

Fig. 5.11. Polynomial hierarchy (Venn diagram)

The following theorem generalizes the existential quantifier representation of NP
from Theorem 5.24 to an alternating quantifier representation of all levels of the
polynomial hierarchy.

Theorem 5.31. For each i ≥ 0, A ∈ Σp
i if and only if there exist a set B ∈ P and a

polynomial p such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃pw1) (∀pw2) · · · (Qpwi) [〈x, w1, w2, . . . , wi〉 ∈ B], (5.14)

where Qp = ∃p if i is odd, and Qp = ∀p if i is even.

Proof. The theorem is proven by induction on i. The induction base i = 0 is trivial
(and the case i = 1 is stated as Theorem 5.24). The induction hypothesis says that
the assertion of Theorem 5.31 is true for some i ≥ 0. We have to show that this
assertion also holds for i + 1.

For the direction from left to right, suppose that A is a set in Σp
i+1 = NPΣp

i . Let
M be some NPOTM accepting A in time q ∈ IPol, and let C ∈ Σp

i be M ’s oracle
set, i.e., A = L(MC). Define a set D as follows:

D =

⎧⎨⎩〈x, u, v, w〉
w ∈ WitM(·)(x), u = 〈u1, u2, . . . , uk〉, v = 〈v1, v2, . . . , v�〉,
where u comprises the queries on path w with answer “yes”
and v comprises the queries on path w with answer “no”

⎫⎬⎭ .

Note that D ∈ P. It follows from the definition of D that:

x ∈ A ⇐⇒ MC accepts x (5.15)

⇐⇒ (∃qw) [w ∈ WitMC (x)]
⇐⇒ (∃qw) (∃qu) (∃qv) [u = 〈u1, u2, . . . , uk〉 ∧ v = 〈v1, v2, . . . , v�〉

∧ 〈x, u, v, w〉 ∈ D ∧ u1, u2, . . . , uk ∈ C ∧ v1, v2, . . . , v� �∈ C ].
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Define the sets

Cyes = {u | u = 〈u1, u2, . . . , uk〉 and u1, u2, . . . , uk ∈ C};
Cno = {v | v = 〈v1, v2, . . . , v�〉 and v1, v2, . . . , v� �∈ C}.

Since C ∈ Σp
i , k ≤ q(|x|), and Σp

i is closed under pairing, we have Cyes ∈ Σp
i .

Similarly, since C ∈ Πp
i , 
 ≤ q(|x|), and Πp

i is closed under pairing, we have
Cno ∈ Πp

i ; see Exercise 5.21.
By the induction hypothesis, for Cyes ∈ Σp

i and Cno ∈ Πp
i , there exist sets E and

F in P and polynomials r and s such that:

u ∈ Cyes ⇐⇒ (∃ry1) (∀ry2) · · · (Qryi) [〈u, y1, y2, . . . , yi〉 ∈ E]; (5.16)

v ∈ Cno ⇐⇒ (∀sz1) (∃sz2) · · · (Q
s
zi) [〈v, z1, z2, . . . , zi〉 ∈ F ], (5.17)

where Qr = ∃r and Q
s

= ∀s if i is odd, and Qr = ∀r and Q
s

= ∃s if i is even.
Substituting the equivalences (5.16) and (5.17) in (5.15) above gives:

x ∈ A ⇐⇒ (∃qw) (∃qu) (∃qv) [〈x, u, v, w〉 ∈ D ∧ (5.18)

(∃ry1) (∀ry2) · · · (Qryi) [〈u, y1, y2, . . . , yi〉 ∈ E] ∧
(∀sz1) (∃sz2) · · · (Q

s
zi) [〈v, z1, z2, . . . , zi〉 ∈ F ]].

Alternatingly extracting the quantifiers from the last two lines of equivalence (5.18)
and combining contiguous equal quantifiers to one quantifier of the same type, we
obtain:

x ∈ A ⇐⇒ (∃qw) (∃qu) (∃qv) (∃ry1)︸ ︷︷ ︸
combine to (∃pw1)

(∀ry2) (∀sz1)︸ ︷︷ ︸
combine to (∀pw2)

· · · (Qryi) (Qszi−1)︸ ︷︷ ︸
combine to (Qpwi)

(Q
s
zi)

[〈x, u, v, w〉 ∈ D ∧ 〈u, y1, y2, . . . , yi〉 ∈ E ∧ 〈v, z1, z2, . . . , zi〉 ∈ F ]
⇐⇒ (∃pw1) (∀pw2) · · · (Qp

wi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ B], (5.19)

where p = max{3q + r, r + s}+ c is a polynomial depending on the polynomials q,
r, and s, and on a constant c, which is due to the pairing of strings when combining
quantifiers. According to the quantifier combination, the set B is suitably defined so
as to satisfy:

〈x, w1, w2, . . . , wi+1〉 ∈ B

⇐⇒ 〈x, u, v, w〉 ∈ D ∧ 〈u, y1, y2, . . . , yi〉 ∈ E ∧ 〈v, z1, z2, . . . , zi〉 ∈ F.

Since the sets D, E, and F each are in P, so is B. By equivalence (5.19), A satisfies
the representation (5.14) for i + 1. The induction proof is complete for the direction
from left to right.

Conversely, for the direction from right to left, suppose that there exist a set
B ∈ P and a polynomial p such that A can be represented as follows:

A = {x | (∃pw1) (∀pw2) · · · (Qpwi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ B],
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where Qp = ∃p if i is even, and Qp = ∀p if i is odd. Define a set C by:

C = {〈x, w1〉 | |w1| ≤ p(|x|) ∧ (∀pw2) · · · (Qpwi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ B].

Hence,

x ∈ A ⇐⇒ (∃pw1) [〈x, w1〉 ∈ C].

By induction hypothesis, C is in Πp
i ; so its complement, C, is in Σp

i . Let M be an
NPOTM that, using C as an oracle, accepts A as follows: On input x,

• nondeterministically guess a string w1 with |w1| ≤ p(|x|),
• for each w1 guessed, query the oracle about the pair 〈x, w1〉, and
• accept the input x if and only if the answer is “no.”

It follows that A = L(MC). Thus, A ∈ NPΣp
i = Σp

i+1, which completes the
induction proof.

Corollary 5.32. For each i ≥ 0, A ∈ Πp
i if and only if there exist a set B ∈ P and a

polynomial p such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∀pw1) (∃pw2) · · · (Qpwi) [〈x, w1, w2, . . . , wi〉 ∈ B],

where Qp = ∀p if i is odd, and Qp = ∃p if i is even.

The following theorem shows that the polynomial hierarchy shares with the
boolean hierarchy (cf. Theorem 5.10) the “upward collapse” property: If any one
of its levels collapses down to the level preceding it, then the entire hierarchy col-
lapses down to this specific, finite level. Even if any one of the Σp

i classes were to
coincide with its complementary class, Πp

i , the same consequence occurs.

Theorem 5.33. 1. For each i ≥ 0, if Σp
i = Σp

i+1, then

Σp
i = Πp

i = ∆p
i+1 = Σp

i+1 = Πp
i+1 = · · · = PH.

2. For each i ≥ 1, if Σp
i = Πp

i , then

Σp
i = Πp

i = ∆p
i+1 = Σp

i+1 = Πp
i+1 = · · · = PH.

Proof. First, we show that the hypothesis of the first statement implies that of the
second statement. Supposing Σp

i = Σp
i+1 for i ≥ 0, it follows that:

Πp
i ⊆ Σp

i+1 = Σp
i ,

which implies Σp
i = Πp

i ; see Exercise 5.22.
Now suppose that Σp

i = Πp
i for i ≥ 1.2 We show that this implies Σp

i = Σp
i+1.

Let A be any set in Σp
i+1. By Theorem 5.31, there exist a set B ∈ P and a polynomial

p such that for each x ∈ Σ∗,
2 By definition, Σp

0 = P = Πp
0 is outright true, yet P = Σp

0 = Σp
1 = NP is very doubtful.

Where does the argument in this proof fail to prove Σp
0 = Πp

0 =⇒ Σp
0 = Σp

1? See
Exercise 5.23.
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x ∈ A ⇐⇒ (∃pw1) (∀pw2) · · · (Qpwi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ B],

where Qp = ∃p if i is even, and Qp = ∀p if i is odd. Define a set C by:

C =
{
〈x, w1〉 |w1| ≤ p(|x|) ∧ (∀pw2) (∃pw3) · · ·

(Qpwi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ B]

}
.

By Theorem 5.31, C ∈ Πp
i = Σp

i . Again by Theorem 5.31, for C ∈ Σp
i , there exist

a set D ∈ P and a polynomial q such that for each x ∈ Σ∗,

C =
{
〈x, w1〉 |w1| ≤ q(|x|) ∧ (∃qw2) (∀qw3) · · ·

(Q
q
wi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ D]

}
,

where Q
q

= ∀q if i is even, and Q
q

= ∃q if i is odd. Hence,

x ∈ A ⇐⇒ (∃pw1) (∃qw2)︸ ︷︷ ︸
combine to (∃rw)

(∀qw3) · · · (Qq
wi+1) [〈x, w1, w2, . . . , wi+1〉 ∈ D].

Combining the first two existential quantifiers to one existential quantifier whose
length is bounded by the polynomial r = p+ q (neglecting the constant overhead for
the pairing) and once more applying Theorem 5.31, we obtain A ∈ Σp

i . Since A was
arbitrarily chosen from Σp

i+1, we have Σp
i = Σp

i+1.
An easy induction now shows that every level Σp

k with k ≥ i collapses down
to Σp

i :
Σp

i+2 = NPΣp
i+1 = NPΣp

i = Σp
i+1 = Σp

i ,

and so on.

Do there exist complete sets in the polynomial hierarchy? Which problems are
complete for the Σp

i levels, and which for the Πp
i levels? The quantifier characteri-

zation of Σp
i and Πp

i stated in Theorem 5.31 and Corollary 5.32 suggests that gen-
eralizing the satisfiability problem so as to also allow quantified boolean formulas
yields good candidates for complete problems.

Definition 5.34 (Quantified Boolean Formula Problem).
Define the quantified boolean formula problem by:

QBF = {F | F is a closed QBF that evaluates to true}.
We now define restrictions of QBF with a bounded number of alternating quanti-

fiers. Recall from Section 2.3 that every QBF can be transformed into an equivalent
QBF in prenex form, see Definition 2.28. Recall also that one can combine contigu-
ous equal quantifiers to one quantifier of the same type, which thus may quantify
a set of variables. By renaming the quantified variables, the variable sets after each
quantifier can be made pairwise disjoint.

We now restrict the general QBF problem by bounding the number of alternat-
ing quantifiers, thus obtaining the problems ΣiSAT and ΠiSAT for each i. ΣiSAT
contains those formulas from QBF that are in prenex form and have a prefix of i alter-
nating quantifiers starting with ∃. ΠiSAT contains those formulas from QBF that are
in prenex form and have a prefix of i alternating quantifiers starting with ∀.
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Definition 5.35 (QBF Problem with a Bounded Number of Alternations).

1. For each i ≥ 1, a QBF F is said to be a ΣiSAT formula if and only if F is
closed and of the form:

F = (∃X1) (∀X2) · · · (QXi)H(X1, X2, . . . , Xi),

where the Xj are pairwise disjoint variable sets, Q ∈ {∃, ∀}, the i quantifiers
alternate between ∃ and ∀, and H is a boolean formula without quantifiers.
For each i ≥ 1, define the problem

ΣiSAT = {F | F is a true ΣiSAT formula}.
2. For each i ≥ 1, a QBF F is said to be a ΠiSAT formula if and only if F is

closed and of the form:

F = (∀X1) (∃X2) · · · (QXi)H(X1, X2, . . . , Xi),

where the Xj are pairwise disjoint variable sets, Q ∈ {∃, ∀}, the i quantifiers
alternate between ∀ and ∃, and H is a boolean formula without quantifiers.
For each i ≥ 1, define the problem

ΠiSAT = {F | F is a true ΠiSAT formula}.
Theorem 5.36. 1. QBF is PSPACE-complete.

2. For each i ≥ 1, ΣiSAT is Σp
i -complete and ΠiSAT is Πp

i -complete.
3. If there exists a complete set for PH, then PH collapses down to some finite level:

PH = Σp
i = Πp

i for some i.

Proof. 1. The theorem’s first statement can be proven using the method applied in
the proof of Savitch’s Theorem (see Theorem 3.29); see Exercise 5.24. Alternatively,
the theorem’s first statement can be proven analogously to the proof of the theorem’s
second statement.

2. For the second statement, membership of ΣiSAT in Σp
i and of ΠiSAT in Πp

i

immediately follows from Theorem 5.31 and Corollary 5.32, respectively.
Suppose that i is odd. The case of even i can be proven in a similar fashion. To

prove that ΣiSAT is Σp
i -hard, let A be any set in Σp

i . Again by Theorem 5.31, there
exist a set B ∈ P and a polynomial p such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃py1) (∀py2) · · · (∃pyi) [〈x, y1, y2, . . . , yi〉 ∈ B]. (5.20)

Let M be some deterministic polynomial-time Turing machine deciding B, i.e.,
L(M) = B. By Cook’s Theorem (see Theorem 3.49), the computation of M
on any input of the form 〈x, y1, y2, . . . , yi〉 can be encoded by a boolean formula
ϕM (X, Y1, Y2, . . . , Yi, Z), where X ∪⋃i

j=1 Yj is the set of input variables and Z is
the set of all the remaining variables in the Cook reduction. Note that each variable
in X ∪⋃i

j=1 Yj corresponds to one bit in the input strings x, y1, y2, . . . , yi, and set-
ting these bits to 1 or 0 sets the corresponding variables to true or false. In particular,
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fixing all bits in the string x creates a boolean formula ϕ〈M,x〉 depending only on the

variables from Z ∪⋃i
j=1 Yj .

By Cook’s Theorem, for each input 〈x, y1, y2, . . . , yi〉,
〈x, y1, y2, . . . , yi〉 ∈ B ⇐⇒ ϕ〈M,x,y1,y2,...,yi〉(Z) ∈ SAT (5.21)

⇐⇒ (∃qz) [ϕ〈M,x,y1,y2,...,yi,z〉 evaluates to true],

where q is a polynomial in |x| bounding the number of variables in Z; see the proof
of Theorem 3.49. Equivalences (5.20) and (5.21) now imply that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃py1) (∀py2) · · · (∃pyi) [〈x, y1, y2, . . . , yi〉 ∈ B] (5.22)

⇐⇒ (∃py1) (∀py2) · · · (∃pyi) (∃qz)︸ ︷︷ ︸
combine to (∃rz1)

[ϕ〈M,x,y1,y2,...,yi,z〉 evaluates to true],

where r = p + q is a polynomial. Let V = Yi ∪ Z be the variable set containing all
variables from Yi and Z . Mapping any given x to the ΣiSAT formula

Fx = (∃Y1) (∀Y2) · · · (∀Yi−1) (∃V )ϕ〈M,x〉(Y1, Y2, . . . , Yi−1, V )

defines the≤p
m-reduction from A to ΣiSAT. Since the Cook reduction is polynomial-

time computable, Fx can be computed from x in time polynomially in |x|. By Equiv-
alence (5.22), x is in A if and only if Fx ∈ ΣiSAT, which shows that ΣiSAT is
Σp

i -complete. Πp
i -completeness of ΠiSAT is proven analogously.

3. To prove the theorem’s third statement, suppose L is a set complete for PH.
Since L is in PH, there exists a smallest i such that L ∈ Σp

i . Since L is hard for PH,
X ≤p

m L for each X in PH. Since Σp
i is ≤p

m-closed, it follows that X ∈ Σp
i for each

X ∈ PH. Thus, PH = Σp
i = Πp

i .

Corollary 5.37. PSPACE = Σp
i if and only if QBF ∈ Σp

i .

5.3 Parallel Access to NP

As an example of a polynomial-time Turing reduction, Figure 5.9 shows a prefix
search algorithm for finding the lexicographically smallest solution of a given GI
instance. Since the number of all solutions is exponential in the size n of the given
input, say 2nc

for some constant c, this algorithm makes at mostO(log 2nc

) = O(nc)
oracle queries and thus terminates in polynomial time. If the solution space itself is
bounded by a polynomial in the input size, say nk for some constant k, a binary (or
prefix) search succeeds in time O(log nk) = O(log n).

For illustration, consider the problem of determining whether or not the indepen-
dence number of a given graph is odd, or the problem of comparing the independence
numbers of two given graphs. Recall that an independent set of a graph is a subset I
of its vertices such that no two vertices in I are adjacent. The size of I is the number
of vertices in I .
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Definition 5.38 (Independence Number Problems).
For any graph G, the independence number of G, denoted by α(G), is the size of a
maximum independent set of G. Define the problems:

IN-Odd = {G |G is a graph such that α(G) is odd};
IN-Equ = {〈G, H〉 |G and H are graphs such that α(G) = α(H)};
IN-Geq = {〈G, H〉 |G and H are graphs such that α(G) ≥ α(H)}.

Note that α(G) ≤ n for each graph G with n vertices. Thus, for example, de-
ciding whether or not G is in IN-Odd takes no more thanO(log n) sequential Turing
queries. Papadimitriou and Zachos introduced the corresponding complexity class,
PNP[O(log)], which has become later a “named” level of the polynomial hierarchy,
Θp

2 .

Definition 5.39. 1. Define PNP[O(log)] to be the class of problems A solvable by
some DPOTM M with oracle B ∈ NP, i.e., A = L(MB), such that M on each
input of length n makes at most O(log n) sequential Turing queries to B.

2. Define Θp
2 = PNP[O(log)].

3. Analogously, define Θp
i = PΣp

i−1[O(log)] for each i ≥ 1.

By definition, Σp
i−1 ∪ Πp

i−1 ⊆ Θp
i ⊆ ∆p

i for each i ≥ 1. The comments
above immediately provide a Θp

2 upper bound on the independence number prob-
lems from Definition 5.38. The details of the formal proof are left to the reader as
Exercise 5.25(a). We will see later on (in Theorem 5.44) that Θp

2 also provides a
lower bound for these problems.

Proposition 5.40. IN-Odd, IN-Equ, and IN-Geq each are in Θp
2 .

There are about a dozen of characterizations of the complexity class Θp
2 =

PNP[O(log)]; see [Wag90]. Most central among them is the characterization of Θp
2

as the closure of NP under the polynomial-time truth-table reducibility.

Definition 5.41 (Polynomial-Time Truth-Table Reducibility and Completeness).
Let Σ = {0, 1} be a fixed alphabet, let A and B be any sets of strings over Σ, and
let C be any complexity class. The characteristic function of B, denoted by χB , is
defined by χB(q) = 1 if q ∈ B, and χB(q) = 0 if q �∈ B.

1. Define the polynomial-time truth-table reducibility, denoted by ≤p
tt , as follows:

A≤p
tt B if and only if there is a function f ∈ FP such that, for each input x,

f(x) = 〈τ, q1, q2, . . . , qk〉, where q1, q2, . . . , qk are the truth-table queries gen-
erated and τ is a k-ary boolean function encoded as a boolean circuit, and:

x ∈ A ⇐⇒ τ(χB(q1), χB(q2), . . . , χB(qk)) = 1.

Note that the number k of queries is polynomial in |x|, since f is in FP.
2. A set B is ≤p

tt -hard for C if and only if A≤p
tt B for each A ∈ C.

3. A set B is ≤p
tt -complete for C if and only if B is ≤p

tt-hard for C and B ∈ C.



5.3. Parallel Access to NP 203

4. The ≤p
tt -closure of C is defined by:

PC
tt = {A | (∃B ∈ C) [A≤p

tt B]}.
A class C is said to be closed under the ≤p

tt -reducibility (≤p
tt -closed, for short) if

and only if C = PC
tt .

The truth-table reducibility is more flexible than the many-one reducibility, yet
less flexible than the Turing reducibility. Crucially, the oracle queries in Turing re-
ductions may depend on the answers to previously asked queries. In this sense, Tur-
ing reductions are adaptive. In contrast, truth-table queries are nonadaptive, since
they are all precomputed in advance—before any of them is asked—and then they all
are asked in parallel. That is why the truth-table oracle access is also called parallel
oracle access. In particular, the complexity class PNP

tt is often referred to as capturing
“parallel access to NP.” Corollary 5.55 will establish the equality PNP

tt = Θp
2 .

Example 5.42 (Polynomial-Time Truth-Table Reducibility). For illustration, we
construct a≤p

tt -reduction f from IN-Odd to IS. Recall that IS = {〈G, k〉 |α(G) ≥ k}
is an NP-complete set. Thus, since IS is in NP and IN-Odd≤p

tt IS, the upcoming
Corollary 5.55 implies that IN-Odd is in Θp

2 .
Given a graph G with n vertices, define f(G) = 〈τ, q1, q2, . . . , qn〉, where for

each i, 1 ≤ i ≤ n, the ith query is qi = 〈G, i〉, and τ is the truth table defined by:

τ(b1, b2, . . . , bn) =
{

1 b1 = · · · = bi = 1 ∧ bi+1 = · · · = bn = 0 for some odd i
0 otherwise,

where bi = χIS(qi) for 1 ≤ i ≤ n. That is, bi = 1 if and only if α(G) ≥ i.
Table 5.1 illustrates this ≤p

tt -reduction for the case of four queries, i.e., for a
graph with four vertices. Note that only the boldfaced columns are relevant for the
definition of τ , since the cases corresponding to the other columns cannot occur. That
is, the value of τ can be chosen arbitrarily for the non-boldfaced columns.

b1: “q1 = 〈G, 1〉 ∈ IS?” 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
b2: “q2 = 〈G, 2〉 ∈ IS?” 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b3: “q3 = 〈G, 3〉 ∈ IS?” 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
b4: “q4 = 〈G, 4〉 ∈ IS?” 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

τ (b1, b2, b3, b4) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Table 5.1. Example of a ≤p
tt-reduction from IN-Odd to IS with four queries

The following lemma provides a sufficient condition for proving Θp
2-hardness.

It is another example of Wagner’s technique of raising NP lower bounds to lower
bounds for classes above NP. The difference with Lemma 5.11, which provides an
analogous condition sufficient to prove BHk(NP)-hardness for each given k, is that
the value of k is not fixed in Lemma 5.43.
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Lemma 5.43 (Wagner). Let A be some NP-complete set, and let B be any set. If
there exists a polynomial-time computable function f such that, for all k ≥ 1 and all
strings x1, . . . , x2k ∈ Σ∗ satisfying χA(x1) ≥ χA(x2) ≥ · · · ≥ χA(x2k), we have

||{i | xi ∈ A}|| is odd ⇐⇒ f(〈x1, x2, . . . , x2k〉) ∈ B, (5.23)

then B is Θp
2-hard.

We illustrate the application of Lemma 5.43 by proving Θp
2-completeness of the

three independence number problems defined above.

Theorem 5.44. IN-Odd, IN-Equ, and IN-Geq each are Θp
2-complete.

Proof. Membership in Θp
2 has already been stated in Proposition 5.40 for each

of these problems. Using Lemma 5.43, we now prove that IN-Equ is Θp
2-hard. The

proof of the Θp
2-hardness of both IN-Odd and IN-Geq is similar; see Exercise 5.25(b).

We apply Lemma 5.43 with 3-SAT being the NP-complete set A and with
B = IN-Equ. Since Θp

2 is closed under complementation, it suffices to define a
polynomial-time computable function f such that the equivalence

||{i | ϕi ∈ 3-SAT}|| is even ⇐⇒ f(〈ϕ1, . . . , ϕ2k〉) ∈ IN-Equ (5.24)

is true for all k ≥ 1 and all boolean formulas ϕ1, ϕ2, . . . , ϕ2k (suitably encoded
as strings in Σ∗) satisfying that ϕi+1 ∈ 3-SAT implies ϕi ∈ 3-SAT for each i with
1 ≤ i < 2k. Let g be a reduction that≤p

m-reduces 3-SAT to IS such that the following
property is satisfied: For each boolean formula ϕ, g(ϕ) = 〈G, 
〉, where G is a graph
and 
 is a positive integer (namely the number of clauses of ϕ), and it holds that:

ϕ ∈ 3-SAT =⇒ α(G) = 
; (5.25)

ϕ �∈ 3-SAT =⇒ α(G) = 
− 1. (5.26)

The construction of g such that (5.25) and (5.25) are satisfied is left to the reader as
Exercise 5.25(b). (Note that the reduction for 3-SAT≤p

m IS constructed in the proof
of Theorem 3.54 does not have the desired properties.)

Let k ≥ 1, and let ϕ1, ϕ2, . . . , ϕ2k be boolean formulas such that ϕi+1 ∈ 3-SAT
implies ϕi ∈ 3-SAT for each i < 2k. For each i with 1 ≤ i ≤ 2k, let g(ϕi) =
〈Gi, 
i〉. Note that ||{i | ϕi ∈ 3-SAT}|| = m if and only if ϕ1, ϕ2, . . . , ϕm ∈ 3-SAT
and ϕm+1, ϕm+2, . . . , ϕ2k �∈ 3-SAT. It follows that:

• If ||{i | ϕi ∈ 3-SAT}|| is even, then for each i ∈ {1, 2, . . . , k}:

ϕ2i−1 ∈ 3-SAT ⇐⇒ ϕ2i ∈ 3-SAT.

This implies that for each i ∈ {1, 2, . . . , k}:

α(G2i−1) + 
2i = α(G2i) + 
2i−1.
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• If ||{i | ϕi ∈ 3-SAT}|| is odd, then there exists some i ∈ {1, 2, . . . , k} such that:

ϕ2i−1 ∈ 3-SAT and ϕ2i �∈ 3-SAT and

(∀j ∈ {1, 2, . . . , k}, j �= i) [ϕ2j−1 ∈ 3-SAT ⇐⇒ ϕ2j ∈ 3-SAT].

This implies that for this integer i:

α(G2i−1) + 
2i − 1 = α(G2i) + 
2i−1;
(∀j ∈ {1, 2, . . . , k}, j �= i) [α(G2j−1) + 
2j = α(G2j) + 
2j−1].

For any two disjoint graphs G and H , their disjoint union is the graph G∪H with
vertex set V (G∪H) = V (G)∪ V (H) and edge set E(G∪H) = E(G)∪E(H). It
is important to note that α(G ∪H) = α(G) + α(H). Without loss of generality, we
assume that the graphs G1, G2, . . . , G2k are pairwise disjoint. Define the sum of the

j’s and the disjoint union of the Gj ’s with odd (respectively, with even) subscript j
by:


odd =
∑

1≤i≤k 
2i−1 and 
even =
∑

1≤i≤k 
2i;
Godd =

⋃
1≤i≤k G2i−1 and Geven =

⋃
1≤i≤k G2i.

For m > 0, let Hm be the graph consisting of m isolated points, and assume that
Hm is disjoint from Godd and Geven. Note that α(Hm) = m. Define the reduction:

f(〈ϕ1, ϕ2, . . . , ϕ2k〉) = 〈Godd ∪H�even , Geven ∪H�odd〉.
Clearly, f is computable in polynomial time. To satisfy (5.24), it remains to show

that:

||{i | ϕi ∈ 3-SAT}|| is even ⇐⇒ α(Godd ∪H�even) = α(Geven ∪H�odd).

From left to right:

||{i | ϕi ∈ 3-SAT}|| is even

=⇒ (∀i ∈ {1, 2, . . . , k}) [α(G2i−1) + 
2i = α(G2i) + 
2i−1]

=⇒
∑

1≤i≤k

(α(G2i−1) + 
2i) =
∑

1≤i≤k

(α(G2i) + 
2i−1)

=⇒ α(Godd) + 
even = α(Geven) + 
odd

=⇒ α(Godd ∪H�even) = α(Geven ∪H�odd).

From right to left:

||{i | ϕi ∈ 3-SAT}|| is odd

=⇒ (∃i ∈ {1, 2, . . . , k}) [α(G2i−1) + 
2i − 1 = α(G2i) + 
2i−1 and

(∀j ∈ {1, 2, . . . , k}, j �= i) [α(G2j−1) + 
2j = α(G2j) + 
2j−1]]

=⇒ −1 +
∑

1≤j≤k

(α(G2j−1) + 
2j) =
∑

1≤j≤k

(α(G2j) + 
2j−1)

=⇒ α(Godd) + 
even − 1 = α(Geven) + 
odd

=⇒ α(Godd ∪H�even)− 1 = α(Geven ∪H�odd)
=⇒ α(Godd ∪H�even) �= α(Geven ∪H�odd).
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Thus, (5.24) is satisfied. By Lemma 5.43, IN-Equ is Θp
2-hard, which completes

the proof.

Lemma 5.43 has yielded a host of Θp
2-completeness results. Take Favorite,

your favorite NP-complete problem. Analogously to IN-Odd, IN-Equ, and IN-Geq
defined in Definition 5.38, define the variants Favorite-Odd, Favorite-Equ, and
Favorite-Geq corresponding to Favorite, and apply the Wagner technique of
Lemma 5.43 to prove them Θp

2-complete. Section 5.9 provides further applications.
One might argue that problems such as Favorite-Odd, Favorite-Equ, and

Favorite-Geq are not overly natural. However, there are some quite natural prob-
lems for which this technique has also yielded Θp

2-completeness results. Some of
them are related to social choice theory and computational politics. In particular,
Lemma 5.43 was applied successfully to prove that the winner problem for certain
election systems is Θp

2-complete. The remaining part of this section introduces one
such result by giving a careful analysis of the winner problem for Young elections
and pinpointing its precise computational complexity: Determining Young winners
is complete for parallel access to NP. The proof of this result, which is due to Rothe,
Spakowski, and Vogel [RSV02, RSV03], does not explicitly apply Lemma 5.43.
However, it does use Lemma 5.43 implicitly, as it applies a reduction from the prob-
lem IN-Geq, which is Θp

2-complete by Theorem 5.44.
Before turning to the actual complexity analysis, let us briefly digress to give

some background from social choice theory. More information on the issues and
results in computational politics can be found in the survey by E. and L. Hema-
spaandra [HH00].

5.3.1 A Brief Digression to Social Choice Theory

The following quote is from the blurb of Saari’s book “Chaotic Elections! A Mathe-
matician Looks at Voting” [Saa01]:

“What does the 2000 U.S. Presidential Election have in common with selecting a textbook for a calculus
course in your department? Was Ralph Nader’s influence on the election of George W. Bush greater than
the now-famous chads? In Chaotic Elections!, Don Saari analyzes these questions, placing them in the
larger context of voting systems in general. His analysis shows that the fundamental problems with the
2000 presidential election are not with the courts, recounts or defective ballots, but are caused by the very
way Americans vote for president.”

(From “Chaotic Elections!” by Don Saari, American Mathematical Society, 2001)

In other words, before blaming anything or anybody else for the perhaps unde-
sired outcome of an election, you should take a close look at the mathematics that
underpins the electoral system used. Is it a “fair” system? Can there exist “fair” elec-
tion systems at all? And what are the fundamental properties of election systems?
Questions like these have been studied by social choice theorists and mathemati-
cians for centuries now. Among the properties that any “reasonable” election proce-
dure arguably should satisfy are nondictatorship, monotonicity, the Pareto Principle,
and independence of irrelevant alternatives. One of the most notable results in social
choice theory is Arrow’s famous impossibility theorem [Arr63], which says that the
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just-mentioned four properties are logically inconsistent whenever there are at least
three candidates, and thus no “fair” voting scheme can exist.

To describe voting systems, we need candidates (or alternatives) and voters and
some rule that tells us who has won the election according to the voters’ preferences
over the candidates. An election is given by a preference profile, a pair 〈C, V 〉 such
that C is a set of candidates and V is the multiset3 of the voters’ preference orders
on C. Assume that each voter has strict preferences over the candidates. Formally,
the preference order of each voter is a strict (i.e., irreflexive and antisymmetric),
transitive, and complete (i.e., all candidates are ranked by each voter) relation on C.

A voting scheme (or social choice function, SCF for short) is a rule for how to
determine the winner(s) of an election. That is, an SCF maps any given preference
profile to society’s aggregate choice set, i.e., to those candidates who have won the
election. That is, the choice set f(〈C, V 〉) gives the set of winning candidates for
any SCF f and any preference profile 〈C, V 〉. For example, the majority rule says
that a candidate A defeats a candidate B if and only if A is preferred to B by a strict
majority of the voters. To win an election according to the majority rule, a candidate
must defeat every other candidate in a pairwise contest. Such a candidate is called
the Condorcet winner of the election.

Example 5.45 (Condorcet Paradox). In 1785, Marie-Jean-Antoine-Nicolas de Cari-
tat, the Marquis de Condorcet, observed in his seminal essay [Con85] that whenever
there are at least three candidates, say a, b, and c, the majority rule can yield cycles.
His example consists of the following three voters:

Voter 1: a > b > c;
Voter 2: b > c > a;
Voter 3: c > a > b.

In this example, a defeats b and b defeats c, and yet c defeats a. Consequently,
even though each individual voter has a rational (i.e., transitive or noncyclic) pref-
erence order, society can behave irrationally, and Condorcet winners do not always
exist. This observation is known as the Condorcet Paradox.

The Condorcet Principle says that the majority rule determines the winner of
the election for each given preference profile. An SCF is said to be a Condorcet
SCF if and only if it respects the Condorcet Principle in the sense that the Condorcet
winner is elected whenever one exists. Condorcet winners are uniquely determined if
they exist. Many Condorcet SCFs have been proposed in the social choice literature;
see Fishburn’s work [Fis77] for an overview of the most central ones. Condorcet
SCFs extend the Condorcet Principle in a way that avoids the troubling feature of the
majority rule. In what follows, we will focus on the Young voting scheme [You77],
which is one of the Condorcet SCFs listed in [Fis77].

3 A multiset is a list of elements in which the same element may occur more than once.
Multisets are used for the voters’ preference orders, since distinct voters may have the
same preferences over the candidates.
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5.3.2 Determining Young Winners Is Complete for Parallel Access to NP

H. Young’s [You77] approach to extending the Condorcet Principle is based on al-
tered preference profiles. He suggests that we remain most faithful to the Condorcet
Principle if we require that an election is won by any candidate who can be made
a Condorcet winner by removing the fewest possible number of voters. To study
computational complexity issues related to the Young voting scheme, define the fol-
lowing two decision problems.

Definition 5.46 (Young Winner and Young Ranking Problems).
For each candidate c in a given preference profile 〈C, V 〉, define the Young score,
denoted by YScore(C, c, V ), to be the size of a largest submultiset of V for which
c is a Condorcet winner. A Young winner is any candidate with a maximum Young
score. Define the problems:

YoungWinner =

⎧⎨⎩〈C, c, V 〉
〈C, V 〉 is a preference profile, c ∈ C is a
designated candidate, and for each d ∈ C,
YScore(C, c, V ) ≥ YScore(C, d, V )

⎫⎬⎭ ;

YoungRanking =

⎧⎨⎩〈C, c, d, V 〉
〈C, V 〉 is a preference profile and c and d
are designated candidates in C such that
YScore(C, c, V ) ≥ YScore(C, d, V )

⎫⎬⎭ .

Theorems 5.49 and 5.51 below prove the two problems defined above Θp
2-

hard using reductions from the problem Max-SetPacking-Geq. Recall the definition
of the related NP-complete problem SetPacking; see Definition 3.64 and Theo-
rem 3.65.

Definition 5.47 (Maximum Set Packing Compare Problem).
For any collection S of sets, κ(S) denotes the maximum number of pairwise disjoint
sets in S. Define the problem:

Max-SetPacking-Geq

=
{
〈U1, U2,S1,S2〉 Ui is a finite set and Si ⊆ P(Ui), i ∈ {1, 2}, is a

collection of nonempty sets such that κ(S1) ≥ κ(S2)

}
.

Lemma 5.48. Max-SetPacking-Geq is Θp
2-complete.

Proof. It is not difficult to construct a reduction from the problem IN-Geq, which
is Θp

2-complete by Theorem 5.44, to Max-SetPacking-Geq. The details of the con-
struction are left to the reader as Exercise 5.25(c).

Theorem 5.49. YoungRanking is Θp
2-complete.

Proof of Theorem 5.49. It is easy to see that YoungRanking and YoungWinner
are both in Θp

2 . The details of the construction are left to the reader as Exercise 5.26.
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To prove the Θp
2 lower bound, we give a polynomial-time many-one reduc-

tion from the problem Max-SetPacking-Geq. Let U1 = {x1, x2, . . . , xm} and
U2 = {y1, y2, . . . , yn} be two given sets, and let S1 and S2 be given collections
of subsets of U1 and U2, respectively. Recall that κ(Si), for i ∈ {1, 2}, is the max-
imum number of pairwise disjoint sets in Si. Without loss of generality, we may
assume that κ(Si) > 2.

The goal is to construct a preference profile 〈C, V 〉 with the designated candi-
dates c and d in C such that:

YScore(C, c, V ) = 2 · κ(S1) + 1; (5.27)

YScore(C, d, V ) = 2 · κ(S2) + 1. (5.28)

Define the set C of candidates by creating:

• the two designated candidates c and d,
• a candidate xi for each element xi of U1,
• a candidate yi for each element yi of U2, and
• two auxiliary candidates, a and b.

Define the set V of voters as follows:

• Voters representing S1: For each set E ∈ S1, create a single voter vE as
follows:
– Enumerate E as {e1, e2, . . . , e‖E‖} (renaming the candidates ei chosen from
{x1, x2, . . . , xm} for notational convenience), and enumerate its complement
E = U1 − E as {e1, e2, . . . , em−‖E‖}.

– To make the preference orders easier to parse, we use the notation:

“E” to represent the text string “e1 > e2 > · · · > e‖E‖”;
“E” to represent the text string “e1 > e2 > · · · > em−‖E‖”;
“U1” to represent the text string “x1 > x2 > · · · > xm”;
“U2” to represent the text string “y1 > y2 > · · · > yn”.

– Create one voter vE with preference order:

E > a > c > E > U2 > b > d. (5.29)

• Additionally, create two voters with preference order:

c > U1 > a > U2 > b > d. (5.30)

• Finally, create ‖S1‖ − 1 voters with preference order:

U1 > c > a > U2 > b > d. (5.31)

• Voters representing S2: The case of S2 is treated analogously with the roles
of respectively S1, U1, xi, c, a, E, ej , and ek interchanged with S2, U2, yi, d, b,
F , fj , and fk. More precisely, for each set F ∈ S2, create a single voter vF as
follows:
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– Enumerate F as {f1, f2, . . . , f‖F‖} (renaming the candidates fj chosen from
{y1, y2, . . . , yn} for notational convenience), and enumerate its complement
F = U1 − F as {f1, f2, . . . , fn−‖F‖}.

– To make the preference orders easier to parse, we use the notation:

“F” to represent the text string “f1 > f2 > · · · > f‖F‖”;
“F” to represent the text string “f1 > f2 > · · · > fn−‖F‖”.

– Create one voter vF with preference order:

F > b > d > F > U1 > a > c. (5.32)

• Additionally, create two voters with preference order:

d > U2 > b > U1 > a > c. (5.33)

• Finally, create ‖S2‖ − 1 voters with preference order:

U2 > d > b > U1 > a > c. (5.34)

We now prove (5.27): YScore(C, c, V ) = 2 · κ(S1) + 1.
Let E1, E2, . . . , Eκ(S1) ∈ S1 be κ(S1) pairwise disjoint subsets of U1. Consider

the submultiset V̂ of V that consists of:

• every voter vEi corresponding to the set Ei, where 1 ≤ i ≤ κ(S1);
• the two voters given in (5.30);
• κ(S1)− 1 voters of the form given in (5.31).

Clearly, ‖V̂ ‖ = 2 ·κ(S1)+1. Note that a strict majority of the voters in V̂ prefer
c over any other candidate, and thus c is a Condorcet winner in 〈C, V̂ 〉. Hence,

YScore(C, c, V ) ≥ 2 · κ(S1) + 1.

Conversely, to prove that YScore(C, c, V ) ≤ 2 ·κ(S1)+1, we need the following
lemma.

Lemma 5.50. For any λ with 3 < λ ≤ ‖S1‖+1, let Vλ be any submultiset of V such
that Vλ contains exactly λ voters of the form (5.30) or (5.31) and c is a Condorcet
winner in 〈C, Vλ〉. Then, Vλ contains exactly λ − 1 voters of the form (5.29) and
no voters of the form (5.32), (5.33), or (5.34). Moreover, the λ − 1 voters of the
form (5.29) in Vλ represent pairwise disjoint sets from S1.

Proof of Lemma 5.50. For fixed λ, let Vλ be given as above. Consider the sub-
multiset of Vλ that consists of the λ voters of the form (5.30) or (5.31). Every
candidate xi, 1 ≤ i ≤ m, is preferred to c by the at least λ − 2 voters of the
form (5.31). Since c is a Condorcet winner in 〈C, Vλ〉, there exist, for every xi,
at least λ − 1 > 2 voters in Vλ who prefer c to xi. By construction, these vot-
ers must be of the form (5.29) or (5.30). Since there are at most two voters of the
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form (5.30), there exists at least one voter of the form (5.29), say ṽ. Since the voters
of the form (5.29) representS1, which contains only nonempty sets, there exists some
candidate xj who is preferred to c by ṽ. In particular, c must outpoll xj in 〈C, Vλ〉
and thus needs more than (λ − 2) + 1 votes of the form (5.29) or (5.30). There are
at most two voters of the form (5.30). Hence, c must be preferred by at least λ − 2
voters of the form (5.29) that are distinct from ṽ. Summing up, Vλ contains at least
λ− 1 voters of the form (5.29).

On the other hand, since c is a Condorcet winner in 〈C, Vλ〉, c must in particular
outpoll a, who is not preferred to c by the λ voters of the form (5.30) or (5.31) and
who is preferred to c by all other voters. Hence, Vλ may contain at most λ− 1 voters
of the form (5.29), (5.32), (5.33), or (5.34). It follows that Vλ contains exactly λ− 1
voters of the form (5.29) and no voters of the form (5.32), (5.33), or (5.34).

For a contradiction, suppose that there is a candidate xj who is preferred to c by
more than one voter of the form (5.29) in Vλ. Then,

• c is preferred to xj by at most two voters of the form (5.30) and by at most
(λ− 1)− 2 = λ− 3 voters of the form (5.29);

• xj is preferred to c by at least λ− 2 voters of the form (5.31) and by at least two
voters of the form (5.29).

Since c thus has at most λ − 1 votes and xj has at least λ votes in Vλ, c is not a
Condorcet winner in 〈C, Vλ〉, a contradiction. Thus, every candidate xi, 1 ≤ i ≤ m,
is preferred to c by at most one voter of the form (5.29) in Vλ, which means that the
λ − 1 voters of the form (5.29) in Vλ represent pairwise disjoint sets from S1. The
lemma is proven. Lemma 5.50

To continue the proof of Theorem 5.49, let k = YScore(C, c, V ). Let V̂ ⊆ V

be a submultiset of size k such that c is a Condorcet winner in 〈C, V̂ 〉. Suppose that
there are exactly λ ≤ ‖S1‖ + 1 voters of the form (5.30) or (5.31) in V̂ . Since c,
the Condorcet winner of 〈C, V̂ 〉, must in particular outpoll a, we have λ ≥ ⌈

k+1
2

⌉
,

where for each real number r, "r# denotes the smallest integer s with s ≥ r. By our
assumption that κ(S1) > 2, it follows from k ≥ 2 · κ(S1) + 1 that λ > 3.

Lemma 5.50 then implies that there are exactly λ − 1 voters of the form (5.29)
in V̂ , which represent pairwise disjoint sets from S1, and V̂ contains no voters of the
form (5.32), (5.33), or (5.34). Hence, k = 2 · λ− 1 is odd, and

k − 1
2

= λ− 1 ≤ κ(S1),

which proves (5.27).
Equation (5.28) can be proven analogously. It follows that:

κ(S1) ≥ κ(S2) ⇐⇒ YScore(C, c, V ) ≥ YScore(C, d, V ).

The proof of Theorem 5.49 is complete. Theorem 5.49

Theorem 5.51. YoungWinner is Θp
2-complete.



212 5. Hierarchies Based on NP

Proof. Membership of YoungWinner in Θp
2 has already been stated in the proof of

Theorem 5.49. To prove Θp
2-hardness, we modify the reduction from Theorem 5.49

to a reduction from the problem Max-SetPacking-Geq to the problem YoungWinner
as follows. Let 〈C, V 〉 be the preference profile constructed in the proof of Theo-
rem 5.49 with the designated candidates c and d. We alter this profile such that all
other candidates do worse than c and d. That is, from 〈C, V 〉, we construct a new
preference profile 〈D, W 〉. To define the new set D of candidates, replace every can-
didate g ∈ C except c and d by ‖V ‖ candidates g1, g2, . . . , g‖V ‖.

To define the new voter set W , replace each occurrence of candidate g in the ith

voter of V by the text string:

gi mod ‖V ‖ > gi+1 mod ‖V ‖ > gi+2 mod ‖V ‖ > · · · > gi+‖V ‖−1 mod ‖V ‖.

Let Ṽ be any submultiset of V , and let W̃ be the submultiset of W correspond-
ing to Ṽ . It is easy to see that c is a Condorcet winner in Ṽ if and only if c is a
Condorcet winner in W̃ . Thus, changing 〈C, V 〉 to 〈D, W 〉 does not alter the Young
score of c and d. On the other hand, the Young score of any other candidate now is
at most 1. Thus, there is no candidate b with YScore(D, b, W ) > YScore(D, c, W )
or YScore(D, b, W ) > YScore(D, d, W ). Hence, κ(S1) ≥ κ(S2) if and only if c is
a Young winner of the election 〈D, W 〉.

5.4 Query Hierarchies over NP

Both the polynomial hierarchy and the boolean hierarchy over NP share NP and
coNP, respectively, as their first level. This section shows that the boolean hierarchy
over NP is completely contained in the second level of the polynomial hierarchy,
and even in its Θp

2 level. By definition, Θp
2 equals PNP[O(log)], the class of problems

solvable by some DPOTM that makes logarithmically many Turing queries to an NP
oracle. Similarly, the class PNP[O(1)] contains precisely those problems L solvable by
a DPOTM MA that accesses its NP oracle A in the fashion of a Turing reduction and
asks at most a constant number of queries. Analogously, one can define classes of
sets solvable by some DPOTM that makes a bounded number of parallel queries to
its NP oracle, i.e., the oracle access is made in the fashion of a truth-table reduction.
Using these concepts, one can define the query hierarchy and the parallel (a.k.a.
truth-table) query hierarchy over NP.

Definition 5.52 (Query Hierarchy and Parallel Query Hierarchy over NP).

1. The query hierarchy over NP is defined by:

PNP[k] =
{

L
L = L(M SAT) for some DPOTM M making no
more than k oracle queries in a Turing fashion

}
,

PNP[O(1)] =
⋃
k∈N

PNP[k], and PNP[O(log)] =
⋃

k∈O(log)

PNP[k],

where in the latter case k ∈ O(log) is a function of the input size.
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2. The parallel query hierarchy over NP is defined by:

PNP
k-tt =

{
L

L = L(M SAT) for some DPOTM M making no
more than k oracle queries in a truth-table fashion

}
,

PNP
btt =

⋃
k∈N

PNP
k-tt, and PNP

tt =
⋃

p∈IPol

PNP
p-tt,

where in the latter case p ∈ IPol is a function of the input size.
3. For any oracle set A and for any class C of oracle sets, the classes PA[k], PA

k-tt,
PC[k], PC

k-tt, etc. are defined analogously.

Note that PNP
tt is precisely the ≤p

tt -closure of NP, since a DPOTM can make at
most a polynomial number of queries. The following result shows the relations be-
tween the boolean hierarchy and the query hierarchies over NP. In particular, it shows
that these hierarchies are intertwined, which implies that all three hierarchies stand
or fall together.

Theorem 5.53. 1. PNP
k-tt = PA[1] for some set A that is ≤p

m-complete for BHk(NP).
2. PNP[k] = PNP

(2k−1)-tt.

3. BHk(NP) ∪ coBHk(NP) ⊆ PNP
k-tt ⊆ BHk+1(NP) ∩ coBHk+1(NP).

4. BH2k−1(NP) ∪ coBH2k−1(NP) ⊆ PNP[k] ⊆ BH2k(NP) ∩ coBH2k(NP).

Proof. 1. For fixed k ≥ 1, define the problem

Odd-k-SAT =
{
〈ϕ1, ϕ2, . . . , ϕk〉 ϕ1, ϕ2, . . . , ϕk are boolean formulas

such that ||{i | ϕi ∈ SAT}|| is odd

}
.

Note that Odd-k-SAT is in BHk(NP). By Lemma 5.11, Odd-k-SAT is even BHk(NP)-
complete; see Exercise 5.29.

To prove that PNP
k-tt ⊆ PA[1] for A = Odd-k-SAT, let L be any set in PNP

k-tt . By
definition, there exist a set B ∈ NP and a polynomial-time computable function f
such that, for each input x, f(x) = 〈τ, q1, q2, . . . , qk〉, where

• q1, q2, . . . , qk are the k truth-table queries generated, and
• τ is a k-ary boolean function encoded as a boolean circuit whose input variables

b1, b2, . . . , bk are the k values of the characteristic function of B on qi, where
1 ≤ i ≤ k, and such that τ(b1, b2, . . . , bk) evaluates to true if and only if x ∈ L.
That is, setting bi = χB(qi) = 1 if qi ∈ B, and bi = χB(qi) = 0 if qi �∈ B,
where 1 ≤ i ≤ k, it holds that:

x ∈ L ⇐⇒ τ(b1, b2, . . . , bk) = 1. (5.35)

Think of the right-hand side of (5.35) as the sentence in a trial with x being
accused of having committed a murder, L being the state prison, and τ being the jury.
The question τ has to decide is whether or not x is guilty and belongs to jail. The
answer to this question depends on the (hopefully correct) answers to k other queries
of the form “qi ∈ B?” that are to be found during the trial. Unfortunately, for each
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query “qi ∈ B?,” contradictory answers are given by the prosecuting authorities and
by x’s defense lawyers. Think of any sequence of oracle answers as a k-dimensional
bit vector v = (v1, v2, . . . , vk), where vi = 1 means “yes” (i.e., qi ∈ B), and vi = 0
means “no” (i.e., qi �∈ B). Using a truth table to evaluate any given answer vector v,
τ ’s objective is to come to a decision on whether or not x belongs to L. With this
interpretation in mind, (5.35) reads as follows: x belongs to jail if and only if the
jury τ passes the verdict that x is guilty, based on the information on whether or not
the qi are in B. The difficulty for τ is to determine the truth value of the answers
given by the prosecution and the defense.

Distinct answer vectors represent distinct opinions of the prosecutor and of x’s
lawyers on the membership of the query strings q1, q2, . . . , qk in B. Unfortunately,
the jury τ does not know whether a prosecutor’s or a lawyer’s claim that some qi does
or does not belong to B is reliable. However, since B is in NP, by Theorem 5.24,
every claim that “qi ∈ B” has an efficiently checkable witness. Asking the witness
for “qi ∈ B,” τ can verify each positive answer.

If some witness’s testimony makes τ believe that some qi, which was previously
thought to be not in B, in fact does belong to B and if this updated information causes
τ to change its decision on whether x belongs to L, we say that τ has changed its
mind. That is why this proof technique has been dubbed the “mind-change tech-
nique.”

Interpreting bit vectors v = (v1, v2, . . . , vk) as bit strings v1v2 · · · vk ∈ {0, 1}k,
the standard lexicographical ordering of {0, 1}k induces an ordering of answer vec-
tors: u ≤ v if and only if ui ≤ vi for each i, and u < v if and only if u ≤ v and
uj < vj for some j. If we consider only increasing chains of answer vectors, at most
k mind changes can occur. However, there is no obvious way to efficiently detect
exactly when a mind change occurs, not even nondeterministically. Fortunately, it
can be tested in NP if at least m mind changes occur: Initially, τ cautiously starts
with the all-zero vector v0 = (0, 0, . . . , 0) assuming all answers are negative. Then,
τ guesses v1, v2, . . ., vm, a lexicographically increasing sequence of m distinct
answer vectors. For each j with 1 ≤ j ≤ m, τ checks that:

(a) each “yes” in vj−1 is also a “yes” in vj , in order to keep the already verified
correct answers, and

(b) τ(vj−1) �= τ(vj), i.e., a mind change has occurred.

Then, τ guesses witnesses for “qi ∈ B” corresponding to each “yes” answer in
vm and checks each such witness deterministically in polynomial time. Using the
notations above, define the set T by:

T =
{
〈x, m〉 (∃v1,v2, . . . ,vm) [(∀i ≤ k) [vm

i = 1 =⇒ qi ∈ B]
∧ (∀j ≤ m)

[
vj−1 < vj ∧ τ(vj−1) �= τ(vj)

]] }
.

It follows from the considerations above that T is in NP. Let b = (b1, b2, . . . , bk) be
the correct answer vector according to B. Let m̂(x) = max〈x,m〉∈T m be the largest
m with 〈x, m〉 ∈ T , and let v1, v2, . . ., vm̂(x) be vectors witnessing this fact. Note
that m̂(x) ≤ k is the maximum number of mind changes. By construction of T ,
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τ(vm̂(x)) = τ(b), (5.36)

since otherwise the sequence v1,v2, . . . ,vm̂(x),b of m̂(x)+1 answer vectors would
witness that 〈x, m̂(x) + 1〉 ∈ T , which contradicts the choice of m̂(x).

Since τ(vj) ≡ 1 + τ(vj−1) mod 2 for each j, it follows that:

τ(vm̂(x)) ≡ τ(v0) + m̂(x) mod 2. (5.37)

Equations (5.35), (5.36), and (5.37) now imply that:

x ∈ L ⇐⇒ τ(v0) + m̂(x) ≡ 1 mod 2. (5.38)

By construction, m̂(x) = ||{m | 1 ≤ m ≤ k and 〈x, m〉 ∈ T}||. Since T is in NP,
T ≤p

m SAT via some reduction h. For each m with 1 ≤ m ≤ k, let ϕm = h(〈x, m〉)
be the corresponding boolean formula. It follows that:

m̂(x) = ||{m | 1 ≤ m ≤ k and ϕm ∈ SAT}||. (5.39)

Define the DPOTM M with oracle Odd-k-SAT as follows. On input x, M first
computes deterministically f(x) = 〈τ, q1, q2, . . . , qk〉, the value of τ(v0), and the k
formulas ϕ1, ϕ2, . . . , ϕk as defined above. Then, M makes one query asking whether
or not 〈ϕ1, ϕ2, . . . , ϕk〉 belongs to its oracle Odd-k-SAT. Let a ∈ {0, 1} be the or-
acle answer, where a = 1 if 〈ϕ1, ϕ2, . . . , ϕk〉 ∈ Odd-k-SAT, and a = 0 otherwise.
By (5.39), m̂(x) is odd if and only if a = 1. Finally, M accepts x if and only if
τ(v0) + a ≡ 1 mod 2. By (5.38), L(MA) = L, where M makes one oracle call
to A = Odd-k-SAT. Thus, M witnesses that PNP

k-tt ⊆ PA[1] for some set A that is
≤p

m-complete for BHk(NP).
The converse inclusion, PA[1] ⊆ PNP

k-tt , follows immediately from the fact that
Odd-k-SAT ∈ PNP

k-tt .
2. The inclusion PNP[k] ⊆ PNP

(2k−1)-tt is proven by directly simulating the PNP[k]

computation without making any queries. Imposing a polynomial-time clock on each
computation path ensures that the simulation terminates in polynomial time. Since
no more than k queries are made in the PNP[k] computation, at most 2k−1 possible
queries occur in the potential query tree of PNP[k]. Making all these queries simulta-
neously in the PNP

(2k−1)-tt simulation determines which is the correct path.

Conversely, for PNP
(2k−1)-tt ⊆ PNP[k], consider the set A = Odd-(2k − 1)-SAT. A

straightforward binary search with k queries to the NP oracle set SAT determines how
many of the 2k − 1 input formulas are satisfiable. Thus, Odd-(2k − 1)-SAT ∈ PNP[k].
Hence, by the first item of this proof,

PNP
(2k−1)-tt = PA[1] ⊆ PNP[k].

3. The inclusion BHk(NP) ∪ coBHk(NP) ⊆ PNP
k-tt follows from the definitions.

To prove the inclusion PNP
k-tt ⊆ BHk+1(NP) ∩ coBHk+1(NP), it is enough to show

that PNP
k-tt ⊆ BHk+1(NP), since PNP

k-tt is closed under complement. To show the in-
clusion PNP

k-tt ⊆ BHk+1(NP), Lemma 3.36 implies that it is enough to prove that
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Odd-(k + 1)-SAT is ≤p
m-hard for PNP

k-tt , since Odd-(k + 1)-SAT is in BHk+1(NP) and
BHk+1(NP) is ≤p

m-closed.
Let L be any set in PNP

k-tt. By the first item of this theorem, L ∈ PA[1] for the
oracle set A = Odd-k-SAT. Hence, there exists a DPOTM M that decides L by
making one oracle call to Odd-k-SAT. For a given input x, let qx = 〈ϕx

1 , ϕx
2 , . . . , ϕx

k〉
be this oracle query of MA(x). Let ψ ∈ SAT be some fixed satisfiable formula, and
let ψ̄ ∈ SAT be some fixed unsatisfiable formula. Define the boolean formula ϕx

0 as
follows:

ϕx
0 =

{
ψ if (MA accepts x ⇐⇒ the answer to qx is “no”)
ψ̄ otherwise.

Let f be the function that maps any given x to the (k + 1)-tuple 〈ϕx
0 , ϕx

1 , . . . , ϕx
k〉 of

boolean formulas. Clearly, f is polynomial-time computable, and for each x ∈ Σ∗,

x ∈ L ⇐⇒ MA accepts x

⇐⇒ (ϕx
0 ∈ SAT ∧ qx has the answer “no”) ∨

(ϕx
0 �∈ SAT ∧ qx has the answer “yes”)

⇐⇒ (ϕx
0 ∈ SAT ∧ qx �∈ Odd-k-SAT) ∨ (ϕx

0 �∈ SAT ∧ qx ∈ Odd-k-SAT)
⇐⇒ f(x) = 〈ϕx

0 , ϕx
1 , . . . , ϕx

k〉 ∈ Odd-(k + 1)-SAT.

Hence, f is a ≤p
m-reduction from L to Odd-(k + 1)-SAT. Since L is an arbitrary set

in PNP
k-tt, Odd-(k + 1)-SAT is ≤p

m-hard for PNP
k-tt.

4. This item follows immediately from the second and the third item.

As an immediate corollary, both PNP[O(1)] and PNP
btt capture precisely the boolean

hierarchy over NP and, by Theorem 5.6, also the boolean closure of NP.

Corollary 5.54. BH(NP) = PNP[O(1)] = PNP
btt = BC(NP).

Proof. The first two equalities follow from Theorem 5.53. The last equality follows
from Corollary 5.7.

The proof of the second item of Theorem 5.53, which states the equality of PNP[k]

and PNP
(2k−1)-tt, also works if the constant number k of queries is replaced by c · log n

queries for some rational constant c and for inputs of length n. Consequently, the
boolean hierarchy over NP is contained in the Θp

2 level of the polynomial hierarchy.

Corollary 5.55. BH(NP) ⊆ PNP[O(log)] = PNP
tt = Θp

2 .

The equality PNP[O(log)] = PNP
tt in the corollary above is due to L. Hemaspaan-

dra [Hem87, Hem89] and, independently, to Buss and Hay [BH88, BH91], and to
Köbler, Schöning, and Wagner [KSW87, Wag90].
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5.5 The Boolean Hierarchy Collapsing the Polynomial Hierarchy

In this section, the interrelations between the polynomial hierarchy and the boolean
hierarchy over NP are explored further by establishing an interesting, close connec-
tion between these two hierarchies.

The following story illustrates this quite amazing connection. Do you still re-
member Paula and Ella, the two little girls introduced in Section 3.3 to illustrate
Book’s upward separation technique? Do you still remember the Boolean Hierarchy
Tower (BHT, for short), the splendid building introduced in Section 5.1 to illustrate
the upward collapse property of the boolean hierarchy? You do? Alright,4 then listen:

Story 5.56 Paula and Ella are living in the second floor of the Polynomial Hierar-
chy Tower (PHT, for short), one of the tallest buildings in the skyline of their city,
even higher and even more magnificent than the BHT. In fact, Corollary 5.55 above
says that the entire BHT fits into the second floor of the PHT. It may not be easy to
imagine a huge building with a potential infinity of floors like the BHT being entirely
contained in just the first two floors of another building like the PHT. So, think of the
BHT now as a toy model of a building standing in Paula and Ella’s room for them to
play with. To ensure that the possibly infinitely many levels of the BHT conveniently
fit into their room, suppose that each floor of the BHT toy model is only half as high
as the floor preceding it.

The two little dears are in an aggressive, destructive mood today: On purpose,
they damage the BHT toy model with hammers so badly that one of its lower levels,
the fifth floor, is completely destroyed and collapses down to the fourth floor. Knowing
Theorem 5.10, Paula and Ella now expect the entire BHT to collapse down to its
fourth floor, and to their great pleasure this is exactly what happens. They fall over
screaming with laughter.

Unfortunately, though, they do not know Theorem 5.57 yet. That is why they do
not expect what is about to happen too in this very moment: First they hear a hollow
rumbling from far above, then they see some little cracks on the walls and the ceiling
of their room, the building is shaking and quaking like in an earthquake, and all of a
sudden it is crashing down with a terribly loud noise. Coughing and crying, the terri-
fied children hurry downstairs through the dust and run outside. Out of the building,
they see what they have done by thoughtlessly destroying the BHT toy model: The
entire PHT has collapsed down to its third level, and parts of its second level are
damaged too.

Luckily, no one was hurt, since in the third and higher floors of the PHT there
are only offices unoccupied at this hour of the day. Paula and Ella now see their
puzzled and scared parents coming out of the PHT—or what is left of it. After having
reported to the police and to the insurance company everything they have done, and
after having received an adequate punishment, Paula and Ella listen very carefully
to their parents’ emphatic and very clear explanations about Theorem 5.57.

Theorem 5.57 (Kadin). If there is some k ≥ 1 such that BHk(NP) = coBHk(NP),
then the polynomial hierarchy collapses down to its third level: PH = Σp

3 ∩Πp
3 .

4 You don’t? Alright, then go back to Stories 3.23 and 5.9 in Sections 3.3 and 5.1.
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Theorem 5.57 states Kadin’s original result [Kad88]. The collapse consequence
of Theorem 5.57 has been strenghtened later on. In particular, Wagner [Wag87b,
Wag89] proved that the hypothesis BHk(NP) = coBHk(NP) implies PH = ∆p

3

and even PH = BH(Σp
2 ). Under the same hypothesis, Chang and Kadin [Cha91,

CK96] strengthened the collapse consequence of PH down to BHk(Σp
2 ), which is

contained in BH(Σp
2 ) ⊆ Θp

3 . Further improvements were obtained by Beigel, Chang,
and Ogihara [BCO93] and by E. and L. Hemaspaandra and Hempel [HHH98b], see
also [Hem98]. Section 5.9 provides more details.

The proof of Theorem 5.57 applies a method called the “easy-hard technique.”
Crucial to this technique is the notion of sparse sets and a result of Yap [Yap83]
saying that if there exists a sparse set that is ≤NP

T -hard for coNP, then the collapse
consequence of Theorem 5.57 occurs. Intuitively, sparse sets are sets of low informa-
tion content: up to each given length, they contain no more than polynomially many
strings. Yap’s result is stated as Lemma 5.59 below without proof. For improvements
of Yap’s result and for related results, see Section 5.9.

Definition 5.58 (Sparse Language). For any language S and any n ∈ N, define
the set of strings of length up to n by S≤n = {x | x ∈ S and |x| ≤ n}. A language
S is said to be sparse if and only if

(∃p ∈ IPol) (∀n ∈ N)
[||S≤n|| ≤ p(n)

]
.

Lemma 5.59 (Yap).
If there exists a sparse set S such that coNP ⊆ NPS , then PH = Σp

3 ∩Πp
3 .

Proof of Theorem 5.57. For k = 1, Theorem 5.33 immediately implies an even
stronger collapse: PH = NP ∩ coNP. We give a proof for the case of k = 2; the
general case of k ≥ 2 can be proven analogously.

Suppose that BH2(NP) = coBH2(NP), i.e., DP = coDP. Note that the set

SAT = {ϕ | ϕ is an unsatisfiable boolean formula}

is coNP-complete. Thus, it is enough to prove that SAT is in NPS for some sparse
set S, which implies the hypothesis coNP ⊆ NPS of Lemma 5.59. By Lemma 5.59,
the collapse PH = Σp

3 ∩Πp
3 then follows.

Define the set SAT-UNSAT by:

SAT-UNSAT =
{
〈ϕ, ψ〉 ϕ and ψ are boolean formulas in CNF such

that ϕ is satisfiable and ψ is not satisfiable

}
.

Note that SAT-UNSAT is DP-complete; see Exercise 5.2. By our supposition that
DP = coDP, SAT-UNSAT is also ≤p

m-complete for coDP. In particular, it follows that
SAT-UNSAT≤p

m SAT-UNSAT. Let f ∈ FP be the ≤p
m-reduction from SAT-UNSAT to

SAT-UNSAT. Encoding boolean formulas suitably by strings over the alphabet {0, 1},
for each pair 〈ϕ, ψ〉 of strings, we have:

〈ϕ, ψ〉 ∈ SAT-UNSAT ⇐⇒ f(〈ϕ, ψ〉) ∈ SAT-UNSAT. (5.40)
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Note that f maps pairs of strings encoding boolean formulas to pairs of strings
encoding boolean formulas. Let g and h be functions in FP satisfying that, for each
pair 〈ϕ, ψ〉,

f(〈ϕ, ψ〉) = 〈g(〈ϕ, ψ〉), h(〈ϕ, ψ〉)〉.
Equivalence (5.40) then implies:

ϕ ∈ SAT ∧ ψ ∈ SAT

⇐⇒ g(〈ϕ, ψ〉) ∈ SAT ∨ h(〈ϕ, ψ〉) ∈ SAT. (5.41)

The following notation explains why this proof technique is called the “easy-hard
technique”:

• A string ψ ∈ {0, 1}∗ is said to be easy if and only if

(∃ϕ ∈ {0, 1}∗) [|ϕ| = |ψ| ∧ h(〈ϕ, ψ〉) ∈ SAT]. (5.42)

• A string ψ ∈ {0, 1}∗ is said to be hard if and only if

ψ is not easy and ψ ∈ SAT. (5.43)

Proposition 5.60. 1. The set E = {ψ ∈ {0, 1}∗ | ψ is easy} is in NP.
2. If ψ is in E, then ψ is in SAT.
3. If ψ is hard, then for each ϕ with |ϕ| = |ψ|,

ϕ ∈ SAT ⇐⇒ g(〈ϕ, ψ〉) ∈ SAT. (5.44)

Proof of Proposition 5.60. 1. The first statement is easy to prove using Theo-
rem 5.24; the details are left to the reader as Exercise 5.28.

2. Let ψ ∈ E. Since ψ is easy, there exists a string ϕ, |ϕ| = |ψ|, such that
h(〈ϕ, ψ〉) ∈ SAT. Hence, the right-hand side of equivalence (5.41) is true, regardless
of whether or not g(〈ϕ, ψ〉) is in SAT. Thus, the left-hand side of (5.41) is also true,
which implies that ψ ∈ SAT.

3. If ψ is hard, it cannot be easy. Hence, by (5.42), there exists no ϕ of length |ψ|
such that h(〈ϕ, ψ〉) ∈ SAT. Moreover, since ψ is hard, ψ ∈ SAT. It follows that the
equivalence (5.41) reduces to the equivalence (5.44). Proposition 5.60

To continue the proof of Theorem 5.57, let 2 be a new letter. Define the set S
over the alphabet {0, 1, 2} as follows. For each n ∈ N, define the census set Sn at
length n by:

Sn =

⎧⎨⎩ψ2n−|ψ|
(∃α ∈ {0, 1}∗) [|α| = n and α is hard ] and
ψ ∈ {0, 1}∗ is a prefix of the lexicographically
smallest hard string of length n

⎫⎬⎭ .

Define S =
⋃

n∈N
Sn. Note that, for each n ∈ N, either Sn does not contain any

hard string and thus ||Sn|| = 0, or ||Sn|| = n + 1 otherwise. Hence, for each n ∈ N,
||S≤n|| ≤ (n + 1)2. Thus, S is a sparse set.

To prove that SAT is in NPS , consider the NPOTM MS that works as follows on
input ϕ of length n:
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Step 1: MS determines whether or not Sn is empty by asking one query: “2n ∈ S?”
Step 2: There are two cases to distinguish, a positive and a negative oracle answer.

Case 1: Oracle answer is “yes,” i.e., 2n ∈ S and Sn �= ∅. In this case,
MS on input ϕ works as follows. First, by prefix search with n queries to
the oracle S, MS determines ψ ∈ Sn, the lexicographically smallest hard
string of length n. The prefix search algorithm is given in Figure 5.12.

MS(ϕ) {
// input string ϕ ∈ {0, 1}∗, |ϕ| = n, encodes a boolean formula

ψ := ε;
for (i = n, n − 1, . . . , 1) {
if (ψ02i−1 ∈ S) ψ := ψ0;
else ψ := ψ1;

}
return ψ

}

Fig. 5.12. Easy-hard technique: finding the smallest hard length n string by prefix search

Since ψ is hard, equivalence (5.44) of Proposition 5.60.3 implies that for
each ϕ with |ϕ| = |ψ|:

ϕ ∈ SAT ⇐⇒ g(〈ϕ, ψ〉) ∈ SAT.

To accept SAT, MS(ϕ) now computes the formula g(〈ϕ, ψ〉) deterministi-
cally in polynomial time, simulates the standard NP machine for SAT on
input g(〈ϕ, ψ〉), and accepts ϕ if and only if g(〈ϕ, ψ〉) ∈ SAT. It follows
that L(MS) = SAT.

Case 2: Oracle answer is “no,” i.e., 2n �∈ S and Sn = ∅. In this case,
there is no hard string of length n in S. In particular, ϕ is not hard. By the
definition of “hard,” negating (5.43), ϕ is easy or ϕ �∈ SAT. Equivalently, ϕ ∈
SAT implies that ϕ is easy. By Proposition 5.60.2, it follows that ϕ ∈ SAT if
and only if ϕ is easy. By Proposition 5.60.1, there exists an NP machine N
that accepts exactly the easy input strings. So, in the current case, MS(ϕ)
simply simulates N on input ϕ. It follows that L(MS) = L(N) = SAT.

Since L(MS) = SAT is true in both cases, SAT is in NPS for the sparse set S,
which satisfies the hypothesis coNP ⊆ NPS of Lemma 5.59. This lemma in turn
implies the collapse PH = Σp

3 ∩Πp
3 . The proof is complete. Theorem 5.57
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5.6 Alternating Turing Machines

The classes of the polynomial hierarchy, which can be characterized by alternat-
ing existential and universal quantifiers according to Theorem 5.31, generalize the
classes P and NP. Therefore, this characterization suggests that alternation is a natu-
ral generalization of both determinism and nondeterminism, which were introduced
as the basic computational paradigms in Chapter 3.

In this section, this idea is formalized by introducing yet another type of Turing
machine, the alternating Turing machine. Syntactically, alternating Turing machines
(ATMs, for short) are nothing else than nondeterministic Turing machines (NTMs;
see Definitions 2.15 and 2.16 in Section 2.2 for the formal definition) whose non-
halting states are labeled to be either “existential” or “universal” states. Semantically,
ATMs have an acceptance mode different from that of NTMs in that they accept an
input via the concept of “accepting alternating subtrees.”

Definition 5.61 (Alternating Turing Machines).

1. Syntax: An NTM M is said to be an alternating Turing machine (ATM, for
short) if and only if the set S of M ’s states is partitioned into four disjoint subsets
S = E ∪ U ∪A ∪R, where:
• the elements of E are the existential states of M ,
• the elements of U are the universal states of M ,
• the elements of A are the accepting states of M , and
• the elements of R are the rejecting states of M .

2. Semantics: Let M be any ATM, let x be any input string, and let M(x) be the
computation tree of M on input x. For any configuration C in M(x), if s ∈ S is
the state in C, then C is said to be:
• an existential configuration of M(x) (marked by ∨) if and only if s ∈ E,
• a universal configuration of M(x) (marked by ∧) if and only if s ∈ U ,
• an accepting configuration of M(x) (marked by 1) if and only if s ∈ A , and
• a rejecting configuration of M(x) (marked by 0) if and only if s ∈ R.
Accepting and rejecting configurations are the only halting configurations—and,
as such, the leaves—of M(x). Existential and universal configurations are the
internal vertices of M(x). Since we may assume, without loss of generality, that
the nondeterministic branching degree of M is 2 for any input, every existential
or universal configuration has exactly two immediate successor configurations.
Let KM be the set of all configurations of M , and define the evaluation function
eval : KM → {0, 1} as follows:

eval(C) =

⎧⎪⎪⎨⎪⎪⎩
0 if C is rejecting
1 if C is accepting
eval(C1) ∨ eval(C2) if C is existential
eval(C1) ∧ eval(C2) if C is universal,

where C1 and C2 are the two immediate successor configurations of C.
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Let STARTM (x) be the unique start configuration of M on input x. M is said to
accept the input x if and only if eval(STARTM (x)) = 1. The language accepted
by M is defined by:

L(M) = {x ∈ Σ∗ | eval(STARTM (x)) = 1} .

In other words, the function eval evaluates the tree M(x) bottom-up, viewing it
as a boolean circuit with the leaves of the tree being the input gates of the circuit and
the root of the tree being the output gate of the circuit.

To define alternating complexity measures and classes associated with ATMs, the
concept of “accepting alternating subtrees” is introduced below.

Definition 5.62 (Accepting Alternating Subtree of M(x)). Let M be any ATM,
let x be any input string, and let M(x) be the computation tree of M on input x.
For any subtree T of M(x), let evalT denote the evaluation function eval from
Definition 5.61 restricted to T .

T is said to be an accepting alternating subtree of M(x) if and only if

1. T contains STARTM (x), the root of M(x), and
2. evalT (STARTM (x)) = 1.

Figure 5.13 gives an example of an accepting alternating subtree of the compu-
tation tree of an ATM M on some input x. The internal vertices of the tree M(x) are
labeled by ∨ or ∧ to represent existential or universal configurations. The leaves of
M(x) are labeled by 1 or 0 to represent accepting or rejecting configurations. The
shadowed vertices of M(x) represent some accepting alternating subtree, since the
root of this tree evaluates to 1 according to the function eval.

∧
∨ ∨

1∧0∧
1 1 ∧ ∨

0011

Fig. 5.13. An accepting alternating subtree of an ATM

Definition 5.63 (Alternating Time and Space Complexity Measures and Classes).
Let M be any ATM, and let x be any input string, and let t and s be functions in IR
mapping from N to N.
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1. M accepts x in time k if and only if M(x) has an accepting alternating subtree
of depth at most k.

2. M accepts a language L in time t if and only if L(M) = L and, for each x ∈ L,
M accepts x in time t(|x|).

3. M accepts x in space k if and only if M(x) has an accepting alternating subtree
each configuration of which has size at most k.

4. M accepts a language L in space s if and only if L(M) = L and, for each x ∈ L,
M accepts x in space s(|x|).
Define the following alternating complexity classes with resource function t

and s, respectively:

ATIME(t) = {A | there is some ATM M accepting A in time t} ;
ASPACE(s) = {A | there is some ATM M accepting A in space s} .

∨

s1 sk

∧ ∧

existentially guess
all potential subsolutions s1, . . . , sk

1 1 0 1 0 1 1 0

verify s1 verify sk

go on
with s1

go on
with sk

. . .

. . .

. . .. . . . . . . . . . . .

Fig. 5.14. ATMs as a model of parallel computation

Alternating Turing machines are a “parallel” model of computation. Parallelism
means that a given task is subdivided into smaller subtasks that are processed in
parallel, i.e., simultaneously. Continue this process recursively by dividing subtasks
into smaller subsubtasks, which again are processed in parallel, and so on until you
end up with tasks so small that they can be solved immediately. The result is a large
number of solutions to very small tasks at the leaf level of the computation tree,
where the leaves represent either accepting or rejecting configurations. These small
subsolutions must be combined now to obtain a solution to the original task of ac-
cepting or rejecting the input string at the root of the tree, which represents the start
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configuration. Parallelism thus requires a means to convey the information contained
in the final subsolutions backwards. In the case of ATMs, this can be achieved by the
evaluation function eval from Definition 5.61 and the acceptance mode of accepting
alternating subtrees from Definition 5.62. By conveying the information at the leaves
of the tree backwards to evaluate the start configuration at its root, the combination of
small subsolutions to a solution of the original task can be accomplished as desired.

Figure 5.14 shows the computation of an ATM as a parallel model of com-
putation. First, in an existential phase, all potential subsolutions s1, s2, . . . , sk are
guessed. Then, the ATM branches universally: On its left branch, it checks the cor-
rectness of si, the subsolution guessed; on its right branch, it keeps computing with
si assuming it was a correct guess. Only if both these subtrees are accepting, does
the corresponding universal configuration convey the value 1 upwards. On this right
subtree below si, the ATM is again in an existential phase, guessing an extension si,j

of si, where 1 ≤ j ≤ 
. Then, it again branches universally, in parallel verifying this
extension si,j and continuing the computation with si,j . Recursively proceeding in
this way, the computation eventually reaches the leaf level, where it either accepts or
rejects.

Intuitively, alternation is quite a powerful computational paradigm, much more
powerful than nondeterminism. Tradeoffs between alternating space and time and
deterministic space and time will be proven later in this section.

In the following example, an interesting observation is made: The parallelism in-
herent in the computation of ATMs allows us to speak about alternating logarithmic
time. This observation is in contrast with the case of DTMs and NTMs for which it
does not make sense to consider logarithmic time, since in only a logarithmic num-
ber of steps those machines could not even scan all inputs bits. However, all bits of
some input string x of length n can be scanned in parallel in log n steps. To this end,
the ATM model from Definition 5.61 is equipped with an additional read-only tape
called the index tape or the address register by which the ATM has direct access to
the input tape. If some number i is written in binary on the index tape, then the ATM
scans the ith input bit within one step.

Example 5.64 (Alternating Logarithmic Time). Define ALOGTIME = ATIME(log).
The set L = {0n1n | n ≥ 1} is in ALOGTIME.

An ATM M accepting L in time O(log n) works as follows on a given input
x = x1x2 · · ·xn, where each xi ∈ {0, 1}:

Step 1: First, determine the length n of the input as follows:
• Successively, write the strings 1, 10, 100, . . ., which represent the numbers

20, 21, 22, . . . in binary, onto the index tape and scan the corresponding input
bit until the first blank symbol is scanned.

• If k input bits were scanned and the 2k+1st input tape cell contains a blank,
we know that 2k ≤ n < 2k+1. A binary search on the interval [2k, 2k+1)
now determines the exact value of n.

Step 2: Distinguish two cases:
• If n is odd, M rejects x.
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• If n is even, M branches universally and checks whether or not, for each
i ≤ n

2 , xi = 0 and xn−i+1 = 1 by writing the binary representation of i and
n− i + 1, respectively, onto the index tape.

Since by definition NTIME(t) is contained in ATIME(t), the following result im-
proves upon Corollary 3.28, which says that NTIME(t) is contained in DSPACE(t).

Theorem 5.65. For each space-constructible function t ≥ log,

ATIME(t) ⊆ DSPACE(t).

Proof. Let A be any set in ATIME(t), and let M be some ATM with k tapes
accepting A in time t. Construct a DTM N with k+1 tapes that decides A in space t.
The first k tapes of N are used to simulate M , and the (k + 1)st tape of N is used
to decide by depth-first search whether or not, for a given input x, M(x) has an
accepting alternating subtree. On input x of length n, N works as follows:

Phase 1: Initialization. N marks exactly t(n)+1 tape cells on its (k +1)st tape,
which is subdivided into two tracks. Then, N writes the lexicographically first
path name, 0t(n), onto the tape cells 1, 2, . . . , t(n) of the first track and leaves
the zeroth tape cell of this track blank; see Figure 5.15.

Track 1: � 0 0 0 · · · 0 0 0 · · ·
Track 2: # · · · $ · · ·

Tape cell number: 0 1 2 3 · · · t(n) · · ·
Fig. 5.15. Initializing the (k +1)st tape of DTM N in the proof of ATIME(t) ⊆ DSPACE(t)

Phase 2: Simulation. Using the first k of its tapes, N simulates the computation
of M(x) along the path whose name is written onto the first track of its (k+1)st

tape. For each i ≥ 0, after the ith step has been executed in this simulation and
after the ith configuration, Ci, has been reached along the current path, N writes
onto the ith tape cell of the second track of its (k + 1)st tape the symbol:

0 if Ci is rejecting; 1 if Ci is accepting;
∨ if Ci is existential; ∧ if Ci is universal.

In particular, the zeroth tape cell on the second track of N ’s (k + 1)st tape
contains the information of whether the start configuration C0 = STARTM (x)
is existential or universal, etc.
Figure 5.16 gives an example in which the start configuration is universal and an
accepting final configuration is reached after t(n) − 1 steps. If no final configu-
ration is reached up to the t(n)th step of the simulation, N aborts the simulation
of M(x) along the current path and writes a “0” onto the t(n)th tape cell on the
second track of its (k + 1)st tape.
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Track 1: � 0 0 0 · · · 0 0 0 · · ·
Track 2: ∧ ∨ ∨ ∧ · · · ∧ 1 $ · · ·

Tape cell number: 0 1 2 3 · · · t(n) · · ·
Fig. 5.16. Simulating ATM M on input x in the proof of ATIME(t) ⊆ DSPACE(t)

Phase 3: Evaluation. If N has written a “0” or a “1” onto the second track of
its (k + 1)st tape, say in the ith tape cell, N alters the content of the (i − 1)st

and the ith tape cell on this track according to the function ei that is defined
by (5.45) through (5.50) below. Let Γ = {�, 0, 1,∧,∨,∧1,∨0} be an alphabet.
To describe the evaluation function eval from Definition 5.61, the function

ei : Γ × Γ → Γ × Γ

maps pairs of symbols from Γ to pairs of symbols from Γ as follows:

ei(∧, 0) = (0, �) (5.45)

ei(∨, 1) = (1, �) (5.46)

ei(∧, 1) = (∧1, �) (5.47)

ei(∨, 0) = (∨0, �). (5.48)

The first component of such a pair corresponds to the content of the (i − 1)st

tape cell on the second track of N ’s (k + 1)st tape, and the second component
corresponds to the content of the ith tape cell. Equations (5.45) and (5.46) imply
that the evaluation can be continued recursively with ei−1 in order to evaluate
the simulation for the (i− 1)st tape cell, and so on.
However, if either one of (5.47) or (5.48) applies, more information is needed
to evaluate Ci−1, the (i − 1)st configuration of the path currently written onto
the first track of N ’s (k + 1)st tape. Continuing the example from Figure 5.16,
Figure 5.17 shows an application of (5.47): et(n)−1(∧, 1) = (∧1, �).

Track 1: � 0 0 0 · · · 0 0 0 · · ·
Track 2: ∧ ∨ ∨ ∧ · · · ∧1 � $ · · ·

Tape cell number: 0 1 2 3 · · · t(n) · · ·
Fig. 5.17. Evaluating the simulation of M(x) in the proof of ATIME(t) ⊆ DSPACE(t)

Ci−1 has two immediate successor configurations, Ci and Cj , in the computation
tree M(x). Knowing eval(Ci) is not enough to determine eval(Ci−1); N must
also know eval(Cj). Thus, N continues the depth-first search by updating the
path name currently written onto the first track of its (k + 1)st tape:
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• the tape cells 0, 1, . . . , i− 1 remain unchanged,
• the ith tape cell is updated from “0” to “1,” and
• the tape cells i + 1, i + 2, . . . , t(n) contain a “0.”
Since Ci−1 has not been stored, M(x) is simulated from the beginning (see
Phase 2) along the updated path in order to determine the value of eval(Cj).
Observe that the simulation of M(x) and its evaluation is a recursive process.
However, since space is re-usable, this recursion can be done by N within the
space marked. As soon as it has determined the value of eval(Cj) ∈ {0, 1}
recursively, N updates the (i − 1)st and the ith tape cell on the second track of
its (k + 1)st tape according to:

ei(∧1, eval(Cj)) = (eval(Cj), �) (5.49)

ei(∨0, eval(Cj)) = (eval(Cj), �), (5.50)

and proceeds recursively with ei−1 in order to evaluate the simulation for the
(i− 1)st tape cell, and so on.

Phase 4: Acceptance. As soon as the zeroth tape cell on N ’s second track of its
(k + 1)st tape has been evaluated this way, N accepts x if and only if this tape
cell contains a “1,” which by construction is the case if and only if M(x) has an
accepting alternating subtree.

This completes the description of N . Clearly, N works in space O(t(n)) and
L(N) = L(M) = A. Thus, A is in DSPACE(t).

The converse containment of that stated in Theorem 5.65 can almost be accom-
plished. Trading deterministic space for alternating time exacts a small price: only a
quadratic increase in the resource used.

Theorem 5.66. For each time-constructible function s ≥ log,

DSPACE(s) ⊆ ATIME(s2).

Proof Sketch. The proof idea is based on the proof technique of Savitch’s Theo-
rem; see Theorem 3.29. The details of the proof are left to the reader as Exercise 5.30.

Let A be any set in DSPACE(s), and let M be some DTM deciding A in space s.
By Theorem 3.6, DSPACE(s) ⊆ DTIME(2ILin(s)) for s ≥ log. Thus, there is some
constant c such that M works in time 2c·s(n). Let k be the smallest integer such that
2c·s(n) ≤ 2k. Let ACCEPTM be the unique accepting configuration of M on any
input, and let STARTM (x) be the unique start configuration of M on input x. Then,

x ∈ A ⇐⇒ STARTM (x) �2k

M ACCEPTM

⇐⇒ (∃i) [STARTM (x) �2k−1

M Ci and Ci �2k−1

M ACCEPTM ]. (5.51)

Construct an ATM N that accepts A in time O((s(n))2) as follows. On input x
of length n, N does the following:

1. Existential Guessing Phase: According to Equation (5.51), existentially guess
a configuration Ci of size at most s(n) in O(s(n)) steps.
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2. Universal Checking Phase: For each configuration Ci guessed, universally
verify the statement of (5.51):

STARTM (x) �2k−1

M Ci and Ci �2k−1

M ACCEPTM .

To this end, recursively do existential guesses and universal verifications as
above in parallel until after at most k recursive calls of this procedure only
Cj �M C� must be verified for pairs of configurations Cj and C�.

Since there are at most k ∈ O(s(n)) guessing and checking phases of at most
O(s(n)) steps each, N needs no more than O((s(n))2) steps.

Theorems 5.65 and 5.66 have the following corollary that in particular says that
alternating polynomial time, which is defined by AP = ATIME(IPol), equals deter-
ministic polynomial space. This result sharply contrasts with the case of nondeter-
ministic time for which the inclusion DSPACE(IPol(t)) ⊆ NTIME(IPol(t)) is not
known. The most famous incarnation of this major open question is whether or not
PSPACE is contained in NP.

Corollary 5.67. ATIME(IPol(t)) = DSPACE(IPol(t)) for each space-constructible
function t ≥ log. In particular, AP = PSPACE.

Corollary 5.67 can be used to identify PSPACE-complete problems by defining
“alternating” variants of NP-complete problems. One such example is already known
from Theorem 5.36: QBF is PSPACE-complete. Note that QBF can be viewed as an
“alternating” generalization of the NP-complete satisfiability problem.

Corollary 5.67 says that the alternating Turing machine is a sensible model of
parallel computation, since it satisfies Cook’s criterion:

Parallel time corresponds to sequential (i.e., deterministic) space.

“Correspondence” here means that there is a polynomial tradeoff between the two
complexity measures.

We now turn to the tradeoff between the complexity measures alternating space
and deterministic time. Since by definition NSPACE(s) is contained in ASPACE(s),
Theorem 5.68 below strengthens the containment NSPACE(s) ⊆ DTIME(2ILin(s))
from Corollary 3.28.

Theorem 5.68. If s ≥ log is constructible in time 2ILin(s), then

ASPACE(s) ⊆ DTIME(2ILin(s)).

Proof Sketch. The proof follows the lines of the proof of “NL ⊆ P” stated in
Theorem 3.27. The difference is that now we are given not only an NTM but an
ATM M , and the computation of M on input x is to be simulated deterministically
in time 2ILin(s). Thus, not only one accepting path must be found in the computation
tree of M(x), if one exists, but the deterministic simulation must decide whether or
not M(x) has an accepting alternating subtree.
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It is not difficult to design a DTM N that accepts a given input x if and only if
eval(STARTM (x)) = 1, where eval is the evaluation function from Definition 5.61
and STARTM (x) is the unique start configuration of M on input x. The details of
how to construct N are left to the reader as Exercise 5.31.

For the alternating space measure, the converse containment of that stated in
Theorem 5.68 can be shown. The proof of Theorem 5.69 makes the most radical use
of parallelism.

Theorem 5.69. For each function s ≥ log, DTIME(2ILin(s)) ⊆ ASPACE(s).

Proof. Let A be any set in DTIME(2ILin(s)), and let M be some one-tape DTM
accepting A in time 2ILin(s). This assumption of M having only one tape can be
made without loss of generality, since the quadratic blow-up of the time resource that
is caused by simulating a multi-tape DTM by a one-tape DTM (see Exercise 3.8(c))
is negligible for resource functions in 2ILin(s).

The goal is to construct an ATM N that accepts A in space s(n) by simulating
the computation of M running on any input x of length n. Figure 5.18 shows the
movement of M ’s head as a function of the time.

position p

t0

t1

2c·s(n)

tape of M

time t

. . . α

Fig. 5.18. Head movement of DTM M in the proof of DTIME(2ILin(s)) ⊆ ASPACE(s)

Every step of M(x) is determined by a triple (z, t, p), where z is the current
state of M , t is the current step of M , and p is the number of the tape cell currently
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scanned by M ’s head. In order to simulate the computation of M , ATM N cannot
store the entire inscription of M ’s tape, which is way too long: M ’s head can move
by up to 2c·s(n) tape cells in 2c·s(n) steps. However, N can make massive use of
its parallelism: N existentially guesses the content of some tape cell of M and keeps
computing with this guess assuming it is correct, while it universally checks the guess
in parallel. For example, suppose N(x) has simulated the computation of M(x) until
step t1, and N has guessed that M ’s head currently scans the symbol α at position p;
see Figure 5.18. In parallel with the further simulation that uses this guess, N checks
the correctness of its guess. To this end, N restarts the computation of M(x) from
the beginning to see whether or not: (a) there exists some step t0 < t1 in which the
symbol α was indeed written onto the tape cell with number p, and (b) t0 was the
last time M ’s head was at position p prior to step t1.

In some more detail, suppose that Z is the set of M ’s states and Γ is M ’s work-
ing alphabet. Then, for each z ∈ Z and each α ∈ Γ , N has states of the form z, zα,
and α. Moreover, N is equipped with extra working tapes to keep track of the cur-
rent step t and the current head position p in the simulation of M(x). Storing these
numbers in binary requires no more than O(s(n)) space, since both the number of
steps of M(x) and the number of M ’s head positions during the computation are
bounded above by 2c·s(n) for some constant c.

∨

∧ ∧

existentially guess

1 1 0 1 0 1 1 0

. . .

. . .

. . .. . . . . . . . . . . .

(z, t, p)

α ω

(zα, t, p) (zω, t, p)

verify α verify ω
go on

with α̂
go on
with ω̂

the symbol in Γ scanned for (z, t, p)

(ẑ, t+1, p+µ)(α, t, p) (ẑ, t+1, p+µ)(ω, t, p)

Fig. 5.19. Computation tree of ATM N in the proof of DTIME(2ILin(s)) ⊆ ASPACE(s)

Suppose that some triple (z, t, p) is given, and let zα → ẑα̂µ be some Turing
transition of M , where z, ẑ ∈ Z are states, α, α̂ ∈ Γ are symbols, and µ ∈ {−1, 0, 1}
is the head movement of M . Look at Figure 5.19 that is based on the general pattern



5.6. Alternating Turing Machines 231

of Figure 5.14. First, N guesses the symbol M ’s head currently scans for the triple
(z, t, p), i.e., in state z and step t and at position p.

Suppose that N ’s guess is the symbol α. Then, N uses the universal state zα to
branch universally as shown in Figure 5.19. The right subtree below (zα, t, p), which
is marked by (ẑ, t + 1, p + µ), continues the simulation of M(x) assuming the guess
was correct and applying the transition zα→ ẑα̂µ. The left subtree below (zα, t, p),
which is marked by (α, t, p), verifies in parallel that the guess α was correct. To this
end, N switches to the state α, stores the current value of step t and position p on an
extra working tape, and initiates a recomputation of M(x) from the beginning up to
step t during which the symbol at position p is stored. The recomputation initiated
by α accepts if and only if this symbol equals α in the end.

Observe that each such recomputation permanently initiates new verification pro-
cesses that trigger new recomputations, and so on. However, since each recomputa-
tion stores only its “own” triple (α, t, p) and not those of the previous recomputa-
tions, the overall procedure terminates in space O(s(n)). Hence, A ∈ ASPACE(s),
which proves the theorem.

Theorems 5.68 and 5.69 have the following corollary that in particular says that
alternating logarithmic space, which is defined by AL = ASPACE(log), equals de-
terministic polynomial time. Again, this result sharply contrasts with the case of
nondeterministic space for which the inclusion DTIME(2ILin(s)) ⊆ NSPACE(s) is
not known. The most famous incarnation of this major open question is whether or
not P is contained in NL.

Corollary 5.70. ASPACE(s) = DTIME(2ILin(s)) for each function s ≥ log con-
structible in time 2ILin(s). In particular, AL = P.

Using Corollary 5.70, it is possible to identify problems ≤log
m -complete for P

by defining “alternating” variants of NL-complete problems. One such example is
presented below: the “alternating” graph accessibility problem. Recall that the graph
accessibility problem, GAP, has been shown ≤log

m -complete for NL in Theorem 3.43.

Definition 5.71 (Alternating Graph Accessibility Problem).
An alternating graph is a directed, acyclic graph whose internal vertices (i.e., those
vertices with outgoing edges) are either existential (i.e., labeled by ∨) or univer-
sal (i.e., labeled by ∧). Define the notion of reachability in an alternating graph G
inductively as follows. For each vertex x ∈ V (G):

• x is reachable from x;
• if x is existential, i.e., labeled by ∨, then any vertex z ∈ V (G) is reachable from

x if and only if there exists a vertex y ∈ V (G) such that (x, y) ∈ E(G) is an
edge in G and z is reachable from y;

• if x is universal, i.e., labeled by ∧, then any vertex z ∈ V (G) is reachable from
x if and only if for each vertex y ∈ V (G) with (x, y) ∈ E(G), z is reachable
from y.
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Define the alternating graph accessibility problem by:

AGAP =
{
〈G, s, t〉 G is an alternating graph with s, t ∈ V (G),

and t is reachable from s in G

}
.

Theorem 5.72. AGAP is ≤log
m -complete for P.

Proof. An argument analogous to that of Theorem 3.43, which shows that GAP
is ≤log

m -complete for NL, shows that AGAP is ≤log
m -complete for AL. Corollary 5.70

then completes the proof.

5.7 The Low and the High Hierarchy within NP

Let H be any NP-complete set, and let M and N be some DPOTM and some
NPOTM, respectively, using H as an oracle set. How much additional computing
power does H provide for M and N? Since H is NP-complete, NP ⊆ PH and
NPNP ⊆ NPH . Thus, using H , both M and N “jump” one level higher in the poly-
nomial hierarchy: MH can solve every NP problem, and NH can solve every Σp

2

problem. In this sense, the NP-complete sets such as H are the most powerful (or
“highest”) sets in NP.

Now consider any set L in P as an oracle for M and N . By Proposition 5.28,
PP = P and NPP = NP. Thus, L does not add any more power to M or N than the
empty set: L is completely useless as an oracle set for both M and N . In this sense,
the P sets such as L are the weakest (or “lowest”) sets in NP. In particular, assuming
P �= NP, no NP-complete set can be in P: the classes of “low” and of “high” sets in
NP are disjoint.

What if your oracle machine is not a DPOTM or an NPOTM but a Σp
k oracle

machine for some k > 1? That is, which sets are “low” and which sets are “high”
for Σp

k , the kth level of the polynomial hierarchy? Schöning [Sch83] introduced
the low and the high hierarchy within NP, which provide a refined structure of this
central complexity class. Lowness and highness both provide a means to measure the
usefulness of an NP set as an oracle for the levels of the polynomial hierarchy.

Definition 5.73 (Low Hierarchy and High Hierarchy within NP).

1. The low hierarchy within NP is defined by:

Lowk = {L | L ∈ NP and Σp,L
k ⊆ Σp

k} for each k ≥ 0, and

LH =
⋃
k≥0

Lowk.

2. The high hierarchy within NP is defined by:

Highk = {H |H ∈ NP and Σp
k+1 ⊆ Σp,H

k } for each k ≥ 0, and

HH =
⋃
k≥0

Highk.
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The low levels of the low and the high hierarchies can be characterized by well-
known complexity classes and by classes of complete sets with respect to certain
reducibilities, respectively. One such reducibility notion is introduced below.

Definition 5.74 (Strong Nondeterministic Turing Reducibility).
Let Σ = {0, 1} be a fixed alphabet, and let A and B be sets of strings over Σ. Let C
be any complexity class.

1. Define the strong nondeterministic polynomial-time Turing reducibility, denoted
by ≤NP

sT, as follows: A≤NP
sT B if and only if there exists some NPOTM M with

three types of final states (an accepting state sa, a rejecting state sr, and a “don’t
know” state s?) such that:

x ∈ A =⇒ MB(x) has an accepting path and no rejecting path;

x �∈ A =⇒ MB(x) has a rejecting path and no accepting path.

In both cases, MB(x) may have paths that halt in the state s?.
2. A set B is ≤NP

sT-hard for C if and only if A≤NP
sT B for each A ∈ C.

3. A set B is ≤NP
sT-complete for C if and only if B is ≤NP

sT-hard for C and B ∈ C.

The following lemma is due to Selman [Sel78]. It provides equivalent conditions
for the ≤NP

sT-reducibility, analogously with the corresponding characterizations of
the ≤p

T-reducibility: A≤p
T B is equivalent to A ∈ PB , which in turn is equivalent to

PA ⊆ PB . The proof of Lemma 5.75 is left to the reader as Exercise 5.32(a).

Lemma 5.75. The following three statements are pairwise equivalent:

1. A≤NP
sT B.

2. A ∈ NPB ∩ coNPB .
3. NPA ⊆ NPB .

Theorem 5.76. 1. Low0 = P.
2. Low1 = NP ∩ coNP.
3. High0 = {H |H is ≤p

T-complete for NP}.
4. High1 = {H |H is ≤NP

sT-complete for NP}.
Proof. 1. By definition, any NP set L is in Low0 if and only if PL ⊆ P, which in
turn is equivalent to L being in P. Hence, Low0 = P.

2. By definition, any NP set L is in Low1 if and only if NPL ⊆ NP = NP∅,
which by Lemma 5.75 is the case exactly if L ∈ NP∅∩coNP∅ = NP∩coNP. Hence,
Low1 = NP ∩ coNP.

3. By definition, any NP set H is in High0 if and only if NP ⊆ PH , which in turn
is equivalent to H being ≤p

T-complete for NP. Hence,

High0 = {H |H is ≤p
T-complete for NP}.

4. By definition, any NP set H is in High1 if and only if NPNP ⊆ NPH , which in
turn is true exactly if NPSAT ⊆ NPH . By Lemma 5.75, this is the case if and only if



234 5. Hierarchies Based on NP

SAT≤NP
sT H . Since SAT is ≤p

m-complete for NP and since A≤p
m B implies A≤NP

sT B
for any sets A and B, it follows that H is ≤NP

sT-complete for NP. Hence,

High1 = {H |H is ≤NP
sT-complete for NP}.

The proof is complete.

Low0

Low1

Low2

Lowk

LH
...

...

High0

High1

High2

Highk

HH

...

...

NP

Fig. 5.20. The low and the high hierarchy within NP

Some basic properties of the low and the high hierarchy are summarized below.
Figure 5.20 shows the inclusion structure of the levels of these two hierarchies that
refine NP. The degree of darkness of the shadowed classes in Figure 5.20 indicates
containment: Darker classes are contained in lighter classes.

Theorem 5.77. 1. Low0 ⊆ Low1 ⊆ · · · ⊆ Lowk ⊆ · · · ⊆ LH ⊆ NP.
2. High0 ⊆ High1 ⊆ · · · ⊆ Highk ⊆ · · · ⊆ HH ⊆ NP.
3. For each k ≥ 0, Lowk ∩ Highk �= ∅ if and only if Σp

k = Σp
k+1 = · · · = PH.

Proof. 1. Fix any k, and let L be any set in Lowk. By definition, Σp,L
k ⊆ Σp

k .
Hence,
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Σp,L
k+1 = NPΣp,L

k ⊆ NPΣp
k = Σp

k+1,

which implies that L is in Lowk+1.
2. Fix any k, and let H be any set in Highk. By definition, Σp

k+1 ⊆ Σp,H
k . Hence,

Σp
k+2 = NPΣp

k+1 ⊆ NPΣp,H
k = Σp,H

k+1,

which implies that H is in Highk+1.
3. For the implication from left to right, suppose that Lowk ∩Highk is nonempty,

and let A be a set in Lowk ∩ Highk. Then, Σp
k+1 ⊆ Σp,A

k ⊆ Σp
k , and the collapse

follows from Theorem 5.33.
For the implication from right to left, suppose that Σp

k+1 = Σp
k . Then, for each

set A in NP,
Σp

k+1 = Σp
k ⊆ Σp,A

k ⊆ Σp
k+1.

Hence, every NP set is simultaneously in Lowk and in Highk. Thus, we even have
that NP = Lowk = Highk. In particular, Lowk ∩ Highk is nonempty.

Corollary 5.78.

1. For each k ≥ 0, either Lowk ∩ Highk = ∅ or NP = Lowk = Highk.
2. The polynomial hierarchy is strictly infinite if and only if LH ∩HH = ∅.

If the polynomial hierarchy is proper up to its (k+1)st level, i.e., if Σp
k �= Σp

k+1,
Theorem 5.77 and the first part of Corollary 5.78 above say that Lowk and Highk

are disjoint subclasses of NP. Do there exist sets in NP that are neither in Lowk nor
in Highk? Similarly, the second part of Corollary 5.78 says that if the polynomial
hierarchy is properly infinite, then the hierarchies LH and HH are disjoint subclasses
of NP. Again, do there exist sets in NP that are neither in LH nor in HH?

These questions will be answered later on in terms of collapses and separations
of the levels of the polynomial hierarchy. To prove these results, we need some use-
ful characterizations of the levels of the low and high hierarchies in terms of ≤p

m-
reducibilities and the iterated K-operator that is defined below.

Schöning’s [Sch83] original definition of the low and high hierarchies slightly
differs from Definition 5.73. He defines a complexity-theoretic version of the jump
operator from recursive function theory: The jump of any set A, denoted by A′, is
defined to be the halting problem relativized to A; see H. Rogers’s book [Rog67]
for more background. The crucial property of the halting problem here is that it
is many-one complete (in the recursion-theoretic sense, i.e., the reduction must be
computable, but not necessarily in polynomial time) for the class RE of recursively
enumerable sets. The complexity-theoretic analog of RE is NP; see Theorems 5.24
and 2.20. Hence, to define a complexity-theoretic analog of the jump operator, it
suffices to pick some ≤p

m-complete set for NP and relativize it. This is done in Defi-
nition 5.79 below that introduces the K-operator, which is based on the generic ≤p

m-
complete set K for NP defined by:

K =
{
〈M, x, 1t〉 M is a representation of an NTM that

accepts the input x in t or fewer steps

}
.
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Definition 5.79 (K-Operator and Iterated K-Operator).

1. For any set A, define the set K(A), the K-operator applied to A, as follows:

K(A) =
{
〈M, x, 1t〉 M is a representation of an NOTM that uses the

oracle A to accept the input x in t or fewer steps

}
.

2. For any set A, the iterated K-operator applied to A is inductively defined by:

K0(A) = A;
Kn(A) = K(Kn−1(A)) for n ≥ 1.

If A = ∅, we write Kn = Kn(∅).
An alternative approach would be to choose some natural ≤p

m-complete set for
NP and to define a suitably relativized version thereof. This has been done by
Schöning [Sch81] for the satisfiability problem. However, this approach is somewhat
more complicated and yields some technical subtleties that must be coped with.

Lemma 5.80 collects some useful properties of the K-operator. In particular, the
third part of Lemma 5.80 adds another equivalent condition to the characterizations
of the ≤NP

sT-reducibility given in Lemma 5.75.

Lemma 5.80. 1. For each set A, the set K(A) is ≤p
m-complete for NPA. In partic-

ular, for A = ∅, K is ≤p
m-complete for NP.

2. For each set A, A≤p
m K(A).

3. For any two sets A and B, A≤NP
sT B if and only if K(A)≤p

m K(B).

Proof. 1. The proof of the lemma’s first part is left to the reader as Exercise 5.33(a).
2. Define the following NOTM M : On input x, M queries its oracle about x. If

the answer is “yes,” M accepts; otherwise, M rejects. It follows that A = L(MA) for
each set A. Moreover, M runs in time p for some polynomial p. Hence, the function
f defined by f(x) = 〈M, x, 1p(|x|)〉 is a ≤p

m-reduction from A to K(A).
3. For the direction from right to left, suppose that K(A)≤p

m K(B) is witnessed
by some reduction f in FP. Let 〈·, ·, ·〉 : Σ∗ ×Σ∗×Σ∗ → Σ∗ be a standard pairing
function that is polynomial-time computable and has polynomial-time computable
projections π1, π2, and π3. Let M and M̄ be the trivial NPOTMs with A = L(MA)
and A = L(M̄A), respectively. Let p ∈ IPol be the time bound for both M and M̄ .
To show that A≤NP

sT B, define an NPOTM N that works as follows on input x:

Step 1: N computes the string y = f(〈M, x, 1p(|x|)〉) in Σ∗. Then, N checks
whether y has the form y = 〈π1(y), π2(y), π3(y)〉, where M1 = π1(y) encodes
the syntactically correct representation of an NOTM, x1 = π2(y) is a string, and
t1 = |π3(y)| is a number in N. If y is not of the desired form, N rejects. Oth-
erwise, N nondeterministically simulates M1 with oracle B on input x1 for t1
steps. On those paths in the simulation of MB

1 (x1) that accept after t1 or fewer
steps, N accepts. On those paths that do not accept after t1 or fewer steps, N
proceeds to Step 2.
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Step 2: As in Step 1, N computes z = f(〈M̄, x, 1p(|x|)〉) and checks that the string
z = 〈π1(z), π2(z), π3(z)〉 has the syntactically correct form. Let M2 = π1(z),
x2 = π2(z), and t2 = |π3(z)|. As in Step 1, N nondeterministically simulates
M2 on input x2 for t2 steps, using B as an oracle. For each accepting path in this
simulation, N rejects. For all other paths, N halts in the “don’t know” state s?.

If x ∈ A = L(MA), then 〈M, x, 1p(|x|)〉 is in K(A), which implies that the triple
f(〈M, x, 1p(|x|)〉) = 〈M1, x1, 1t1〉 is in K(B). Thus, MB

1 (x1) accepts in time t1 on
some path. By construction, NB(x) accepts on some path in Step 1. On the other
hand, since x �∈ A = L(M̄A), we have 〈M̄, x, 1p(|x|)〉 �∈ K(A). It follows that
f(〈M̄, x, 1p(|x|)〉) = 〈M2, x2, 1t2〉 is not in K(B). By construction, NB(x) has no
rejecting paths in Step 2.

An analogous argument shows that x �∈ A implies that NB(x) has some rejecting
path in Step 2, yet no accepting path in Step 1. Hence, N witnesses that A≤NP

sT B.
For the direction from left to right, suppose that A≤NP

sT B. By Lemma 5.75, A
is in NPB ∩ coNPB . Let M and M̄ be NPOTMs such that A = L(MB) and A =
L(M̄B). The goal is to construct a reduction f ∈ FP that≤p

m-reduces K(A) to K(B).
That is, f maps triples of the form 〈N1, x1, 1t1〉 to triples of the form 〈N2, x2, 1t2〉
such that:

NA
1 accepts x1 in at most t1 steps

⇐⇒ NB
2 accepts x2 in at most t2 steps. (5.52)

Given N1, M , and M̄ , the NPOTM N2 is constructed as follows. N2 behaves ex-
actly as N1 except that it handles its oracle queries differently. Whenever N1 queries
its oracle for a string, say q, N2 nondeterministically guesses whether the answer is
“yes” or “no,” and verifies its guess by simulating MB(q) if the guess is “yes” and
simulating M̄B(q) if the guess is “no,” respectively. In both cases, the correct guess
is witnessed by some accepting computation path, and the incorrect guess yields only
rejecting computation paths. On the accepting paths certifying the correct guess, N2

proceeds with the simulation of N1 using the correct answer, and it rejects on all
other paths.

For suitable representations of NPOTMs, the string encoding N2 can be com-
puted in polynomial time from the string encoding N1. Let p be some monotonic
increasing polynomial bounding the running time of both M and M̄ . In at most t1
steps, N1 can query only strings of length at most t1. Hence, NA

1 accepts some input
x1 in at most t1 steps if and only if NB

2 accepts x1 in at most t1p(t1) steps. Setting
x2 = x1 and t2 = t1p(t1) completes the construction of f and proves (5.52). Hence,
K(A)≤p

m K(B) via f .

An immediate consequence of the first part of Lemma 5.80 is the following corol-
lary that can be proven by an easy induction; see Exercise 5.33(b).

Corollary 5.81. 1. For each set A, the set Kn(A) is≤p
m-complete for Σp,A

n . In par-
ticular, for A = ∅, Kn is ≤p

m-complete for Σp
n.

2. For each k, n ∈ N, if A is ≤p
m-complete for Σp

k , then Kn(A) is ≤p
m-complete

for Σp
k+n.
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Since A≤p
T B implies A≤NP

sT B for any two sets A and B, the third part of
Lemma 5.80 has the following corollary. Schöning [Sch83] has shown that the con-
verse of the implications in Corollary 5.82 does not hold.

Corollary 5.82. 1. If A≤p
T B, then K(A)≤p

m K(B).
2. If A≤p

m B, then K(A)≤p
m K(B).

Next, we show that the definition of lowness and highness according to Defi-
nition 5.73 is equivalent to Schöning’s [Sch83] original definition that uses Corol-
lary 5.84 below. Interestingly, Theorem 5.83 and Corollary 5.84 do not apply to the
case of n = 0. For Low0, the reason is that K0(L) and K0 are defined as L and the
empty set, respectively, which implies a trivial problem with the ≤p

m-reduction from
K0(L) = L to K0 = ∅.

Defining K0 as any fixed nontrivial set B in P (i.e., B �= ∅ and B �= Σ∗), Equa-
tion (5.53) in Theorem 5.83 and the characterization of Lown in Corollary 5.84 also
apply to the case of n = 0: Any NP set L is in Low0 if and only if K0(L) = L is
≤p

m-reducible to B = K0, which in turn is equivalent to K0(L) being ≤p
m-complete

for P.
In contrast, for High0, it is not known whether or not (5.54) is true for n = 0.

By Theorem 5.76, High0 equals the class of sets ≤p
T-complete for NP, whereas the

characterization of Theorem 5.83 would require, for n = 0, equality of High0 with
the class of sets ≤p

m-complete for NP.

Theorem 5.83. For each n > 0 and for all sets L and H in NP:

L ∈ Lown ⇐⇒ Kn(L)≤p
m Kn; (5.53)

H ∈ Highn ⇐⇒ Kn+1≤p
m Kn(H). (5.54)

Proof. To prove (5.53), let L be any set in Lown. Thus, Σp,L
n ⊆ Σp

n. Since Kn(L)
is in Σp,L

n ⊆ Σp
n and since Kn is ≤p

m-complete for Σp
n by Corollary 5.81, it follows

that Kn(L)≤p
m Kn.

Conversely, suppose Kn(L)≤p
m Kn. Since Kn(L) is ≤p

m-complete for Σp,L
n by

Corollary 5.81, every set from Σp,L
n is≤p

m-reducible to Kn ∈ Σp
n. Since Σp

n is closed
under≤p

m-reductions, Σp,L
n ⊆ Σp

n. Hence, L is in Lown.
Equation (5.54) can be proven analogously; see Exercise 5.34.

Corollary 5.84. For each n > 0,

Lown = {L ∈ NP | Kn(L) is ≤p
m-complete for Σp

n};
Highn = {H ∈ NP | Kn(H) is ≤p

m-complete for Σp
n+1}.

We now turn to the questions raised after Corollary 5.78: Do there exist sets in
NP that are neither in Lowk nor in Highk for some k, and do there exist sets in
NP that are neither in LH nor in HH? The answer to these questions requires two
somewhat technical prerequisites that the classes Lown, Highn, LH, and HH must
satisfy: recursive presentability and closure under finite variations.
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Definition 5.85 (Recursive Presentability and Closure under Finite Variations).
Let C be any class of decidable sets.

1. C is said to be recursively presentable if and only if there is a recursively enu-
merable sequence M0, M1, M2, . . . of Turing machines such that:

a) C = {L(Mi) | i ≥ 0}, and
b) each of the Turing machines Mi halts for each input.

2. C is said to be closed under finite variations if and only if for any two sets A
and B, if A ∈ C and A∆B = (A− B) ∪ (B − A), the symmetric difference of
A and B, is a finite set, then B ∈ C.

Lemma 5.86. For each n ≥ 0, the classes Lown, Highn, LH, and HH are recursively
presentable and closed under finite variations.

Proof. The proof of these classes being closed under finite variations is left
to the reader as Exercise 5.35(a). To prove that Lown is recursively presentable,
let N0, N1, N2, . . . be a fixed Gödelization (i.e., an effective enumeration) of all
NPTMs. Let T0, T1, T2, . . . be a fixed Gödelization of all deterministic, polynomial-
time Turing transducers.5 That is,

NP = {L(Ni) | i ≥ 0};
FP = {fi | i ≥ 0 and fi is the function computed by Ti}.

Since every Ni halts on each input, the set {〈x, i, n〉 | x ∈ Kn(L(Ni))} is decidable.
Construct a recursively enumerable sequence of Turing machines M0, M1, M2, . . .
satisfying that Lown = {L(Mi) | i ≥ 0} as follows. By (5.53) in Theorem 5.83, any
set L is in Lown if and only if Kn(L)≤p

m Kn. Note that the Σp
n-complete set Kn in

this reduction can be replaced by Kn(A) for any nontrivial set A in P, i.e., for any
set A in P such that A �= ∅ and A �= Σ∗. This follows from Lemma 3.37, which
says that every nontrivial set in P is ≤p

m-complete for P, and from the second part of
Corollary 5.81. Thus, fixing any nontrivial set A in P, we have

L ∈ Lown ⇐⇒ Kn(L)≤p
m Kn(A). (5.55)

For i = 〈j, k〉, define the ith Turing machine Mi as follows:

Step 1: On input x, Mi tests for each string y with |y| < |x| whether or not

y ∈ Kn(L(Nj)) ⇐⇒ Tk(y) ∈ Kn(A). (5.56)

Step 2: If (5.56) is true for all such strings y, then Mi accepts x if and only if
x ∈ L(Nj). Otherwise, Mi accepts x if and only if i is even.

Clearly, Mi halts on each input. It remains to show that Lown = {L(Mi) |i ≥ 0}.
Let L = L(Mi) for some i ≥ 0 with i = 〈j, k〉. By construction of Mi, either

(a) L is a finite or a cofinite set (i.e., a set with a finite complement), or (b) L =
5 A transducer is a Turing machine that computes a function.
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L(Mi) = L(Nj). In case (a), L is trivially in Lown, since already Low0 = P contains
all finite and cofinite sets. In case (b), Tk witnesses that Kn(L)≤p

m Kn(A). By (5.55),
L is in Lown.

Conversely, suppose that L is in Lown. Then, in particular, L is in NP. Let Nj

be some NPTM accepting L, i.e., L(Nj) = L. Moreover, by (5.55), there exists a
k such that Kn(L)≤p

m Kn(A) via Tk. It follows that L = L(M〈j,k〉). Thus, Lown is
recursively presentable.

The proof that LH is recursively presentable is analogous except that now we
consider triples i = 〈j, k, n〉 instead of pairs i = 〈j, k〉 in the construction of Mi.

The proof that Highn and HH are recursively presentable is similar to the above
proof and is left to the reader as Exercise 5.35(b).

Lemma 5.86 shows that the low and the high classes satisfy the hypothesis of
the uniform diagonalization theorem that is presented here as Lemma 5.87 below
without proof. The uniform diagonalization theorem is due to Schöning [Sch82] and
will be applied in proving Theorem 5.88 below.

Lemma 5.87 (Uniform Diagonalization Theorem).
Let A and B be decidable sets and let C andD be classes of decidable sets satisfying
the following properties:

(a) A �∈ C and B �∈ D,
(b) C and D are recursively presentable, and
(c) C and D are closed under finite variations.

Then there exists a decidable set X such that:

1. X �∈ C and X �∈ D.
2. If A ∈ P and B is nontrivial, then X ≤p

m B.

Using the lemmas above, the questions as to whether or not there exist sets in NP
that are neither low nor high can be characterized in terms of collapses and separa-
tions of the levels of the polynomial hierarchy.

Theorem 5.88 (Schöning).

1. For each n ≥ 0, there are sets in NP that are neither in Lown nor in Highn if
and only if Σp

n �= Σp
n+1.

2. There are sets in NP that are neither in LH nor in HH if and only if the polyno-
mial hierarchy is strictly infinite.

Proof. 1. Fix n ≥ 0. For the direction from right to left, suppose that Σp
n �= Σp

n+1.
To apply Lemma 5.87, choose A = ∅, B = SAT, C = Highn, and D = Lown.

Note that A = ∅ is in P = Low0 ⊆ Lown and the NP-complete set B =
SAT is in High0 ⊆ Highn by Theorems 5.76 and 5.77. Hence, by the third part of
Theorem 5.77, our supposition Σp

n �= Σp
n+1 implies that A = ∅ is not in C = Highn

and B = SAT is not in D = Lown, which satisfies hypothesis (a) of Lemma 5.87.
Hypotheses (b) and (c) of Lemma 5.87 are satisfied by Lemma 5.86.
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Now, applying Lemma 5.87, there is a decidable set X such that X is neither
in C = Highn nor in D = Lown. Moreover, since A = ∅ is in P and B = SAT is
nontrivial, X ≤p

m SAT. Hence, X is in NP.
The direction from left to right is proven by contraposition. The third part of

Theorem 5.77 says that Σp
n = Σp

n+1 implies Lown ∩Highn �= ∅. By Corollary 5.78,
NP = Lown = Highn.

2. This part follows analogously to the first part of the theorem by applying
Corollary 5.78 and the uniform diagonalization theorem stated in Lemma 5.87.

Note that the special case of n = 0 in the first part of Theorem 5.88 is nothing
else than Ladner’s result [Lad75], which says that P �= NP if and only if there exist
sets in NP that are neither in P nor NP-complete; see Theorem 3.68.

In Chapter 6, concrete examples of natural problems and classes of problems
that are low will be presented, including the graph isomorphism problem and certain
classes involving randomized algorithms.

5.8 Exercises and Problems

Exercise 5.1 Complete the proof of Fact 5.2: Exact-i-DNP is NP-hard for i > 3.

Exercise 5.2 Consider the problem SAT-UNSAT, which in the proof of Theorem 5.57
is defined by

SAT-UNSAT =
{
〈ϕ, ψ〉 ϕ and ψ are boolean formulas in CNF such

that ϕ is satisfiable and ψ is not satisfiable

}
.

Prove that SAT-UNSAT is DP-complete.

Hint: Any given language L in DP can be represented by L = A ∩ B for sets A
and B in NP, and use the reductions from A and B, respectively, to the NP-complete
set SAT.

Exercise 5.3 Prove that:

(a) NP ∩ coNP ⊆ NP ⊆ NP ∪ coNP ⊆ (NP∧coNP) ∪ (NP∨coNP).
(Can you prove equality for any of these inclusions?

Hint: If so, congratulations! You have just collapsed both the boolean and the
polynomial hierarchy. You should publish your result in one of the top computer
science journals . . . after you have carefully checked your proof.)

(b) NP∧coNP = co(NP∨coNP).
(c) If P = NP then P = coNP = NP ∩ coNP = NP∧coNP = NP∨coNP.

Exercise 5.4 Prove that:

(a) NP is a set ring, i.e., NP is closed under union and intersection.

(b) P and PSPACE both are boolean algebras, i.e., closed under intersection, union,
and complement. What is BC(P), and what is BC(PSPACE)?
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Exercise 5.5 (a) Prove that NP = coNP if and only if NP = BC(NP).

(b) Prove that P = NP if and only if P = BC(NP).
(c) Why does NP �= BC(NP) imply P �= NP?

Exercise 5.6 (a) Prove that UP is closed under intersection.

(b) Is UP closed under union? Is it closed under complement?

(c) Which complexity classes are known to be closed under intersection yet not
known to be closed under union?

Exercise 5.7 Prove Theorem 5.6: For each set ring C, the following statements hold:

1. The nested difference hierarchy over C coincides, level by level, with the union-
of-differences hierarchy over C:

BHk(C) =
{

L
L = A1 −A2 − · · · −Ak for sets Ai in C,
1 ≤ i ≤ k, satisfying Ak ⊆ Ak−1 ⊆ · · · ⊆ A1

}
.

2. BH(C) = BC(C).
Exercise 5.8 Corollary 5.13 says that Exact-5-DNP is DP-complete. Prove that, in
contrast, Exact-2-DNP is very unlikely to be DP-complete. In particular:

(a) Prove that Exact-2-DNP is in coNP.

Hint: Prove that every graph without isolated vertices has a domatic number
of at least 2, and determine the complexity of the set {G | δ(G) ≥ 2}.

(b) Prove that Exact-2-DNP is even coNP-complete.

(c) Suppose that Exact-2-DNP were DP-complete. Which consequences follow
from this hypothesis for the boolean hierarchy over NP and which for the poly-
nomial hierarchy?

Exercise 5.9 Does the class BH(NP) =
⋃

k≥0 BHk(NP) have≤p
m-complete sets?

Exercise 5.10 Look at the proof of Theorem 5.12. Argue why the assumptions made
in this proof can be made without loss of generality. In particular, argue why:

(a) for each graph Gj , we have 3 ≤ χ(Gj) ≤ 4, where χ(Gj) denotes the chromatic
number of Gj ;

(b) none of the graphs Gj contains isolated vertices.

Exercise 5.11 Without using Lemma 5.18 and without using Theorem 5.20, apply
Lemmas 5.11 and 5.17 directly to prove that:

(a) Exact-7-Colorability is DP-complete;

(b) Exact-Mk-Colorability is BH2k(NP)-complete for the k-element set

Mk = {6k + 1, 6k + 3, . . . , 8k − 1}.

Exercise 5.12 Prove Proposition 5.16: Fix any k ≥ 1, and let Mk be any set of k
positive integers including 3. Then, Exact-Mk-Colorability is in BH2k−1(NP)
and cannot be BH2k(NP)-complete unless the boolean hierarchy over NP collapses.
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Exercise 5.13 Prove that the join operation �� on graphs, which is defined in the
proof of Theorem 5.20, is an associative operation, and that for any two graphs A
and B, χ(A �� B) = χ(A) + χ(B), where χ(G) denotes the chromatic number of
any graph G.

Exercise 5.14 (a) Analogously with the exact domatic number problem and with
the exact colorability problem, define the following exact variants of other NP-
complete optimization problems. For each i ≥ 1 and for any k-element set Mk of
positive integers, define the exact variants of the clique problem, the independent
set problem, and a third NP-complete problem of your choice:

• Exact-i-Clique and Exact-Mk-Clique;

• Exact-i-IS and Exact-Mk-IS;

• Exact-i-Favorite and Exact-Mk-Favorite, where Favorite is your fa-
vorite NP-complete problem.

(b) Prove the problems defined in (a) complete for the levels of the boolean hierarchy
over NP. What can be said about the optimality of the problem parameters i and
the integers in Mk?

(c) Prove that the problem Clique-Facet, which is defined in Section 5.9, is DP-
complete.

Hint: Do not look into the paper [PY84] before you have tried to find a reduc-
tion from Exact-i-Clique to Clique-Facet by yourself.

Exercise 5.15 (a) Show that Unique-SAT is coNP-hard and contained in DP.

(b) Prove that if Unique-SAT is in NP then NP = coNP.

Exercise 5.16 (a) Prove Theorem 5.24: A ∈ NP if and only if there exist a set
B ∈ P and a polynomial p such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃w) [|w| ≤ p(|x|) and 〈x, w〉 ∈ B].

(b) Prove the analogous quantifier characterization of coNP.

Hint: Do not use Theorem 5.31 nor Corollary 5.32.

Exercise 5.17 (a) Prove that the set Pre-Iso defined in Example 5.26 is contained
in NP, and that the machine N given in Figure 5.9 indeed is a DPOTM; i.e.,
show that N runs in polynomial time.

(b) Let M be the standard NP machine for the SOS problem. Define the function

g(x) =
{

min{w | w ∈ WitM (x)} if x ∈ SOS
ε otherwise,

where the minimum is taken with respect to the lexicographic ordering of strings.
Without loss of generality, assume that ε, the empty string, does not encode an
accepting path of M(x). Prove that g ∈ FPNP.

Hint: Perform a prefix search similar to the one given in Figure 5.9 of Exam-
ple 5.26.
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Exercise 5.18 Prove Proposition 5.28:

1. ≤log
m ⊆ ≤p

m ⊆ ≤p
T ⊆ ≤NP

T .

2. The relation≤p
T is both reflexive and transitive, yet not antisymmetric.

3. P and PSPACE are ≤p
T-closed, i.e., PP = P and PPSPACE = PSPACE.

4. NPP = NP and NPPSPACE = PSPACE.

5. If A≤p
T B and A is ≤p

T-hard for some complexity class C, then B is ≤p
T-hard

for C.

6. If L �= NP, then there exist sets A and B in NP such that A≤NP
T B, yet A �≤log

m B.

Exercise 5.19 A DPOTM M is said to be positive if and only if A ⊆ B implies
L(MA) ⊆ L(MB). Define the polynomial-time positive Turing reducibility, denoted
by≤p

pos-T, as follows: A ≤p
pos-T B if and only if there exists a positive DPOTM M

such that A = L(MB).
(a) Show that NP is closed under ≤p

pos-T-reductions.

(b) Which other complexity classes are closed under ≤p
pos-T-reductions?

Exercise 5.20 Prove the third item of Theorem 5.30:

(a) Each of the classes ∆p
i , Σp

i , Πp
i , and PH is ≤p

m-closed.

(b) The ∆p
i levels of the polynomial hierarchy are even closed under≤p

T-reductions.

Exercise 5.21 Consider the sets Cyes and Cno defined in the proof of Theorem 5.31.
It is claimed in this proof that Cyes ∈ Σp

i and Cno ∈ Πp
i . Prove these claims.

Exercise 5.22 Show that for each class C, coC ⊆ C implies C = coC.

Exercise 5.23 Look at the proof of Theorem 5.33, which establishes the equivalence
Σp

i = Πp
i ⇐⇒ Σp

i = Σp
i+1 for each i ≥ 1, yet only the implication from right

to left for i = 0. Where does the argument in this proof fail to prove the converse
implication: Σp

0 = Πp
0 =⇒ Σp

0 = Σp
1?

Exercise 5.24 (a) Show that Σ1SAT = SAT. Compare Π1SAT with the tautology
problem defined in Exercise 5.27. What can you say about these two problems?

(b) Prove the first claim of Theorem 5.36: QBF is PSPACE-complete.

Hint: Use the method applied in the proof of Savitch’s Theorem; see The-
orem 3.29. Alternatively, you may apply the method used in the proof of the
second statement of Theorem 5.36.

(c) A QBF F is said to be simple if and only if for each occurrence of every vari-
able xi in F , there is at most one ∀ quantifier between xi and the point of xi’s
quantification. Simple QBFs are important for A. Shamir’s proof [Sha92] that
PSPACE equals IP, which is mentioned in Sections 6.7 and 8.8.

Prove that the following restriction of QBF is PSPACE-complete:

QBFsimple = {F | F is a valid simple QBF}.

(d) Prove Corollary 5.37: PSPACE = Σp
i if and only if QBF ∈ Σp

i .
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Exercise 5.25 (a) Prove Proposition 5.40: IN-Odd, IN-Equ, and IN-Geq are in Θp
2 .

(b) Complete the proof of Theorem 5.44: Show that there is a reduction g for
3-SAT≤p

m IS satisfying (5.25) and (5.26), and show that both IN-Odd and
IN-Geq are Θp

2-hard.

Hint: Explicit proofs that the problems IN-Odd and IN-Geq are Θp
2-complete

can be found in [Wag87a, Cor. 6.4] and in [SV00, Thm. 12], respectively.

(c) Prove Lemma 5.48: Max-SetPacking-Geq is Θp
2-complete.

Hint: Construct a reduction from IN-Geq: Given two graphs G1 and G2, define
Ui = E(Gi) for i ∈ {1, 2}, and for each vertex v of Gi, add to Si the set of edges
incident to v. Argue that α(Gi) = κ(Si). See [RSV03] for more details.

Exercise 5.26 Prove that YoungRanking and YoungWinner both are in Θp
2 .

Exercise 5.27 (a) Prove that the problem MEE-DNF, which is defined in Section 5.9,
is contained in Σp

2 .

(b) Prove that MEE-DNF is coNP-hard. Hint: Find a reduction from the coNP-
complete tautology problem: Given a boolean formula ϕ, is ϕ a tautology? That
is, is ϕ true under every possible truth assignment?

Exercise 5.28 Prove Proposition 5.60.1: The set E = {ψ ∈ {0, 1}∗ | ψ is easy} is
in NP. Hint: Apply Theorem 5.24.

Exercise 5.29 (a) Prove that the problem Odd-k-SAT, which is defined in the proof
of Theorem 5.53, is BHk(NP)-complete. Hint: Apply Lemma 5.11.

(b) Define the problem

Odd-SAT =
{
〈ϕ1, ϕ2, . . . , ϕk〉 k ∈ N and ϕ1, ϕ2, . . . , ϕk are boolean

formulas and ||{i | ϕi ∈ SAT}|| is odd

}
.

For which complexity class is Odd-SAT complete? Prove your conjecture.

Exercise 5.30 Give a detailed proof of Theorem 5.66: For each time-constructible
function s ≥ log, DSPACE(s) ⊆ ATIME(s2).

Exercise 5.31 Give a detailed proof of Theorem 5.68: If s ≥ log is constructible in
time 2ILin(s), then ASPACE(s) ⊆ DTIME(2ILin(s)).

Exercise 5.32 (a) Prove Lemma 5.75, which states that the following three state-
ments are pairwise equivalent:

• A≤NP
sT B.

• A ∈ NPB ∩ coNPB .

• NPA ⊆ NPB .

(b) Prove the analogous assertion for the ≤p
T-reducibility, i.e., show that the follow-

ing three statements are pairwise equivalent:

• A≤p
T B.

• A ∈ PB .

• PA ⊆ PB .
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Exercise 5.33 (a) Prove Lemma 5.80.1: For each set A, the set K(A) is ≤p
m-

complete for NPA. In particular, for A = ∅, K is ≤p
m-complete for NP.

(b) Prove Corollary 5.81:

a) For each set A, the set Kn(A) is ≤p
m-complete for Σp,A

n .

b) For each k, n ∈ N, if A is ≤p
m-complete for Σp

k , then Kn(A) is ≤p
m-

complete for Σp
k+n.

Exercise 5.34 Prove (5.54) from Theorem 5.83: For each n > 0, H is in Highn if
and only if Kn+1≤p

m Kn(H).

Exercise 5.35 Complete the proof of Lemma 5.86:

(a) For each n ≥ 0, the classes Lown, Highn, LH, and HH are closed under finite
variations.

(b) Prove that Highn and HH are recursively presentable.

Exercise 5.36 Do there exist complete sets in the levels Lowk of the low hierarchy?

Problem 5.1 (Critical Graph Problems) A hamiltonian circuit in an undirected
graph G with n vertices is a sequence (v1, v2, . . . , vn) of vertices from V (G) such
that {vn, v1} ∈ E(G) and {vi, vi+1} ∈ E(G) for each i, 1 ≤ i < n. Hamiltonian
circuits in directed graphs are defined analogously. The hamiltonian circuit problem,
which asks whether or not a given graph has a hamiltonian circuit, is known to be
NP-complete both for directed and for undirected graphs.

(a) Prove the above claim.

Hint: First, reduce the vertex cover problem to the hamiltonian circuit problem
for undirected graphs. Then, reduce the hamiltonian circuit problem for undi-
rected graphs to that for directed graphs. Both reductions can be found in [GJ79].

(b) Define the maximal non-hamiltonian circuit problem (MNHC, for short) as fol-
lows: Given an undirected graph G, is it true that G has no hamiltonian circuit,
yet adding any one edge to G creates one? Call the analogous problem for di-
rected graphs MDNHC, and prove that both MNHC and MDNHC are contained in DP.

(c) Show that MNHC≤p
m MDNHC.

Hint: Use the reduction from the hamiltonian circuit problem for undirected
graphs to that for directed graphs from (a). This reduction happens to preserve
criticality. (However, this is quite a lucky strike. In general, it cannot be taken
for granted that reductions preserve criticality. In fact, in most of the cases they
fail to do so. The MNHC≤p

m MDNHC case is one of the rare occasions at which
the standard NP-completeness reduction happens to also work for the critical
problem variant.)
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(d) Can you prove that MNHC is DP-complete? What about the critical problem
TSP-Facet mentioned in Section 5.9 and defined in [PY84]?

Hint: If not, don’t be discouraged. Rather, look into [PW88], which gives
a very sophisticated reduction from Minimal-3-UNSAT to MNHC. Then, look
into [PY84] for the reduction from MNHC to TSP-Facet.

Problem 5.2 (Correctness of the Guruswami–Khanna Reduction)
Look at the proof of Lemma 5.18 that gives the Guruswami–Khanna reduction from
3-SAT to 3-Colorability. Intuitively, it is argued that every 4-coloring of the graph
H = ρ(G) selects the “root” ri of each tree-like structure Si, and that this selection
is inherited downwards to the “leaves” of Si. Give a formal proof that the reduction
is correct. In particular, prove the following claims:

(a) For each i with 1 ≤ i ≤ m, there exists a 3-coloring of the vertices in Si such
that exactly one of the three “leaves” ti,1, ti,2, and ti,3 is selected.

(b) Prove Lemma 5.19: Every legal 4-coloring of Si selects one of ti,1, ti,2, or ti,3.

Hint: Construct a basic template for ri that slightly modifies the one given in
Figure 5.5 such that the modified template enforces selection of the “root.” Then,
looking at the connection pattern between the templates of a tree-like structure
Si in Figure 5.6, prove that if an internal “vertex” of Si is selected, so is one of
its “children.”

(c) Prove that the gadgets shown in Figures 5.7 and 5.8 that connect two “leaves”
of Si and Sj , i �= j, prevent both these “leaves” being selected by the same
4-coloring. Why is it necessary to guarantee that “vertices,” say ti,k in Si and
tj,� in Sj , which correspond to adjacent vertices in G, cannot be selected by the
same 4-coloring?

Problem 5.3 (Computing Complete Graph Isomorphisms from Partial Ones)

(a) Let g be some function oracle that, given any two isomorphic graphs with n
vertices each, outputs a partial isomorphism between the graphs consisting of at
least (3 + ε) log n vertices for some constant ε > 0. Prove that there exists a
DPOTM M that uses the oracle g to compute a complete isomorphism between
any two isomorphic graphs.

Hint: This problem and its solution are due to Gál, Halevi, Lipton, and Pe-
trank [GHLP99].

(b) Improve the above result by showing the same consequence under the following
assumption: Suppose you are given a function oracle f that provides only one
vertex pair belonging to an isomorphism between two given isomorphic graphs;
that is, f(G, H) computes a partial isomorphism consisting of the pair (x, y)
only, where x ∈ V (G) and y ∈ V (H) with σ(x) = y for some σ ∈ ISO(G, H).
Prove that there exists a DPOTM M that uses the oracle f to compute a total
isomorphism ϕ ∈ ISO(G, H), where ϕ possibly may be distinct from σ.

Hint: The solution is due to Große, Rothe, and Wechsung [GRW02], whose
result is based on the techniques to prove that GI is self-reducible; see also the
comments in Section 3.8.
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5.9 Summary and Bibliographic Remarks

The class DP, which constitutes the second level of the boolean hierarchy over NP,
was introduced by Papadimitriou and Yannakakis in their seminal paper [PY84]. In
addition to the exact variants of NP-complete optimization problems, they also stud-
ied various other important classes of problems belonging to DP, including critical
problems, facet problems, and unique solution problems, and they proved many of
them complete for DP.

Critical Problems: A graph is said to be critical if it does not have a certain
property, but deleting any one of its vertices or edges (or inserting a single new
vertex or edge anywhere in the graph) creates a graph with this property. Critical
graph problems ask whether or not a given graph is critical with respect to some
given property. For instance, Minimal-3-Uncolorability is a critical graph
problem that asks whether a given graph is not 3-colorable, but deleting any one
of its vertices makes it 3-colorable. Papadimitriou and Yannakakis [PY84] noted
that critical problems tend to be extremely elusive and very hard to tackle:

“This difficulty seems to reflect the extremely delicate and deep struc-
ture of critical problems—too delicate to sustain any of the known re-
duction methods. One way to understand this is that critical graphs is
usually the object of hard theorems.”

The first critical problem proven to be DP-complete was Minimal-3-UNSAT:
Given a boolean formula ϕ in 3-CNF (and with at most three occurrences of
each variable), is it true that ϕ is unsatisfiable, yet removing any one of its clauses
makes it satisfiable? This result is due to Papadimitriou and Wolfe [PW88] who
gave a reduction from SAT-UNSAT, which is defined in Exercise 5.2.
By a very sophisticated construction, Cai and G. Meyer [CM87] proved that the
problem Minimal-3-Uncolorability is DP-complete, even when the problem
is restricted to planar graphs. Their reduction is from Minimal-3-UNSAT.
V. Vazirani, as attributed in [PW88], proved DP-completeness of the problem
Critical-Clique: Given a graph G and an integer k, is it true that G has no
clique of size k, yet adding any one edge creates a k-clique?

Facet Problems: Many combinatorial optimization problems, including the NP-
complete traveling salesperson problem6 and the clique problem, require the op-
timization of a linear functional over some discrete set of vectors. For example,

6 For any set C = {c1, c2, . . . , cn} of n cities, a distance map on C is an n × n matrix
D whose entries are d(ci, ci) = 0 on the diagonal, where 1 ≤ i ≤ n, and d(ci, cj) ∈
Z+ for each pair of distinct cities ci and cj in C, where Z+ denotes the set of positive
integers. A traveling salesperson tour on C is a tour that visits each city exactly once and
returns to the point of origin. Formally, it is given by a permutation π on {1, 2, . . . , n},
where the cities cπ(1), cπ(2), . . ., cπ(n), cπ(1) are visited in this order, and its length is
d(cπ(n), cπ(1)) +

Pn−1
i=1 d(cπ(i), cπ(i+1)). The traveling salesperson problem asks for a

minimum length traveling salesperson tour on C. The decision version TSP is defined as
follows: Given a set C of n cities, a distance map D on C, and a positive integer k ∈ Z+,
does there exist a traveling salesperson tour on C of length at most k?
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the clique problem calls for the maximization of c′x subject to x ∈ C, where x
is an n-dimensional variable vector, c is the vector of n ones, and C is the set of
characteristic vectors of the cliques of the given graph. Equivalently, the clique
problem calls for the maximization of c′x subject to x ∈ Polytope(C), where
Polytope(C) is the clique polytope of C, i.e., the convex hull of C. Optimiz-
ing a linear functional over a convex polytope by linear programming requires a
characterization of the facets of this polytope, i.e., it requires the nonredundant
system of linear inequalities defining this polytope.
Define Clique-Facet to be the following problem: Given a graph G and a linear
inequality

∑n
i=1 xi ≤ k, is the inequality a facet of the clique polytope of G? Pa-

padimitriou and Yannakakis [PY84] proved that Clique-Facet is DP-complete;
see Exercise 5.14(c). An alternative proof, which reduces Critical-Clique
to Clique-Facet, is attributed to Lovász in [PW88]. TSP-Facet, the trav-
eling salesperson facet problem, was proven DP-complete by Papadimitriou
and Wolfe [PW88]. Their reduction to TSP-Facet is from the maximal non-
hamiltonian circuit problem (MNHC), a critical graph problem defined in Prob-
lem 5.1. Exercises 5.2, 5.14(c), and 5.15 and Problem 5.1 are from [PY84].

Unique Solution Problems: For example, define Unique-SAT to be the set of all
boolean formulas having exactly one satisfying assignment. It is not difficult to
show that Unique-SAT is coNP-hard and contained in DP; see Exercise 5.15.
The precise complexity of Unique-SAT is still unknown.
The natural question of whether or not Unique-SAT is DP-complete was stud-
ied intensely. Here are some of the partial answers obtained: Blass and Gure-
vich [BG82] showed that the question of whether or not Unique-SAT is DP-
complete is tied to the question of whether or not Unique-SAT is NP-hard:

Unique-SAT is DP-complete ⇐⇒ SAT-UNSAT≤p
m Unique-SAT

⇐⇒ SAT≤p
m Unique-SAT.

They constructed an oracle relative to which no ≤p
m-reduction from SAT to

Unique-SAT can exist. In contrast, Valiant and V. Vazirani established in their
pathbreaking paper [VV86] a polynomial-time randomized reduction from SAT
to Unique-SAT; see Chapter 6. Thus, Unique-SAT is DP-complete under poly-
nomial-time randomized reductions. Chang, Kadin, and Rohatgi [CKR95] took
things a step further by analyzing the threshold behavior of randomized reduc-
tions and proving that if Unique-SAT is ≤p

m-equivalent with its complement,
then DP = coDP and the boolean hierarchy over NP and the polynomial hierar-
chy collapse. Similarly, if Unique-SAT is in coDP, then the PH collapses.

Cai et al. [CGH+88, CGH+89] generalized DP by introducing the boolean
hierarchy over NP. Merging, unifying, and expanding the results that originally
were obtained independently by Cai and L. Hemaspaandra [CH86] and by Gun-
dermann, Wagner, and Wechsung [Wec85, GW87], the papers [CGH+88, CGH+89]
thoroughly study the basic structural properties of the boolean hierarchy and their
complexity-theoretic applications. Based on the early work by Hausdorff [Hau14],
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which studies the boolean hierarchy over arbitrary set rings, the level-by-level equiv-
alence of the various boolean hierarchy normal forms over the set ring NP is shown
in [CGH+88, Wag87a, KSW87]. Theorems 5.6, 5.8, and 5.10 and Corollary 5.7 can
be found in these papers.

Their work inspired many further papers studying the boolean hierarchy over NP
and over other classes. Wagner [Wag87a, Wag90], Köbler, and Schöning [KSW87]
studied the nested difference hierarchy, the symmetric difference hierarchy, and the
extended boolean hierarchy, and they identified many natural problems complete for
the levels of the boolean hierarchy over NP. In particular, the sufficient condition
for proving BHk(NP)-hardness stated in Lemma 5.11 is from [Wag87a], and so are
Exercises 5.11, 5.13, 5.14(a), and 5.14(b). Exercise 5.12 is from [Rot03].

Gundermann, Nasser, and Wechsung [GNW90] and Beigel, Chang, and Ogi-
hara [BCO93] investigated boolean hierarchies over counting classes. Bertoni et
al. [BBJ+89] studied boolean hierarchies over the class RP, “random polynomial
time” (see Chapter 6), and over other classes. L. Hemaspaandra and Rothe [HR95,
HR97b] thoroughly investigated the boolean hierarchy normal forms over UP, “un-
ambiguous polynomial time,” which is defined in Section 3.6.2. Although UP is
closed under intersection, it is very unlikely to be closed under union, and thus it
is not a set ring; see Exercise 5.6. In [HR95, HR97b], it is shown that, for certain
boolean hierarchy normal forms, closure under intersection suffices to capture the
boolean closure of the underlying class: Both the alternating sums and the symmet-
ric difference hierarchy over any class closed under intersection (yet possibly not
closed under union) capture the boolean closure of the class. In particular, this result
applies to UP. In contrast to the NP case, the Hausdorff hierarchy and the nested
difference hierarchy over UP both fail to capture the boolean closure of UP in some
relativized worlds [HR97b].

Theorem 5.12 is due to Riege and Rothe [RR04]. In this paper, it is also shown
that the exact versions of certain generalized dominating set problems are com-
plete for the levels of the boolean hierarchy over NP. Generalized dominating set
problems were introduced by Heggernes and Telle [HT98]; their framework pro-
vides a uniform approach to define a great variety of graph problems by parti-
tioning the vertex set of a graph such that the number of neighbors for each ver-
tex in the partition is constrained. In addition, it is proven in [RR04] that the ex-
act conveyor flow shop problem is complete for the levels of the boolean hierar-
chy over NP. The conveyor flow shop problem arises in real-world applications in
the wholesale business, where warehouses are supplied with goods from a central
storehouse. This problem was introduced and extensively studied by Espelage and
Wanke [EW00, Esp01, EW01, EW03].

Lemma 5.17, which is proven in Chapter 3 and which gives the standard re-
duction from 3-SAT to 3-Colorability, is due to Stockmeyer [Sto73], Garey,
and Johnson [GJS76]. Lemma 5.18 gives an even stronger reduction from 3-SAT
to 3-Colorability, which is due to Guruswami and Khanna [GK00]. Originally,
their work was not motivated by issues concerning the hardness of exact colorabil-
ity, but by issues related to the hardness of approximating the chromatic number of
3-colorable graphs.
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A very powerful tool for proving the nonapproximability of hard combinatorial
problems is the PCP theorem, which is related to the notion of interactive proof
systems; see Sections 6.3 and 8.4 for the related notion of Arthur-Merlin games.
For example, Arora, Lund, Motwani, Sudan, and Szegedy [ALM+98] employ proof
verification for proving the hardness of approximation problems. More about ap-
proximation and nonapproximability can be found, e.g., in Ausiello et al.[ACG+03],
Vazirani [Vaz03], and the comprehensive, up-to-date compendium of NP optimiza-
tion problems edited by Crescenzi, Kann, Halldórsson, Karpinski, and Woeginger:
http://www.nada.kth.se/˜viggo/problemlist/compendium.html.

PCP is an acronym for “probabilistically checkable proof system.” The PCP the-
orem, which is due to Arora et al. [AS98, ALM+98], says that NP can be charac-
terized by such proof systems with only logarithmically many random bits of the
verifier and with a constant number of verifier queries. For precise definitions and
more details and pointers to the literature, we refer to Goldreich’s survey [Gol97]
and to the theses of Arora [Aro94] and Sudan [Sud95]; see also Zimand [Zim04].

Using the PCP theorem, Khanna, Linial, and Safra [KLS00] showed that it
is NP-hard to color a 3-colorable graph with only four colors. Guruswami and
Khanna [GK00] gave a novel proof of the same result by providing the clever con-
struction presented in the proof of Lemma 5.18. This direct transformation, which
does not rely on the PCP theorem, is here employed to settle the question of the exact
complexity of the exact colorability problem, which was explicitly raised by Wag-
ner [Wag87a, p. 70] in 1987. Drawing on Lemmas 5.17 and 5.18, Theorem 5.20 says
that Exact-4-Colorability is DP-complete. This result is due to Rothe [Rot03];
see also his joint work with Spakowski and Vogel [RSV02]. In contrast to this com-
pleteness result, Exact-3-Colorability is in NP by Proposition 5.16.

The polynomial hierarchy was introduced by A. Meyer and Stockmeyer [MS72,
Sto77]. Theorems 5.24, 5.30, 5.31, and 5.33 and Corollary 5.32 are due to them
and to Wrathall [Wra77]. Historically, one of the motivations for introducing the
polynomial hierarchy was the desire to pinpoint the precise complexity of the
minimum equivalent expression problem and its variations. For example, define
MEE-DNF to be the following decision problem: Given a pair 〈ϕ, k〉, where ϕ is
a boolean formula in DNF and k is a positive integer, does there exist a boolean
formula ψ equivalent to ϕ such that at most k variables occur in ψ? It is easy to
see that MEE-DNF is coNP-hard; see Exercise 5.27(b). However, every attempt to
prove coNP-completeness failed. Using the Wagner technique, E. Hemaspaandra
and Wechsung [HW97, HW02] raised the coNP-hardness of MEE-DNF to a Θp

2 lower
bound. On the other hand, MEE-DNF is immediately seen to be contained in Σp

2 ; see
Exercise 5.27(a). Umans [Uma98] ultimately resolved the question of the precise
complexity of MEE-DNF by proving it Σp

2 -complete. Dropping the restriction to DNF
formulas in the definiton of MEE-DNF, we obtain the problem MEE, which trivially
is in Σp

2 and which is known to be Θp
2-hard by E. Hemaspaandra and Wechsung’s

result [HW97]. The precise complexity of MEE is still unknown.
Eiter and Gottlob [EG93] studied problems related to logic and artificial intelli-

gence. They proved Πp
2 -completeness of the deduction problem for arbitrary propo-

sitional theories under the extended closed-world assumption or under circumscrip-
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tion. These are techniques arising in nonmonotonic logic, which is concerned with
reasoning with incomplete knowledge.

Schaefer and Umans [SU02a, SU02b] provide a very comprehensive, two-part
compendium surveying a host of natural problems complete for the second or higher
levels of the polynomial hierarchy. They also state a number of interesting open
problems, including the above-mentioned issue of the precise complexity of MEE.

Agrawal and Thierauf [AT01] studied FI, the formula isomorphism problem:
Given two boolean formulas ϕ and ψ, decide whether or not there exists a permu-
tation of the variables of ϕ such that ϕ and ψ become equivalent. Clearly, FI is
contained in Σp

2 . Using techniques related to interactive proof systems and using a
result from learning theory due to Bshouty et al. [BCKT94], they proved that FI can-
not be Σp

2 -complete unless the polynomial hierarchy collapses. Thus, the complexity
of the formula isomorphism problem seems to be intermediate between the first and
second levels of the PH, just like the complexity of the graph isomorphism problem
seems to be intermediate between the zeroth and first levels of the PH. More infor-
mation on boolean isomorphism and equivalence problems can be found in [Thi00];
see also the related work of Borchert, Ranjan, and Stephan [BRS98, BR93] and of
Borchert, L. Hemaspaandra, and Rothe [BHR00].

The FPNP prefix search algorithm from Figure 5.9 is the standard method for
finding the lexicographically smallest solutions of NP problems. Note that FPNP

is the function analog of ∆p
2 = PNP. Krentel [Kre88] and Wagner [Wag87a] es-

tablished many ∆p
2-completeness results for optimization problems related to NP,

including the problem Odd-Max-SAT that asks whether or not the maximum satis-
fying assignment of a given boolean formula is odd. Papadimitriou [Pap84] proved
∆p

2-completeness for the problem of deciding whether or not there exists a unique
optimal traveling salesperson tour for a given distance map on a set of cities. Große,
Rothe, and Wechsung [GRW01] proved that computing the lexicographically small-
est four-coloring for planar graphs is ∆p

2-hard. This result optimally improves upon
a result of Khuller and V. Vazirani [KV91] who provided an NP-hardness lower
bound for this problem, concluding that it is not self-reducible in the sense of
Schnorr [Sch76, Sch79] unless P = NP. Chen and Toda [CT95] proposed a gen-
eral framework for studying the complexity of solving maximality problems and
obtained completeness results for coNP, DP, and Πp

2 .
The polynomial-time Turing reducibility, ≤p

T, is due to Cook [Coo71]. The po-
lynomial-time truth-table reducibility, ≤p

tt , was introduced and thoroughly investi-
gated by Ladner, Lynch, and Selman [LLS75]. Their work provides the most pro-
found source on polynomial-time reducibilities, while the best source on logarithmi-
cally space-bounded reducibilities is [LL76]; see the work by Buhrman, E. Hema-
spaandra, and Torenvliet [BST93b, BST93a] for a comparison. Every reducibility
discussed here is the complexity-bounded analog of its respective counterpart in
recursive function theory. Selman [Sel82b] introduced the notion of positive Tur-
ing reducibility, ≤p

pos-T; Exercise 5.19 is due to him. In addition, he extensively
studied various polynomial-time reducibilities on NP, linking their behavior to
other complexity-theoretic notions such as self-reducibility, p-selectivity, and tally
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sets; see [Sel79, Sel82a, Sel82b, Sel88a]. A wonderful source on the theory of p-
selectivity is the book by L. Hemaspaandra and Torenvliet [HT03a].

Proposition 5.40, Lemma 5.43, and Theorem 5.44 are due to Wagner [Wag87a].
Explicit proofs that IN-Equ and IN-Geq are both Θp

2-complete are not presented in
his paper [Wag87a] but can be found in [HR97a] and [SV00], respectively. Note
also that, unlike the statement in Lemma 5.43, Wagner actually states a criterion for
PNP

bf -hardness in [Wag87a], where PNP
bf is defined as the closure of NP under a restric-

tion of the ≤p
tt -reducibility in which the boolean function τ from Definition 5.41 is

not encoded as a boolean circuit but as a boolean formula. However, among other
characterizations of Θp

2 , Wagner proved in [Wag90] that PNP
bf = PNP

tt = Θp
2 .

Bartholdi, Tovey, and Trick [BTT89b, BTT89a, BTT92] initiated the study of
election systems with respect to their computational properties. They established
NP-hardness lower bounds for both the winner and the ranking problem for Dodg-
son and for Kemeny elections [BTT89b]. Dodgson elections were proposed in 1876
by Charles L. Dodgson [Dod76] who is better known today by his pen name, Lewis
Carroll. His voting scheme is similar to H. Young’s voting scheme in that it also
extends the Condorcet Principle by altering preference profiles. Unlike Young, how-
ever, Dodgson suggests that we remain most faithful to the Condorcet Principle if the
election is won by any candidate who is “closest” to being a Condorcet winner. To
define “closeness,” each candidate c in a given election 〈C, V 〉 is assigned the Dodg-
son score, the smallest number of sequential interchanges of adjacent candidates in
the voters’ preferences that are needed to make c a Condorcet winner. Any candidate
with minimum Dodgson score is called a Dodgson winner. The problem of deciding
whether or not the Dodgson score of a given preference profile exceeds a given value
is NP-complete [BTT89b].

Bartholdi, Tovey, and Trick’s NP-hardness results for the Dodgson winner and
ranking problems [BTT89b] were optimally improved to Θp

2-completeness by E.
and L. Hemaspaandra and Rothe [HHR97a] who directly applied Lemma 5.43. E.
Hemaspaandra, Spakowski, and Vogel [HSV] obtained the analogous results for Ke-
meny elections. Theorems 5.49 and 5.51, which provide the corresponding results
for Young elections, are due to Rothe, Spakowski, and Vogel [RSV02, RSV03]. In
addition, they proved that the winner and ranking problems in Fishburn’s [Fis77]
homogeneous7 variant of Dodgson elections can be solved efficiently by linear pro-
gramming. Their linear program is based on an integer linear program of Bartholdi
et al. [BTT89b]. Young [You77] originally defined his voting scheme in the homoge-
nous variant and showed that the corresponding problems can be solved efficiently
by linear programming, which contrasts with Theorems 5.49 and 5.51.

Bartholdi, Tovey, and Trick [BTT89a, BTT92] also studied complexity issues re-
lated to strategic voting and manipulation and control of election systems (see also,

7 Homogeneity is another quite natural property of voting schemes that has been studied
extensively in social choice theory. Informally stated, a voting scheme f is homogeneous if
and only if splitting each voter v ∈ V into n voters, each of whom has the same preference
order as v, yields exactly the same choice set of winning candidates. Fishburn [Fis77]
proved that neither the Dodgson nor the Young voting schemes (as defined in Section 5.3.2)
are homogeneous.
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e.g., [CLS03, CS02, HHR05]). Dwork, Kumar, Naor und Sivakumar [DKNS01]
proved that aggregation systems inspired by the Kemeny election system can pro-
vide a useful protection against spamming, the manipulation of website rankings by
search engines. They developed an efficient heuristic, called local Kemenization, that
is based on an extension of the Condorcet Principle. L. Hemaspaandra, Rajasethu-
pathy, Sethupathy, and Zimand [HRSZ98] did an experimental study of various ap-
portioning algorithms, including a simulated annealing heuristic, for the Congress
of the United States. For further details, the reader is referred to the excellent sur-
vey [HH00], which is a rich source of reference on the issues and results in computa-
tional politics. For a deeper background in social choice theory, the reader is referred
to the books [MU95, Bla58, Arr63, Saa95, Saa01].

Further applications of Lemma 5.43 can be found in the literature; see [HHR97b].
For example, E. Hemaspaandra, Rothe [HR98], and Spakowski [HRS] proved that
recognizing those graphs for which certain efficient approximation heuristics for the
independent set and the vertex cover problem do well is complete for parallel access
to NP.

Köbler, Schöning, Wagner, and Wechsung [Wec85, KSW87, Wag87b, Wag89,
Wag90], Krentel [Kre88], Buss and Hay [BH88, BH91], and Beigel [Bei91a] inves-
tigated the boolean hierarchy and the query hierarchies over NP. Theorem 5.53 is
from [Bei91a], which attributes the theorem’s first item to Wagner and Wechsung
(see [Wec85]) and its third item to Köbler, Schöning, and Wagner [KSW87]. The
equality BH(NP) = PNP

btt from Corollary 5.54 is due to Cai et al. [CGH+88].
The equality PNP[O(log)] = PNP

tt from Corollary 5.55 was independently discov-
ered by L. Hemaspaandra [Hem87, Hem89], Buss and Hay [BH88, BH91], and
Köbler, Schöning, and Wagner [KSW87, Wag90]. Further characterizations of Θp

2 =
PNP[O(log)] can be found in [Wag90].

Eiter and Gottlob [EG97] provided logical characterizations of Θp
2 and proved a

number of problems from artificial intelligence and modal logic Θp
2-complete. Cas-

tro and Seara [CS92] characterized the classes PNP[O(logk)] that are sandwiched in-
between Θp

2 and ∆p
2. Rohatgi [Roh95] established tight bounds on the thresholds

of polynomial-time randomized reductions for the classes in the boolean and in the
query hierarchies.

Kadin [Kad88] initiated the study of the connection between the boolean and the
polynomial hierarchy presented in Section 5.5. Theorem 5.57 is due to him. Yap’s
result, stated as Lemma 5.59 and applied in the proof of Theorem 5.57, is interest-
ing in its own right. There is a number of results related to or even stronger than
Lemma 5.59. The original motivation of Lemma 5.59 comes from the Karp–Lipton
Theorem [KL80]: If NP has a ≤p

T-hard sparse set S (i.e., if NP ⊆ PS or, equiva-
lently,8 if NP has polynomial-size circuits), then PH = Σp

2 ∩Πp
2 . Comparing the two

results, note that Lemma 5.59, which says that if coNP ⊆ NPS then PH = Σp
3 ∩Πp

3 ,
has both a weaker hypothesis and a weaker conclusion than the Karp–Lipton Theo-
rem. Thus, the two results are related, yet incomparable.

8 This equivalence, which was first noted by A. Meyer, appears in [BH77]. The Karp–Lipton
Theorem is due to Karp and Lipton [KL80] who also acknowledge a contribution by Sipser.
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Mahaney [Mah82] proved that if the sparse oracle set is itself in NP (i.e., if there
exists a sparse set that is ≤p

T-complete for NP), then the PH collapses to ∆p
2 = PNP.

Long [Lon82a] generalized Mahaney’s result by proving that if there exists a sparse
set S in ∆p

2 such that NP ⊆ PS , then PH = ∆p
2. Strengthening Mahaney’s result,

Kadin [Kad89] proved the optimal collapse: If there exists a sparse set S in NP such
that coNP ⊆ NPS , then PH = Θp

2 = PNP[O(log)]. Thus, if there exists a sparse
≤p

T-complete set in NP, then PH = Θp
2 = PNP[O(log)]. This result is optimal, since

Kadin [Kad89] also proved that, for each function f in o(log n), there is a relativized
world such that PNP[O(log)] �⊆ PNP[f(n)] and yet NP has a sparse ≤p

T-complete set.
The study of reductions to sparse sets has a long and rich history in complexity

theory; see the surveys [Mah86, Mah89, HOW92, You92, AHH+93]. In particular,
this study is related to the famous isomorphism conjecture of Berman and Hartmanis;
see Conjecture 3.73 in Section 3.6.2. Recall from this section that Mahaney [Mah82]
resolved a related conjecture of Berman and Hartmanis by proving that if there exists
some sparse ≤p

m-complete set in NP, then P = NP; see Theorem 3.75. Comparing
this result with Kadin’s result above, one sees that Mahaney’s implication has both
a stronger hypothesis (≤p

m-completeness versus ≤p
T-completeness) and a stronger

collapse consequence (P = NP = PH versus PH = Θp
2) than Kadin’s implication.

What about the reductions in between ≤p
m and ≤p

T? In particular, what happens if
every NP set is ≤p

tt -reducible (with an unbounded or a bounded number of queries)
to some sparse set? Watanabe studied polynomial-time 1-truth-table reductions of
NP sets to sparse sets. In particular, he proved that if NP ⊆ PS

1-tt for some sparse
set S, then P = FewP and NP = RP, where RP is the class “random polynomial
time” to be defined in Chapter 6. Ogihara and Watanabe [OW91] strengthened Ma-
haney’s result by proving that if NP ⊆ PS

btt for some sparse set S, then P = NP.
Homer and Longpré [HL94] simplified their proof and extended their result to ≤p

tt -
and ≤p

T-reductions of NP sets to sparse sets with a logarithmic number of queries.
Arvind and Torán [AT99] proved that if an NP-complete set or a coNP-complete set
is polynomial-time disjunctive truth-table reducible to a sparse set, then the function
analogs of PNP

tt and PNP[O(log)] coincide. The disjunctive truth-table reducibility is a
special ≤p

tt -reducibility that accepts exactly if at least one query is answered posi-
tively. They also showed in [AT99] that if an NP-complete set or a coNP-complete
set is polynomial-time disjunctive truth-table reducible to a sparse set of polyloga-
rithmic density, then P = NP.

Note that Kadin’s collapse result has both a stronger hypothesis and a stronger
conclusion than the Karp–Lipton Theorem. Köbler and Watanabe [KW98] obtained
a genuine improvement of the Karp–Lipton Theorem: If NP ⊆ PS for some sparse
set S, then PH = ZPPNP, where ZPP is the class “zero-error probabilistic poly-
nomial time” to be defined in Section 6.2.1. Note that ZPP ⊆ NP. The strongest
Karp–Lipton-type theorem currently known is due to Cai, Chakaravarthy, L. Hema-
spaandra, and Ogihara [CCHO03]: If NP ⊆ PS for some sparse set S, then PH ⊆ Sp

2.
The class Sp

2 was introduced independently by Canetti [Can96] and by Russell and
Sundaram [RS98]. Sp

2 is akin to Σp
2 in that it is also defined via two alternating quan-

tifiers. The difference is that Sp
2 is based on the symmetric alternation of ∃p and ∀p

quantifiers: A set A is in Sp
2 if and only if there exist a set B ∈ P and a polyno-
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mial p such that for each x ∈ Σ∗, x ∈ A implies (∃py) (∀pz) [〈x, y, z〉 ∈ B], and
x �∈ A implies (∃pz) (∀py) [〈x, y, z〉 ∈ B]. Compare this definition of Sp

2 with the
quantifier characterization of Σp

2 given in Theorem 5.31. Sp
2 is also related to the

notion of competing provers in the area of interactive proof systems. By definition,
Sp

2 ⊆ Σp
2 ∩Πp

2 . Cai [Cai01] proved that Sp
2 ⊆ ZPPNP.

Turning back to Kadin’s result that the polynomial hierarchy collapses if the
boolean hierarchy does, Wagner achieved stronger collapses of the PH under the
same hypothesis: first, in [Wag87b], a collapse down to ∆p

3; then, in [Wag89], a col-
lapse down to BH(Σp

2 ), which is contained in Θp
3 ⊆ ∆p

3. Chang and Kadin [Cha91,
CK96] took things a step further by proving that BHk(NP) = coBHk(NP) implies
a collapse of the PH even down to BHk(Σp

2 ). Beigel, Chang, and Ogihara [BCO93]
proved that BHk(NP) = coBHk(NP) implies PH = (PNP

(k−1)-tt)
NP; note that The-

orem 5.53 implies that (PNP
(k−1)-tt)

NP ⊆ BHk(Σp
2 ). E. and L. Hemaspaandra and

Hempel [HHH98b] (see also Hempel’s thesis [Hem98]) and, independently, Reith
and Wagner [RW01] proved that, for each k > 0 and each i > 0, BHk(Σp

i ) =
coBHk(Σp

i ) implies PH = BHk(Σp
i ) ∆ BHk−1(Σ

p
i+1), where ∆ denotes the com-

plex symmetric difference of set classes.9 In particular, for i = 1, BHk(NP) =
coBHk(NP) implies PH = BHk(NP) ∆ BHk−1(Σ

p
2 ). Currently, this is the strongest

result linking a collapse of the polynomial hierarchy to a collapse of the boolean
hierarchy over NP.

E. and L. Hemaspaandra and Hempel [HHH99] initiated a related line of research
that studies downward collapses within the polynomial hierarchy. An immediate con-
sequence of Theorems 5.53 and 5.57 is that PNP[1] = PNP[2] implies PH = Σp

3 ∩Πp
3 .

Can one expect to obtain a collapse down to PH = Σp
1 ∩ Πp

1 = NP ∩ coNP un-
der the same hypothesis? A result in [HHH99] says that such a strong downward
collapse can be shown indeed for the higher levels of the polynomial hierarchy:
For each i > 2, PΣp

i [1] = PΣp
i [2] implies Σp

i = Πp
i . Shortly thereafter, Buhrman

and Fortnow [BF98] established the analogous result for i = 2: PΣp
2 [1] = PΣp

2 [2]

implies Σp
2 = Πp

2 . In contrast, they provided a relativized counterexample for the
case of i = 1: There exists an oracle relative to which PNP[1] = PNP[2], and yet
NP �= coNP. Unifying and strengthening the techniques of the previous papers, E.
and L. Hemaspaandra and Hempel [HHH01] proved the most general and strongest
result currently known: For each k > 0 and each i > 1,

P
Σp

i

k-tt = P
Σp

i

(k+1)-tt =⇒ BHk(Σp
i ) = coBHk(Σp

i ).

This downward translation of equality result tightly links a collapse of the parallel
query hierarchy over Σp

i to a collapse of the boolean hierarchy over Σp
i .

Another related line of research was initiated by L. Hemaspaandra, Hempel, and
Wechsung [HHW99], who studied the question of whether and to what extent the
order matters in which various oracle sets are accessed. In particular, for DPOTMs
making at most one query each to two oracle sets from distinct levels of the boolean

9 For classes C and D of sets, C ∆ D is the class of symmetric differences of any two sets A
and B, where A ∈ C and B ∈ D.
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hierarchy over NP, they precisely characterized those cases for which query order
does matter, unless the polynomial hierarchy collapses. In contrast to oracle sets from
the boolean hierarchy, E. and L. Hemaspaandra and Hempel [HHH98a] showed that
query order never matters if the oracle sets are in the polynomial hierarchy.

Hierarchies similar to the polynomial hierarchy but based on classes other than
NP have also been introduced. For example, based on the promise class UP, various
unambiguous polynomial hierarchies and various ways of oracle access in such hi-
erarchies were studied by Lange, Niedermeier, and Rossmanith [LR94, NR98], by
Cai, L. Hemaspaandra, and Vyskoč [CHV92, CHV93], and by L. Hemaspaandra and
Rothe [HR97b].

The concept of alternating Turing machines was introduced by Chandra, Kozen,
and Stockmeyer [CKS81]. Theorems 5.65, 5.66, 5.68, and 5.69 and Corollaries 5.67
and 5.70 are due to them. Note that the constructibility requirements for the resource
functions, which are stated in all these results except in Theorem 5.69, can be re-
moved with a little care. Note also that Theorems 5.65 and 5.66 are stated for re-
source functions≥ log, whereas the corresponding results in [CKS81] are stated for
resource functions≥ id only.

The concepts of lowness and highness were introduced by Schöning [Sch83]
in complexity theory, and Section 5.7 follows his presentation in large parts. Theo-
rems 5.76, 5.77, 5.83, and 5.88, Lemmas 5.80, 5.86, and 5.87, and Corollaries 5.78,
5.81, 5.82, and 5.84 are due to him. The notions of lowness and highness are in-
spired by similar ideas from recursive function theory; see [Soa77] and the books
by H. Rogers [Rog67] and Soare [Soa87]. The strong nondeterministic polynomial-
time Turing reducibility, ≤NP

sT, from Definition 5.74 is due to Long [Lon82b]. This
reducibility notion is based on the γ-reducibility introduced by Adleman and Man-
ders [AM77]. The γ-reducibility is the many-one version of ≤NP

sT. The characteriza-
tion of ≤NP

sT in Lemma 5.75 is due to Selman [Sel78].
Following Schöning’s initial work [Sch83], the study of low sets was pursued

intensely. In particular, the lowness properties of the graph isomorphism problem
and of certain probabilistic complexity classes were investigated in [Sch88, Sch87].
Some of this work will be presented in Chapter 6. Ko and Schöning [KS85] proved
that sets with polynomial-size circuits, including the p-selective sets, are low. They
also studied a refinement of the low hierarchy with respect to the ∆p

k levels of
the polynomial hierarchy. Book, Orponen, Russo, and Watanabe [BORW88] in-
vestigated lowness in the exponential-time hierarchy. Köbler, Schöning, Toda, and
Torán [KSTT92, KST92] showed that problems solvable by NPTMs with few accept-
ing paths (in particular, the problems in FewP) and the graph isomorphism problem
are low for PP, probabilistic polynomial time. Further references to lowness results
for the graph isomorphism problem will be presented in Chapter 6, where some of
these results will be proven.

Balcázar, Book, and Schöning studied lowness and highness with respect to
sparse sets. In their paper [BBS86b], they introduced interesting generalizations of
lowness and highness, including the extended low hierarchy. The kth level of the
extended low hierarchy is defined by
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ELowk = {L |Σp,L
k = Σp,L⊕SAT

k−1 }.

Here, ⊕ denotes the join (a.k.a. the marked union) of any two sets A and B, which
is defined by A⊕B = {0a |a ∈ A}∪ {1b | b ∈ B}. Among the most notable results
about extended lowness are Sheu and Long’s result that the extended low hierarchy
is a strictly infinite hierarchy [SL94], and Köbler’s result of optimally locating in
the extended low hierarchy the class of sets with polynomial-size circuits [Köb94].
Allender and Hemaspaandra [AH92b] established lower bounds for the classes Lowk

and ELowk of the low and the extended low hierarchy.
The classes ELowk behave differently from most other complexity classes in var-

ious ways. For example, unlike most standard complexity classes, the class ELow2

is not closed under ≤p
m-reductions [AH92b]. Moreover, L. Hemaspaandra, Jiang,

Rothe, and Watanabe [HJRW98] proved that (a) ELow2 is not closed under certain
boolean operations such as union or intersection, and that (b) the join operator de-
fined above can “lower” complexity with respect to extended lowness: There exist
sets that are not in ELow2, yet their join is in ELow2. This result appears counterin-
tuitive at first glance, if one’s intuition about complexity is based on reductions. How-
ever, extended lowness is not a reduction-based measure of complexity. Rather, it is
a measure of how hard it is to extract useful information from oracles. In [HJRW97],
lower bounds for certain classes generalizing Selman’s p-selectivity [Sel79] are es-
tablished in terms of ELow2. For more background on lowness and extended low-
ness, the reader is referred to the excellent surveys by L. Hemaspaandra [Hem93]
and Köbler [Köb95].

We conclude this chapter by mentioning a number of relativization results, i.e.,
results of the form: “There exists an oracle A such that CA �= DA,” or: “There exists
an oracle B such that CB = DB ,” or combinations of these two statements. Here,
C and D are relativizable complexity classes, i.e., they are defined via some type
of oracle Turing machine. When proving such assertions, one often focuses also on
the quality of the separation achieved; for example, regarding the properties of the
separating set constructed or regarding the properties of the oracle set constructed.
For example, a “strong separation” is witnessed by an immune set. For any class C
of sets, a set is C-immune if it is an infinite set having no infinite subset in C. Many
strong separation results are known; see, e.g., [HM83, SB84, Bal85, BR88, TvEB89,
BJY90, Ko90, Bru92, EHTY92, BCS92, HRW97a, Rot99]. The notion of immu-
nity originates from recursive function theory. Without going into details here, we
mention some even more demanding variants of immunity such as “bi-immunity”
or Müller’s “balanced immunity” [Mül93]. Lischke [Lis86, Lis99] studied the rela-
tivized relationship between NP and exponential time.

As to properties of the oracle set, we mention Cai and Watanabe’s collapses
by “stringent” oracle access [CW04] and separations by “generic” oracles (see,
e.g., Fortnow and Yamakami [FY96]) and by “random” oracles. Regarding the lat-
ter, Baker, Gill, and Solovay [BGS75] proved that, relative to a random oracle R,
NPR contains a PR-bi-immune set with probability one. In particular, NP �= P =
NP ∩ coNP holds in this world. L. Hemaspaandra and Zimand [HZ96] showed that,
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relative to a random oracle R, NPR contains even a PR-balanced-immune set with
probability one.



6

Randomized Algorithms and Complexity Classes

“Yet in vain a paynim foe
Armed with fate the mighty blow;
For when he fell, the Elfin queen,
All in secret and unseen,
O’er the fainting hero threw
Her mantle of ambrosial blue,
And bade her spirits bear him far,
In Merlin’s agate-axled car,
To her green isle’s enamelled steep,
Far in the navel of the deep.
O’er his wounds she sprinkled dew
From flowers that in Arabia grew.

There he reigns a mighty king,
Thence to Britain shall return,
If right prophetic rolls I learn,
Borne on victory’s spreading plume,
His ancient sceptre to resume,
His knightly table to restore,
And brave the tournaments of yore.”

“When Arthur bowed his haughty crest,
No princess veiled in azure vest
Snatched him, by Merlin’s powerful spell,
In groves of golden bliss to dwell;
But when he fell, with winged speed,
His champions, on a milk-white steed,
From the battle’s hurricane
Bore him to Joseph’s towered fane,

In the fair vale of Avalon;
There, with chanted orison
And the long blaze of tapers clear,
The stoled fathers met the bier;
Through the dim aisles, in order dread
Of martial woe, the chief they led,
And deep entombed in holy ground,
Before the altar’s solemn bound.”

(Taken from “Wharton’s Ode”)

This chapter deals with randomized algorithms and the corresponding probabilis-
tic complexity classes. Randomized algorithms are often more efficient than the
best known deterministic algorithms solving the same problem, yet only so at the
cost of making errors. This point is made in Section 6.1, which presents selected
(exponential-time) deterministic and randomized algorithms for the satisfiability
problem. Randomized algorithms with bounded-error, including Monte Carlo and
Las Vegas algorithms, allow very useful probability amplification techniques by
which the error probability can be made exponentially small in the input size. In
Section 6.2, the related probabilistic polynomial-time complexity classes such as PP,
RP, ZPP, and BPP are reviewed. Efficient Monte Carlo algorithms for testing pri-
mality will be presented later on in Chapter 7. These algorithms are very important
for practical purposes, especially in cryptographic applications, which often require
efficient generation of large random prime numbers.

Section 6.3 introduces the notion of Arthur-Merlin games and studies the Arthur-
Merlin hierarchy. Just as the polynomial hierarchy, the Arthur-Merlin hierarchy can
be described by polynomially length-bounded quantifiers, where randomization is
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captured by the majority quantifier that corresponds to BPP. Arthur-Merlin games
are closely related to the notion of interactive proof systems. Both concepts combine
randomization with nondeterminism in a powerful way and are interesting both in a
complexity-theoretic and in a cryptographic context. In particular, zero-knowledge
protocols are interactive proof systems with certain cryptographically useful proper-
ties. They can be used for authentication. A zero-knowledge protocol for the graph
isomorphism problem will be presented later on in Section 8.4.

Section 6.4 introduces the counting classes #P and GapP, which are suitable
to characterize probabilistic complexity classes based on the number of accepting
and rejecting paths of nondeterministic Turing machines. In Section 6.5, certain low-
ness properties of the graph isomorphism problem are proven, including lowness for
probabilistic classes. These proofs involve Arthur-Merlin games, universal hashing,
group-theoretic algorithms, and other concepts related to randomization.

6.1 The Satisfiability Problem of Propositional Logic

The satisfiability problem SAT and its restriction 3-SAT are NP-complete by Theo-
rems 3.49 and 3.51. Hence, if SAT were in P, we had immediately P = NP, which is
considered unlikely. Thus, it is considered equally unlikely that there exist efficient
deterministic algorithms for SAT or 3-SAT.

But what is the best known running time of a deterministic algorithm for the
satisfiability problem? Obviously, it depends on the structure of the given formula.
For convenience, we will focus here on 3-SAT, where every clause has exactly three
literals. The results presented in this section can straightforwardly be generalized to
k-SAT, where every clause has exactly k literals.

The “naive” deterministic algorithm for 3-SAT works as follows: Given a boolean
formula ϕ with n variables, check sequentially all possible assignments, and accept
if and when a satisfying assignment is found. If ϕ is unsatisfiable, then the algorithms
rejects its input after all 2n assignments failed to satisfy the formula. This algorithm
needs at least 2n steps; it runs in time Õ(2n).1 Is there a better upper bound?

Yes, there is. But before showing how to beat the Õ(2n) bound, let us ask: Why?
What is the point of improving the trivial upper time bound t ∈ Õ(2n) for 3-SAT to a
slightly better, but still exponential-time bound, say to t̂ ∈ Õ(cn) for some constant
c with 1 < c < 2? For small input sizes, even exponential-time algorithms may be
considered feasible, although at some point n0 the exponential growth will hit and
the absolute running time of the algorithm becomes too large to be still feasible. To
illustrate this point, suppose that T is a constant giving the absolute running time we
can afford to spend. Improving the bound t ∈ Õ(2n) to the bound t̂ ∈ Õ(cn), where
1 < c < 2, then means that the maximum input size nt̂ with t̂(nt̂) ≤ T may be
substantially larger than the maximum input size nt with t(nt) ≤ T .

For example, if you can beat the trivial Õ(2n) bound of the “naive” deterministic
algorithm for 3-SAT by an Õ(cn) algorithm for the constant c =

√
2 ≈ 1.4142,

1 In this section, we drop polynomial factors in the time bounds of exponential-time algo-
rithms, indicating this usage by the Õ notation.
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then you have Õ(
√

2
2n

) = Õ(2n). Thus, you can deal with inputs twice as large as
before. Doubling the size of inputs your algorithm can handle in reasonable time is
not only of theoretical importance but also very useful in practice. For example, it
does make a difference whether an engineer is able to build bridges twice as long,
and it does make a difference whether an architect is able to design buildings twice
as high, and likewise so for the software engineer and for the algorithm designer.

Table 6.1 gives an overview of some selected algorithms and their running
times for the satisfiability problem. Here, both deterministic and randomized algo-
rithms are considered, and the upper bounds of k-SAT are given for the values of
k ∈ {3, 4, 5, 6}. The currently best results are boldfaced.

Algorithm / Authors Type 3-SAT 4-SAT 5-SAT 6-SAT

Backtracking det. Õ(1.913n) Õ(1.968n) Õ(1.987n) Õ(1.995n)

Monien and det. Õ(1.618n) Õ(1.839n) Õ(1.928n) Õ(1.966n)
Speckenmeyer [MS85]
Dantsin et al. [DGH+02] det. Õ(1.481n) Õ(1.6n) Õ(1.667n) Õ(1.714n)

Paturi et al. [PPSZ98] rand. Õ(1.362n) Õ(1.476n) Õ(1.569n) Õ(1.637n)

Schöning [Sch99] rand. Õ(1.334n) Õ(1.5n) Õ(1.6n) Õ(1.667n)

Iwama and Tamaki [IT03] rand. Õ(1.324n) Õ(1.474n) — —

Table 6.1. Running times of selected algorithms for the satisfiability problem

6.1.1 Deterministic Time Complexity

In this section, a deterministic algorithm for 3-SAT is presented that works accord-
ing to the algorithmic principle of “backtracking.” This algorithm design technique
is suitable for problems whose solutions are composed of n components such that
there is more than one choice option for each component. For example, a solution
for a 3-SAT instance ϕ with n variables consists of the n truth values in a satisfy-
ing assignment, and for each such truth value, there are two choices possible: true
(represented by 1) or false (represented by 0).

The idea now is to start with the empty solution, which assigns no values to the
variables, and then to recursively construct, step by step, larger and larger partial
solutions until, eventually, a complete solution is found, if one exists. In the case of
3-SAT, partial solutions are partial assignments to some of the variables in the given
formula (cf. the notion of partial permutations in Example 5.26). In each recursion
step of this procedure, the partial assignment constructed as yet is extended by as-
signing a truth value to one new variable.

The vertices of the resulting recursion tree correspond to the (nested) recursive
calls of the procedure, and they are labeled with partial assignments. In particular, the
root corresponds to the first recursive call and is labeled with the empty assignment.
The inner vertices of the recursion tree correspond to the further recursive calls. A
vertex ṽ in the recursion tree is the child of a vertex v if and only if ṽ is called within
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the computation triggered by v. Eventually, the algorithm terminates at the leaves of
the recursion tree with no further recursive call, and some of the leaves are labeled
with complete satisfying assignments if there exist any.

Other leaves represent “dead branches,” which means that the computation was
aborted there unsuccessfully. If one observes during the computation that the current
branch of the recursion tree is “dead,” i.e., the partial solution constructed as yet can
in no way be extended to a complete solution of the given 3-SAT instance, then this
recursion is aborted, pruning the whole subtree below it, and the procedures tracks
back to the recursion one level up and tries to find another, more promising extension
of the previously constructed partial solution. The term “backtracking” is due to this
principle. Note that it may save time to prune large “dead” parts of the recursion tree.

BACKTRACKING-SAT(ϕ, β) {
if (β assigns all variables of ϕ) return ϕ(β);
else if (β makes one clause of ϕ false) return 0; // “dead branch”

else if (BACKTRACKING-SAT(ϕ, β0)) return 1;
else return BACKTRACKING-SAT(ϕ, β1));

}

Fig. 6.1. Backtracking algorithm for 3-SAT

Figure 6.1 shows the algorithm BACKTRACKING-SAT. Given a boolean for-
mula ϕ and a partial assignment β that assigns truth values to some of ϕ’s variables,
BACKTRACKING-SAT returns a boolean value: it returns 1 if the partial assignment
β can be extended to a complete assignment to all of ϕ’s variables, and it returns 0
otherwise. Here, partial assignments are viewed as strings of length at most n over
the alphabet {0, 1}.

The first call of the algorithm is BACKTRACKING-SAT(ϕ, ε), where ε is the
empty assignment. If the algorithm determines that the partial assignment β as yet
constructed makes one of the clauses of ϕ false, then β cannot be extended to a
satisfying assignment of ϕ. Hence, the corresponding branch in the recursion tree is
“dead,” and the subtree underneath it can safely be pruned. See also Exercise 6.1.

To estimate the running time of BACKTRACKING-SAT, note that the algorithm
in Figure 6.1 can be specified so as to select the variables in an “intelligent” order
that minimizes the number of steps needed to evaluate the variables in any clause.
Consider an arbitrary, fixed clause Cj of the given formula ϕ. Every satisfying as-
signment β of ϕ in particular assigns truth values to the three variables occurring
in Cj . Out of the 23 = 8 possibilities to assign a 0 or 1 to these variables, one can be
definitely excluded: the assignment that makes Cj false. The corresponding vertex
in the recursion tree of BACKTRACKING-SAT(ϕ, β) thus leads to a “dead” branch,
and the subtree underneath it can safely be pruned. Depending on the structure of ϕ,
there may exist further “dead” branches whose subtreees could be pruned. Since we
are trying to find an upper bound in the worst case here, we do not take these further
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“dead” subtrees into consideration. We thus obtain

Õ
((

23 − 1
)n

3
)

= Õ( 3
√

7
n
) ≈ Õ(1.9129n)

as an upper bound for BACKTRACKING-SAT in the worst case. This bound slightly
improves the Õ(2n) upper bound of the “naive” algorithm for 3-SAT.

The deterministic time complexity of 3-SAT can be improved even further. For
example, Monien and Speckenmeyer’s divide-and-conquer algorithm [MS85] pro-
vides an upper bound of Õ(1.618n). Based on a local search technique, Dantsin et
al. [DGH+02] provided an Õ(1.481n) upper bound, which is the best known bound
for deterministic 3-SAT algorithms. In this discipline, they currently hold the world
record; see Table 6.1.

6.1.2 Probabilistic Time Complexity

Now we turn to a randomized algorithm for 3-SAT that is due to Schöning. His “ran-
dom walk” algorithm, which is based on a “constrained local search with restart,”
beats all known deterministic algorithms for 3-SAT, although there are even more
efficient randomized algorithms for this problem now; see Section 6.7.

A random walk can take place on a variety of structures; for example, in the
Euclidean space, on a finite or an infinite lattice, or on a finite or an infinite graph.
Here, we consider random walks on a directed, finite graph that may be viewed as
the transition graph of a stochastic automaton. A stochastic automaton is a special
finite automaton, see Definitions 2.11 and 2.12 in Section 2.2.

Recall that the edges in the transition graph of any finite automaton are marked
by the symbols of a given alphabet. The edges of a stochastic automaton S are in
addition marked by real numbers between 0 and 1 that represent probabilities. Mark-
ing an edge from x to y by pxy with 0 ≤ pxy ≤ 1 indicates the transition from state
x to state y in S is with probability pxy . The probabilities of all edges going out
of any vertex of S add up to one. In the terms of probability theory, the process of
randomly moving from state to state according to the designated probabilities of S is
called a Markov chain. Final states, from which there are no transitions to other states
with a non-zero probability, are called absorbing states. Just like finite automata, a
stochastic automaton S can be used to recognize strings and to accept languages,
even though only with a certain probability, of course. However, we are not interested
in accepting languages by stochastic automata here. Rather, we use them to illustrate
the computation of the randomized algorithm RANDOM-SAT shown in Figure 6.2.
Given a boolean formula ϕ with n variables, RANDOM-SAT tries to find a satisfying
assignment of ϕ, if there exists one. The computation of RANDOM-SAT(ϕ) can be
thought of as a random walk on the transition graph of a stochastic automaton S,
which is shown in Figure 6.3. Here, the edges are not marked by the symbols of an
alphabet but only by the corresponding transition probabilities.

On input ϕ, RANDOM-SAT starts by randomly choosing an initial assignment
β every bit of which is chosen independently according to the uniform distribution.
That is, every bit of β takes on the value 0 or 1 with probability 1/2.
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RANDOM-SAT(ϕ) {
for (i = 1, 2, . . . , �(4/3)n�) { // n is the number of variables in ϕ

Randomly choose an assignment β ∈ {0, 1}n under the uniform distribution;
for (j = 1, 2, . . . , n) {
if (ϕ(β) = 1) return the satisfying assignment β of ϕ and halt;
else {

Choose any clause C = (x ∨ y ∨ z) with C(β) = 0;
Randomly choose a literal � ∈ {x, y, z} under the uniform distribution;
Determine the bit β� ∈ {0, 1} in β that assigns �;
Modify β� to 1 − β� in β;

}
}

}
return “ϕ is not satisfiable”;

}

Fig. 6.2. Algorithm RANDOM-SAT

If ϕ is not satisfiable, RANDOM-SAT(ϕ) can never output a satisfying as-
signment of ϕ; so, it does not make any error in this case. Suppose now that
ϕ is satisfiable. Let α be an arbitrary, fixed satisfying assignment of ϕ. (Note
that RANDOM-SAT does not need to know α; it is used only to explain how
RANDOM-SAT works.) Let X be a random variable that describes the Hamming
distance between α and β, i.e., the number of bits in which α and β differ. Obvi-
ously, X can take on the values j ∈ {0, 1, . . . , n}, and is distributed according to the
binomial distribution with parameters n and 1/2. That is, the probability of the event
X = j is

(
n
j

)
2−n.
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Fig. 6.3. Transition graph of a stochastic automaton for the random walk of RANDOM-SAT

The initial step of RANDOM-SAT(ϕ) described above can now be thought of as
the initial step of the random walk on the transition graph of S that moves from the
initial state s to one of the states j ∈ {0, 1, . . . , n} according to the distribution of X.
To be in state j means that the randomly chosen initial assignment β and the fixed
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satisfying assignment α have Hamming distance j. Figure 6.3 shows the transition
graph of S for the case of n = 6.

Then, RANDOM-SAT(ϕ) checks whether or not the initial assignment β already
satisfies ϕ, and if so, it accepts. Otherwise, since β does not satisfy ϕ, there must
exist some clause in ϕ not satisfied by β. RANDOM-SAT(ϕ) chooses an arbitrary
such clause, and in this clause, it randomly chooses some literal according to the
uniform distribution. The bit in the current assignment β that assigns a truth value
to the chosen literal is then flipped, in the hope that the thus modified assignment is
“closer” to being a satisfying assignment. Being “closer” means that the Hamming
distance to α is smaller. Flipping a bit β� to 1 − β� in the current assignment as
described above can be thought of as one step to the left or to the right in the random
walk on the transition graph of S, moving from state j > 0 either to state j − 1 or to
state j + 1, where only states less than or equal to n can be reached.

There are three literals in each clause. The fixed assignment α satisfies ϕ; hence,
it satisfies at least one literal in each clause. If we fix in each clause exactly one of the
literals satisfied by α, say 
, then RANDOM-SAT(ϕ) makes a step to the left if and
only if 
 was chosen by RANDOM-SAT(ϕ). Thus, the probability of moving from
state j > 0 to state j − 1 is 1/3, and the probability of moving from state j > 0 to
state j + 1 is 2/3.

The above process is repeated as long as j �= 0, and at most n times. As soon as
the state j = 0 is reached, the current assignment β and the fixed assignment α have
Hamming distance 0. Thus, RANDOM-SAT(ϕ) has found a satisfying assignment
of ϕ, and accepts its input. Of course, one might also hit a satisfying assignment
(distinct from α) in some state j �= 0. However, this would only increase the accep-
tance probability, so we do not take this possibility into account here.

If the above process is repeated n times without success, then the initial assign-
ment β was chosen so unlucky that RANDOM-SAT(ϕ) now drops it, and restarts the
whole process from scratch by choosing a new initial assignment. The entire proce-
dure is repeated at most t times, where t = "(4/3)n#. If it is still unsuccessful after
t trials, RANDOM-SAT(ϕ) rejects its input.

Here is a rough sketch of how to estimate, assuming that ϕ is satisfiable, the
acceptance probability and running time of RANDOM-SAT(ϕ), omitting most of the
technical details and focusing mainly on the key ideas. For convenience, suppose
that 3 divides n. The probability of moving to the right is greater than the probability
of moving to the left, towards the final state 0. Thus, one might be tempted to think
that the acceptance probability of RANDOM-SAT(ϕ) is rather small. However, one
should not underestimate the chance to go right away from the initial state s to a state
j close to 0. The closer to state 0 one starts, the higher is the probability of eventually
reaching 0 during the remaining n steps of the random walk.

Let pi be the probability for the event that RANDOM-SAT(ϕ) reaches the state
0 within n steps after the initial step, under the condition that it reaches some state
i ≤ n/3 with the initial step. For example, if one reaches state n/3 with the initial
step and does no more than n/3 steps to the right, then one can still reach the final
state 0 by a total of at most n steps. If one does more than n/3 steps to the right
starting from state n/3, then the final state cannot be reached within n steps. In
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general, starting from state i after the initial step, no more than (n − i)/2 steps
to the right may be done. It was noted above that a step to the right is done with
probability 2/3, and a step to the left is done with probability 1/3. Thus, we have

pi =
(

n
n−i
2

)(
2
3

)n−i
2

(
1
3

)n−n−i
2

. (6.1)

Let qi be the probability for the event that RANDOM-SAT(ϕ) reaches some state
i ≤ n/3 with the initial step. Clearly, we have that

qi =
(

n

i

)
· 2−n. (6.2)

Let p be the probability for the event that RANDOM-SAT(ϕ) reaches the final
state 0 within the inner for loop. Of course, this event can occur also when starting
from a state j > n/3. Hence, we have

p ≥
n/3∑
i=0

pi · qi.

The above sum can be suitably approximated using the entropy function, which
is defined in Definition 4.26 of Section 4.3.2. Moreover, the binomial coefficients
in (6.1) and (6.2) can be suitably estimated using Stirling’s formula. Thus, one ob-
tains a lower bound of at least (up to constant factors) (3/4)n for p.

The error probability of RANDOM-SAT(ϕ) can be made sufficiently small by
executing t = "(4/3)n# independent trials, each starting with a new initial assign-
ment β. For each trial, the acceptance probability is at least (3/4)n, so the error is
bounded by 1 − (3/4)n. Since the trials are independent, these error probabilities
multiply, yielding an error of (1− (3/4)n)t ≤ e−1. Thus, the total acceptance prob-
abilitiy of RANDOM-SAT(ϕ) is at least 1 − 1/e ≈ 0.632 if ϕ is satisfiable, and
RANDOM-SAT(ϕ) does not make any error at all if ϕ is unsatisfiable. The hint for
Exercise 6.2 explains the particular choice of this value of t, which also implies the
running time Õ(1.334n) of RANDOM-SAT, neglecting factors polynomially in n.
As a rule of thumb, to achieve a sufficiently small error probability, the number of
repetitions needed is roughly reciprocal to the success probability of one trial.

6.2 Probabilistic Polynomial-Time Classes

6.2.1 PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Deterministic and nondeterministic Turing machines were introduced in Chapter 3,
alternating Turing machines in Chapter 5. In this chapter, we are concerned with still
another type of Turing machine, the probabilistic Turing machine, which embodies
still another computational paradigm: randomization. Probabilistic Turing machines
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formalize the notion of randomized algorithms, algorithms that are able to flip coins
and to perform their computation based on the resulting random choices. An exam-
ple of a randomized algorithm is given in Section 6.1.2. Randomization often yields
more efficient algorithms for a given problem. However, there is a price to pay: ran-
domized algorithms can make errors.

The probabilistic Turing machine model can be described by nondeterministic
Turing machines (NTMs). Syntactically, a probabilistic Turing machine simply is an
NTM N , where we agree by convention that the nondeterministic branching degree
of N is at most two. Moreover, it is often useful to require that NTMs be normalized,
i.e., to require that for each input x, all computations paths in N(x) have the same
number of nondeterministic branching points and can thus be described by binary
strings of the same length. In other words, normalized machines always have a full
binary computation tree (not allowing for the deterministic steps of the machine).

The semantics of probabilistic Turing machines is defined by specifying an ac-
ceptance behavior of NTMs suitable for randomization. To this end, for any given
NTM N and any input x, we define a probability measure µT on the set of compu-
tation paths in the tree T = N(x), whose vertices represent the configurations of N
on input x. Note that there is a one-to-one correspondence between the computation
paths and the leaves in the tree T .

Definition 6.1 (Semantics of Probabilistic Turing Machines).
For any NTM N and any input x, consider any subtree T of the computation tree
N(x) such that the root of T is the root of N(x). The probability measure µT on the
set of leaves of T is defined inductively as follows:

• Initially, if T consists of only the root r of N(x) (i.e., r is the start configuration
of N(x)), then set µT (r) = 1.

• While T �= N(x), fix some leaf 
 of T that is not a leaf of N(x), and consider
the new subtree T� of N(x) that is obtained from T by adding the immediate
successor configuration(s) of 
. From the probability measure µT on the leaves
of T , define the probability measure µT�

on the leaves of T� as follows:

µT�
(c) =

⎧⎨⎩
µT (
)/2 if c is one out of two successor configurations of 

µT (
) if c is the only one successor configuration of 

µT (c) if c is not a successor configuration of 
.

We will be interested only in polynomial-time probabilistic Turing machines.
Every computation path of a given NPTM N running on some input x is represented
by a binary string α of length p(|x|) for some p ∈ IPol, where the ith bit of α
corresponds to the ith nondeterministic branching of N(x) along α. If α leads to
some leaf 
 of T = N(x), we write µT (α) = µT (
). Note that µT indeed is a
probability measure, since for each finite tree T :∑

α is some path of T

µT (α) = 1.

Every subset of paths of T is an event. The probability that some event E occurs
with respect to µT is given by:
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Pr(E) =
∑

α ∈ E

µT (α) =
∑

α ∈ E

2−|α|.

Using the above notation, we can now define the first two probabilistic complex-
ity classes: the class PP, “probabilistic polynomial time,” and the class RP, “random
polynomial time.”

Definition 6.2 (Probabilistic Polynomial Time and Random Polynomial Time).

1. Probabilistic polynomial time is defined by

PP =
{

A
there is some NPTM M such that for each input x,
x ∈ A ⇐⇒ Pr({α |M accepts x on path α}) ≥ 1/2

}
.

2. Random polynomial time is defined by

RP =

⎧⎨⎩A
there is some NPTM M such that for each input x,
x ∈ A =⇒ Pr({α |M accepts x on path α}) ≥ 1/2;
x �∈ A =⇒ Pr({α |M accepts x on path α}) = 0

⎫⎬⎭ .

Remark 6.3 (Normalized Turing Machines and Threshold Computation).

1. Every NPTM whose acceptance criterion is based on probability weights ac-
cording to Definitions 6.1 and 6.2 can easily be normalized: Just extend every
computation path up to a fixed polynomial length by appending a full binary
subtree to it and, on each path thus obtained, accept if and only if the original
path was accepting. The modified normalized machine has the same acceptance
probability as the original machine.

2. The acceptance criterion of the probabilistic machines for PP and RP from Def-
inition 6.2 is determined by the probability weight of accepting paths accord-
ing to Definition 6.1. Alternatively, the acceptance criterion for PP and RP
can be based on the number of accepting paths of NPTMs; see also Defini-
tions 6.31 and 6.34. For any NPTM M , define the function accM : Σ∗ → N

by accM (x) = ||{α |M accepts x on path α}||. Then, the following characteri-
zations of PP and RP can be shown:

a) A is in PP if and only if there exists some normalized NPTM M and some
polynomial p such that for each x:

x ∈ A ⇐⇒ accM (x) ≥ 2p(|x|)−1.

b) A is in RP if and only if there exists some normalized NPTM M and some
polynomial p such that for each x:

x ∈ A =⇒ accM (x) ≥ 2p(|x|)−1;
x �∈ A =⇒ accM (x) = 0.

Observe that this equivalence of the probability weight interpretation and the
accM interpretation uses normalized machines. In fact, for PP, the normaliza-
tion requirement may be dropped; see Problem 6.1(a). However, for RP, having
normalized machines appears to be a crucial requirement; see Problem 6.1(b).
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Unlike PP, the class RP is a so-called “promise class.” Complexity classes are
usually represented by machines (e.g., NPTMs) defining the class by their accep-
tance and rejection criteria. In many cases, exactly one of the two criteria holds
for each input. For example, PP machines accept if at least half of the total num-
ber of paths accept, and they reject otherwise. In contrast, a promise class such as
RP has a rejection criterion that is more restrictive than the logical negation of the
acceptance criterion,2 which leaves open the possibility that for some inputs none
of the two criteria applies. The burdon to avoid this obstacle is shouldered by the
machines representing the promise class: Every machine “promises” that for each
input exactly one of the two criteria holds. For example, according to Definition 6.2,
RP machines “promise” that they never have an acceptance probability of 1/4 (note,
however, Theorem 6.6). Other examples of promise classes are UP and FewP defined
in Chapter 3. Promise classes appear to have different properties than non-promise
complexity classes. For example, the promise classes RP, UP, and FewP seem to lack
complete sets; see also Corollary 3.83.

RP and coRP algorithms both have a one-sided error probability. Such algorithms
are also called Monte Carlo algorithms. Let L be a set in RP, and let A be an RP
algorithm for L. By definition, A may make errors for instances x in L, but A never
lies for instances x not in L. Thus, the answer “yes” (i.e., an accepting path) of A on
input x can occur only if x is in L and is thus always correct, whereas the answer
“no” (i.e., a rejecting path) can occur both erroneously (if x is in L) and correctly
(if x is not in L). Therefore, RP algorithms are sometimes called no-biased Monte
Carlo algorithms. Similarly, coRP algorithms always give reliable “no” answers, but
perhaps erroneous “yes” answers. Therefore, coRP algorithms are sometimes called
yes-biased Monte Carlo algorithms. Unlike PP, the class RP seems to be not closed
under complementation (unless, of course, it turns out that RP = P).

Theorem 6.4. 1. P ⊆ RP ⊆ NP ⊆ PP ⊆ PSPACE.
2. PP is closed under complementation.

Proof. 1. The first two inclusions, P ⊆ RP ⊆ NP, follow immediately from the
definitions. The inclusion PP ⊆ PSPACE can be proven similar to the inclusion
NP ⊆ PSPACE from Theorem 3.27: Given a PP machine M running on input x, the
simulating PSPACE machine performs a depth-first search through the computation
tree of M(x). However, rather than searching for some accepting path as in the proof
of NP ⊆ PSPACE, the PSPACE machine now counts all accepting paths of M(x),
and it accepts the input if and only if this number is at least half of the total number
of paths.

For the inclusion NP ⊆ PP, let A be any set in NP, and let M be a given NP
machine accepting A. Suppose that M is normalized so that on each input x, the

2 A bit more carefully phrased, all known acceptance/rejection criteria for the class share
the property that the rejection criterion is more restrictive than the logical negation of the
acceptance criterion. For example, although the class RPpath is defined in Problem 6.1 via
a rejection criterion that is more restrictive than the logical negation of the acceptance
criterion, RPpath is known to be equal to NP. Thus, RPpath is not a promise class.
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computation tree M(x) is a complete binary tree of depth p(|x|) for some p ∈ IPol.
Construct a new NPTM N accepting A in the sense of PP as follows. On input x,
N branches nondeterministically. On the left branch, N simulates the computation
of M(x). On the right branch, N creates a complete binary tree of depth p(|x|),
accepts on 2p(|x|) − 1 of its paths, and rejects on one of its paths.

If x ∈ A, then M(x) accepts on at least one of its 2p(|x|) paths. Thus, N(x)
accepts on at least 2p(|x|) of its 2p(|x|)+1 paths, i.e., N accepts x with probability at
least one half. If x �∈ A, then all 2p(|x|) paths of M(x) are rejecting. Thus, N(x)
accepts on at most 2p(|x|)−1 of its 2p(|x|)+1 paths, i.e., N accepts x with probability
less than one half. It follows that A is in PP.

2. The proof of PP = coPP is left to the reader as Exercise 6.3.

The acceptance threshold of 1/2 in the definition of RP is chosen at will. Other
thresholds would work as well and would define the same class of sets. We will now
see that the acceptance threshold of an RP computation can be made very small: it is
enough to require that the acceptance probability is at least a reciprocal polynomial
in the input size. Thus, the error probability of RP algorithms can be made smaller
than 1/q(|x|) for each fixed polynomial q.

Definition 6.5. Let q be a fixed polynomial. Define the class

RPq =

⎧⎨⎩A
there is some NPTM M such that for each input x,
x ∈ A =⇒ Pr({α |M accepts x on path α}) ≥ 1/q(|x|);
x �∈ A =⇒ Pr({α |M accepts x on path α}) = 0

⎫⎬⎭ .

Theorem 6.6. Let q be a nondecreasing polynomial such that for each n, q(n) ≥ 2.
Then, RPq = RP.

Proof. Since q(n) ≥ 2 for each n, the inclusion RP ⊆ RPq holds by definition.
Conversely, to prove RPq ⊆ RP, let A be any set in RPq for some fixed poly-

nomial q, and let M be some NPTM for A according to Definition 6.5. Construct
an NPTM N that accepts A in the sense of RP as follows. On input x of length n,
N successively simulates the computation of M(x) in q = q(n) independent trials.
Thus, every path α = α1α2 · · ·αq of N(x) consists of a sequence of q paths αi

of M(x), and α is defined to accept if and only if at least one of its subpaths αi

accepts.
Since q is a polynomial and M runs in polynomial time, so does N . It remains

to show that N witnesses membership of A in RP. Let x be the given input string.
If x �∈ A, no path of M(x) accepts. Thus, N(x) has no accepting paths and the
acceptance probability is zero.

We now estimate the error probability EN (x) of N for x ∈ A, which is given by

EN (x) = Pr({α |N rejects x on path α}).
The error probability of M(x) is bounded above by 1−1/q. For each path α of N(x),
all subpaths αi of α are independently chosen. This implies for the error probability
of N that
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EN (x) <

(
1− 1

q(n)

)q(n)

<
1
2
. (6.3)

The latter inequality of (6.3) follows from the fact that limk→∞(1+ a
k )k = ea, where

e = 2.71828 · · · is the base of the natural logarithm. Thus, for a = −1, we have that
(1− 1/q(n))q(n) is close to e−1, which is less than one half. Hence,

Pr({α |N accepts x on path α}) ≥ 1
2
,

which completes the proof.

Theorem 6.6 has an easy corollary the proof of which is left to the reader as
Exercise 6.4.

Corollary 6.7. RP is closed under union and intersection.

PP is also closed under union and intersection, and even under ≤p
tt -reductions.

Whereas closure under complementation is easy to see for PP, the proof of closure
under intersection is not at all trivial; see Problem 6.2.

RP algorithms have a one-sided error, and Theorem 6.6 tells us that this error can
be made very small. This is a clear advantage of RP over PP algorithms. As pointed
out above, RP algorithms can give false “no” answers, whereas coRP algorithms
always give reliable “no” answers. On the other hand, coRP algorithms can give
false “yes” answers, whereas RP algorithms always give reliable “yes” answers. The
class ZPP collects all problems solvable by polynomial-time randomized algorithms
with zero error probability, combining the advantages of yes-biased and no-biased
Monte Carlo algorithms.

Definition 6.8 (Zero-Error Probabilistic Polynomial Time).
Define the class zero-error probabilistic polynomial time by ZPP = RP ∩ coRP.

Just like RP, the class ZPP is a promise class. ZPP algorithms, which are also
dubbed Las Vegas algorithms, never give a wrong answer, although it might happen
that they do not give any useful answer at all. This justifies the name “zero-error”
probabilistic polynomial time. Similar as in Definition 5.74, a ZPP algorithm can
be viewed as an NPTM M with three types of final states: an accepting state, sa,
a rejecting state, sr, and a “don’t know” state, s?. Let A be any language in ZPP,
and let M and N be NPTMs witnessing that A ∈ RP and A ∈ RP, respectively.
Consider the machine M ◦N , which is defined as follows: On input x, M ◦N first
simulates M(x) and then it simulates N(x). Thus, every path of (M ◦ N)(x) has
the form 〈α, β〉, where α is a path of M(x) and β is a path of N(x). For paths α
and β, denote acceptance by + and rejection by −, respectively. Table 6.2 shows all
the possibilities for the paths α and β and the way M ◦ N handles these cases by
assigning the final states sa, sr, and s? to each possible pair 〈α, β〉. Thus, we have
the following corollary.
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path α of M(x) path β of N(x) path 〈α, β〉 of (M ◦ N)(x)

x ∈ A + − (+,−) = sa

− − (−,−) = s?

x �∈ A − + (−, +) = sr

− − (−,−) = s?

Table 6.2. A ZPP computation

Corollary 6.9. A is in ZPP if and only if there exists an NPTM M with three types of
final states (an accepting state, sa, a rejecting state, sr, and a “don’t know” state, s?)
such that for each x,

x ∈ A =⇒ Pr({α |M accepts x on path α}) ≥ 1/2 and

Pr({α |M rejects x on path α}) = 0;
x �∈ A =⇒ Pr({α |M rejects x on path α}) ≥ 1/2 and

Pr({α |M accepts x on path α}) = 0.

We conclude this section by presenting two problems complete for PP.

Definition 6.10 (Majority Satisfiability and Threshold Satisfiability).
Define the following two problems:

Majority-SAT =
{

ϕ
ϕ is a boolean formula with n variables
and at least 2n−1 satisfying assignments

}
;

Threshold-SAT =
{
〈ϕ, i〉 ϕ is a boolean formula with at

least i satisfying assignments

}
.

For example, ϕ(x, y) = x∧y is not in Majority-SAT, since only one out of four
possible assignments satisfies ϕ. However, ψ(x, y) = x ∨ y is in Majority-SAT,
since it has three satisfying assignments. Note also that, for these formulas ϕ
and ψ, the instances 〈ϕ, 0〉, 〈ϕ, 1〉, 〈ψ, 0〉, 〈ψ, 1〉, 〈ψ, 2〉, and 〈ψ, 3〉 each belong
to Threshold-SAT, wheras none of the instances 〈ϕ, 2〉, 〈ϕ, 3〉, 〈ϕ, 4〉, and 〈ψ, 4〉
belongs to Threshold-SAT.

Theorem 6.11. Both Majority-SAT and Threshold-SAT are ≤p
m-complete for PP.

Proof. It is easy to see that Majority-SAT belongs to PP. We now prove that
(1) Threshold-SAT is≤p

m-hard for PP, and (2) Threshold-SAT≤p
m Majority-SAT.

Since PP is closed under ≤p
m-reductions (see Exercise 6.5), both statements of the

theorem follow.
1. Threshold-SAT is≤p

m-hard for PP: Let A be any set in PP, and let M be some
NPTM accepting A in the sense of PP. By Remark 6.3, we may assume that M is a
normalized machine and there is a polynomial p such that for each x of length n:

x ∈ A ⇐⇒ accM (x) ≥ 2p(n)−1.
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Let fM be the Cook reduction from Theorem 3.49, and let ϕM,x = fM (x) be the
corresponding boolean formula. Since the Cook reduction is parsimonious,

accM (x) = ||{β | β is a satisfying assignment for ϕM,x}||.
Thus, the reduction g(x) = 〈ϕM,x, 2p(|x|)−1〉 shows that A≤p

m Threshold-SAT.
2. Threshold-SAT≤p

m Majority-SAT: Let 〈ϕ, i〉 be any given Threshold-SAT
instance, where ϕ is a boolean formula in the variables x1, x2, . . . , xm. Construct
a formula ψ = ψ(x1, x2, . . . , xm) such that ψ has exactly j = 2m − i satisfying
assignments, where we assume that i ≤ 2m. Consider the binary representation of

j = 2m−s1 + 2m−s2 + · · ·+ 2m−sk ,

where 0 ≤ s1 < s2 < · · · < sk ≤ m. Define

ψ = (x1 ∧ · · · ∧ xs1−1 ∧ xs1) ∨
(x1 ∧ · · · ∧ xs1−1 ∧ ¬xs1 ∧ xs1+1 ∧ · · · ∧ xs2−1 ∧ xs2) ∨

...

(x1 ∧ · · · ∧ xs1−1 ∧ ¬xs1 ∧ xs1+1 ∧ · · · ∧ xs2−1 ∧ ¬xs2 ∧ xs2+1

∧ · · · ∧ xsk−1−1 ∧ ¬xsk−1 ∧ xsk−1+1 ∧ · · · ∧ xsk
).

Observe that the 
th clause in ψ contributes exactly 2m−s� satisfying assignments,
and due to the negations in ψ no assignment satisfying one clause can also satisfy an-
other. Thus, none of the satisfying assignments is counted twice. Hence, the number
of assignments satisfying ψ adds up to:

2m−s1 + 2m−s2 + · · ·+ 2m−sk = j

as desired.
Now, fix some formula γ �∈ Majority-SAT; for example, pick γ = x∧ y. Define

the reduction Threshold-SAT≤p
m Majority-SAT by

f(〈ϕ, i〉) =
{

γ if i > 2m

(x0 ∧ ϕ(x1, . . . , xm)) ∨ (¬x0 ∧ ψ(x1, . . . , xm)) if i ≤ 2m.

It is easy to see that if i > 2m, then both 〈ϕ, i〉 �∈ Threshold-SAT and
f(〈ϕ, i〉) = γ �∈ Majority-SAT. On the other hand, if i ≤ 2m, then 〈ϕ, i〉 belongs
to Threshold-SAT if and only if f(〈ϕ, i〉) is satisfied by at least i + 2m − i = 2m

out of the 2m+1 possible assignments.

6.2.2 BPP: Bounded-Error Probabilistic Polynomial Time

The acceptance criterion for PP machines is not very robust, since adding or deleting
just one accepting path may result in a different outcome with regard to accepting
or rejecting the input. In other words, as the input size grows to infinity, the error
probability asymptotically can go to one half. Our goal now is to bound the error
probability away from one half. To this end, we introduce the complexity class BPP.
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Definition 6.12 (Bounded-Error Probabilistic Polynomial Time).
The class bounded-error probabilistic polynomial time is defined by

BPP =

⎧⎪⎪⎨⎪⎪⎩A

there is some NPTM M and a constant c, 0 < c ≤ 1/2,
such that for each input x,
x ∈ A =⇒ Pr({α |M accepts x on path α}) ≥ 1/2 + c;
x �∈ A =⇒ Pr({α |M accepts x on path α}) ≤ 1/2− c

⎫⎪⎪⎬⎪⎪⎭ .

That is, a BPP computation either accepts or rejects its input with high probabil-
ity, leaving a proper gap around the value of one half that is strictly avoided by the
acceptance or rejection probability. That is why BPP is a promise class as well.

Let r be a function from N to the real interval [0, 1]. We say that an NPTM M
accepts a set A in the sense of BPP with error probability at most r if and only if

Pr({α |M(x) = χA(x) on path α}) ≥ 1− r(|x|),

where χA denotes the characteristic function of A. We now show that the error prob-
ability of BPP computations can be made exponentially small in the input size. Thus,
the error in such a BPP computation is “negligibly small.”

Theorem 6.13. Let p be some fixed polynomial, and let A be any set in BPP. Then,
there exists an NPTM N accepting A in the sense of BPP with error probability at
most 2−p(n).

Proof. Fix a polynomial p. Given any set A in BPP, let M be some NPTM and c
with 0 < c ≤ 1/2 be some constant such that:

Pr({α |M(x) = χA(x) on path α}) ≥ 1
2

+ c.

For any given input x of length n and for some polynomial q to be specified below,
set k = 2q(n) + 1. As in the proof of Theorem 6.6, construct an NPTM N that,
on input x, simulates the computation of M(x) in k successive, independent trials.
Thus, every path α = α1α2 · · ·αk of N(x) consists of a sequence of k paths αi

of M(x). However, now we define α to accept if and only if a majority (i.e., at least
q(n) + 1) of the paths αi of M(x) along α accept.

We have to show that we can find a polynomial q such that the error proabability
of N(x), which is given by

EN (x) = Pr({α |N(x) �= χA(x) on path α})

is bounded above by 2−p(n). By the way acceptance of a path α = α1α2 · · ·αk

is defined, for aα to be such an erroneous computation, there must exist some j
satisfying that:

• j ≤ q(n),
• j subpaths αi along α are correct, i.e., M(x) = χA(x), and
• the remaining k − j subpaths αi along α are incorrect, i.e., M(x) �= χA(x).
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Denote the success probability of M(x) by σ = 1/2 + c and the error probability of
M(x) by ε = 1/2− c. Choosing among the k possible subpaths αi of α the j correct
ones and summing over all possible j, we can estimate the error probability of N(x)
as follows:

EN (x) ≤
q(n)∑
j=0

(
k

j

)
σjεk−j . (6.4)

Let m > 0 be chosen such that j = k
2 − m and k − j = k

2 + m. Since ε < σ, it
follows that:

σjεk−j = (σ · ε) k
2 · σ−m · εm = (σ · ε) k

2 ·
( ε

σ

)m

< (σ · ε) k
2 . (6.5)

The Binomial Theorem, which says that (a + b)k =
∑k

j=0

(
k
j

)
ajbk−j , implies for

the special case of a = b = 1 that:

k∑
j=0

(
k

j

)
= 2k. (6.6)

Substituting (6.5) and (6.6) in (6.4) gives:

EN (x) < (σ · ε) k
2 · 2k

= (4σε)
k
2

=
(
1− 4c2

) k
2 , since σε = (1

2 + c)(1
2 − c) = 1

4 − c2

≤ (
1− 4c2

)q(n)
,

where the latter inequality follows from

1− 4c2 < 1 and
k

2
= q(n) +

1
2

> q(n).

Since 1 − 4c2 < 1, we have
(
1− 4c2

)t ≤ 1/2 for some integer t. Now, setting
q(n) = t · p(n) gives

EN (x) ≤ (
1− 4c2

)t·p(n) ≤
(

1
2

)p(n)

≤ 2−p(n),

as desired.

The definitions immediately imply the following containments and the closure
of BPP under complementation. Thus, Theorem 6.13 in particular applies to RP and
coRP.

Fact 6.14 RP ⊆ BPP = coBPP ⊆ PP.
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What is the relationship between BPP and NP and between BPP and the poly-
nomial hierarchy? We will see later that BPP is contained in the second level of the
polynomial hierarchy. In contrast, BPP and NP are most likely to be incomparable,
i.e., it is widely believed that neither BPP ⊆ NP nor NP ⊆ BPP. The following result
gives some evidence that NP ⊆ BPP is unlikely to hold. Note that the converse of
Theorem 6.15 follows immediately from Fact 6.14.

Theorem 6.15. If NP ⊆ BPP then NP = RP.

Proof. Suppose that NP ⊆ BPP. By Theorem 6.13, there is some NPTM M ac-
cepting SAT in the sense of BPP with error probability at most 2−n:

Pr({α |M(ϕ) = χSAT(ϕ) on path α}) ≥ 1− 2−n, (6.7)

where n = |ϕ| is the length of the boolean formula ϕ in some suitable encoding. Our
goal is to show that SAT ∈ RP by constructing an RP machine for SAT. Since SAT is
≤p

m-complete in NP and since RP is ≤p
m-closed, NP = RP follows.

For any given boolean formula ϕ = ϕ(x1, x2, . . . , xm) and for any bit string
s ∈ {0, 1}∗, |s| ≤ m, define the formula ϕs in m − |s| variables that is obtained
from ϕ by substituting the ith bit of s as the truth value of the ith variable in ϕ:

ϕ0(x2, x3, . . . xm) = ϕ(0, x2, x3, . . . , xm)
ϕ1(x2, x3, . . . xm) = ϕ(1, x2, x3, . . . , xm)

ϕ00(x3, x4, . . . xm) = ϕ(0, 0, x3, x4, . . . , xm)
...

Depending on the encoding used, simplifying ϕ to some formula ϕs may result
in a shorter encoding string, so |ϕs| ≤ |ϕ|. However, since the error probability of
M depends on the input size, we want to make sure that |ϕs| ≥ |ϕ|. To this end,
we pad ϕs with a sufficient number of new variables v1, v2, . . . , vk(s). For each ϕs,
where s ∈ {0, 1}∗ and |s| ≤ m, define the padded formula ψs in the variables
xm−|s|+1, . . . , xm, v1, . . . , vk(s) by

ψs = ϕs(xm−|s|+1, . . . , xm) ∧ v1 ∧ . . . ∧ vk(s),

where k(s) is chosen large enough to ensure |ψs| ≥ |ϕ|. Note that ψs is satisfiable if
and only if ϕs is satisfiable.

To show that SAT ∈ RP, we describe an NPTM N accepting SAT in the sense
of RP. On input ϕ(x1, x2, . . . , xm) of length n, N seeks to find a satisfying assign-
ment for ϕ, if one exists. To this end, N first nondeterministically branches and uses
M to construct, step by step, candidates of satisfying assignments for ϕ on each of
its nondeterministic computation paths. Then, on each such path, N verifies deter-
ministically whether or not the candidate constructed indeed satisfies ϕ.

In more detail, N on input ϕ(x1, x2, . . . , xm) works as follows:
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Step 1: Simulate M(ψ0). Since |ψ0| ≥ |ϕ| = n, Equation (6.7) implies that:

Pr({α |M(ψ0) = χSAT(ψ0) on path α}) ≥ 1− 2−|ψ0|

≥ 1− 2−n. (6.8)

• On the accepting paths α of M(ψ0), N stores the assignment 0 for the vari-
able x1 by setting the first bit of sα to 0, and continues recursively by simu-
lating M(ψ00).

• On the rejecting paths α of M(ψ0), N stores the assignment 1 for the vari-
able x1 by setting the first bit of sα to 0, and continues recursively by simu-
lating M(ψ10).

After m such steps, N has found on each path α a candidate sα of a satisfying
assignment for ϕ.

Step 2: On each path α, N checks deterministically whether sα indeed satisfies ϕ.
If so, N accepts on α; otherwise, N rejects on α.

If ϕ �∈ SAT, N(ϕ) rejects on all paths, due to the checking in Step 2. Thus,

Pr({α |N accepts ϕ on path α}) = 0.

Suppose now that ϕ ∈ SAT. By (6.8), the error probability of M is at most 2−n

in each of the m simulations in Step 1. Since each of these m trials are independent,
the acceptance probability of N(ϕ) can be estimated as follows:

Pr({α |N accepts ϕ on path α}) ≥ (
1− 2−n

)m

≥ (
1−m2−n

)
≥ 1

2
,

where the latter inequality follows from the obvious fact that m ≤ n, which implies
m2−n ≤ 2−1 = 1/2.

6.3 Quantifiers and Arthur-Merlin Games

6.3.1 Quantifiers and BPP

Recall Theorem 5.24, which characterizes the class NP by polynomially length-
bounded existential quantifiers: A is in NP if and only if there is some set B ∈ P
and a polynomial p such that for each x ∈ Σ∗, x ∈ A ⇐⇒ (∃pw) [〈x, w〉 ∈ B].
This can be rewritten as:

x ∈ A =⇒ (∃pw) [〈x, w〉 ∈ B];
x �∈ A =⇒ (∀pw) [〈x, w〉 �∈ B].
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Thus, acceptance is expressed by the ∃p quantifier and rejection by the ∀p quantifier.
Since all quantifiers considered are polynomially length-bounded, we drop their su-
perscripts for convenience. For example, we simply write NP = (∃ | ∀) to indicate
the above characterization of NP. Similarly, coNP = (∀ | ∃). More generally, the
quantifier representations of the classes of the polynomial hierarchy given in Theo-
rem 5.31 can be succinctly written in this notation. For example, Σp

3 = (∃∀∃ | ∀∃∀)
and Πp

3 = (∀∃∀ | ∃∀∃).
We will define complexity classes uniformly via their acceptance/rejection cri-

teria using pairs of quantifier sequences as above. Of course, not all pairs of quan-
tifier sequences are compatible with each other. It is sensible to require that they
are consistent in the sense that they do not “overlap.” For example, in the case of
NP = (∃ | ∀), it never happens that (∃w) [〈x, w〉 ∈ B]∧ (∀w) [〈x, w〉 �∈ B], so (∃, ∀)
is a sensible pair of quantifiers.

Definition 6.16. 1. Let Q1 and Q2 be two strings of n quantifiers each. The pair
(Q1, Q2) is sensible if and only if for each (n + 1)-ary predicate B, for each x,
and for each y = (y1, y2, . . . , yn),

(Q1y) [B(x,y)] ∧ (Q2y) [¬B(x,y)]

is a contradiction. Here, yi is the variable quantified by the ith quantifier in Q1

and Q2, respectively.
2. Let (Q1, Q2) be a sensible pair of strings consisting of n (polynomially length-

bounded) quantifiers each. Define the complexity class (Q1 |Q2) as follows: L
belongs to (Q1 |Q2) if and only if there exists an (n + 1)-ary predicate B ∈ P
such that for each x ∈ Σ∗:

x ∈ L =⇒ (Q1y) [B(x,y)];
x �∈ L =⇒ (Q2y) [¬B(x,y)],

where y = (y1, y2, . . . , yn) and yi is the variable quantified by the ith quantifier
in Q1 and Q2, respectively, and |yi| ≤ p(|x|) for some suitable polynomial p.

We now introduce a new quantifier, the majority quantifier, that is suitable to
represent probabilistic classes such as BPP and RP.

Definition 6.17 (Polynomially Length-Bounded Majority Quantifier).
Let B be a predicate, and let p be a given polynomial. For each fixed string x, define
(∃+y) [B(x, y)] to be true if and only if at least three-quarters of all strings y with
|y| ≤ p(|x|) satisfy B(x, y).

In the notation of Definition 6.16, we have BPP = (∃+ | ∃+) and RP = (∃+ | ∀).
Observe that swapping the quantifier strings for acceptance and rejection yields the
complementary class. The easy proof of Fact 6.18 is left to the reader as Exercise 6.6.

Fact 6.18 For each sensible pair (Q1, Q2) of quantifier strings,

(Q1 |Q2) = co(Q2 |Q1).
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Corollary 6.19. BPP is closed under complementation.

The above uniform approach to define complexity classes via quantifiers gives
us a powerful tool for studying the inclusion relations between certain complexity
classes and quantifier-based hierarchies such as the Arthur-Merlin hierarchy, which
will be introduced and studied in Section 6.3.2. Our goal now is to give further char-
acterizations of BPP in terms of quantifiers. This will allow us to prove that BPP is
contained in the polynomial hierarchy. First, we provide some technical lemmas.

Lemma 6.20. Let B be any predicate in P, let x be any string, and suppose that
(∀y) (∃+z) [B(x, y, z)]. Then, the following two statements are true:

1. (∃+Z) (∀y) (∃z ∈ Z) [B(x, y, z)].
2. (∀Y ) (∃+z) (∀y ∈ Y ) [B(x, y, z)].

Here, the polynomials implicitly bounding the lengths of the quantified variables de-
pend on the length n of x. In the first statement, if |z| ≤ p(n) for some polynomial p,
then Z is viewed as a variable ranging over sets of strings of length at most p(n).
To ensure that Z itself can be represented by a string of length polynomially in n,
we require Z to satisfy ||Z|| = q(n) for some polynomial q. Furthermore, let r be
some polynomial bounding the lengths of the strings y, i.e., y ≤ r(n). An analogous
comment applies to the set variable Y in the second statement.

Proof. Let B ∈ P, let x be any string of length n, and suppose that

(∀y) (∃+z) [B(x, y, z)]. (6.9)

We prove only the first statement of the lemma; the proof of the second statement
is analogous and thus omitted; see Exercise 6.7. Let p, q, and r be polynomials
bounding the variable lengths as explained in the lemma.

Let S = {0, 1}≤p(n) be the set of all binary strings of length at most p(n).
Clearly, ||S|| = 2p(n)+1 − 1. Our set variable Z ranges over subsets of S having
exactly q(n) elements. There are exactly

(||S||
q(n)

)
such subsets. We now estimate the

number of subsets Z of S with exactly q(n) elements that do not satisfy

(∀y) (∃z ∈ Z) [B(x, y, z)].

Equivalently, we may ask how many subsets Z of S with exactly q(n) elements do
satisfy

(∃y) (∀z ∈ Z) [¬B(x, y, z)]. (6.10)

Consider any fixed string ỹ. By our supposition (6.9), at most 1/4 of all strings z
with |z| ≤ p(n) do not satisfy the predicate B(x, ỹ, z). Thus, for this fixed ỹ, the
number of subsets Z ⊆ S with ||Z|| = q(n) satisfying (∀z ∈ Z) [¬B(x, ỹ, z)] is at
most ("2−2(2p(n)+1 − 1)#

q(n)

)
≤

(
2p(n)−1

q(n)

)
.
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There are exactly 2r(n)+1 − 1 strings y of length at most r(n). It follows that the
number of subsets Z ⊆ S with ||Z|| = q(n) satisfying (∃y) (∀z ∈ Z) [¬B(x, y, z)]
is at most (

2r(n)+1 − 1
)
·
(

2p(n)−1

q(n)

)
≤ 2r(n)+1 ·

(
2p(n)−1

q(n)

)
.

Since there is a total of
(
2p(n)+1−1

q(n)

)
subsets of S with q(n) elements, the proportion

of such subsets Z ⊆ S with ||Z|| = q(n) satisfying (6.10) can be estimated above
by

2r(n)+1 · (2p(n)−1

q(n)

)(
2p(n)+1−1

q(n)

) ≤ 2r(n)+1

2q(n)
=

1
4
,

where the latter equality can be achieved by choosing q(n) = r(n) + 3. It follows
that

(∃+Z) (∀y) (∃z ∈ Z) [B(x, y, z)]

as desired.

Z

︸ ︷︷ ︸
z

y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Fig. 6.4. Illustration of the first statement of Lemma 6.20

Here is an illustrative interpretation of the assertions of Lemma 6.20. As an ex-
ample, consider its first statement:

(∀y) (∃+z) [B(x, y, z)] =⇒ (∃+Z) (∀y) (∃z ∈ Z) [B(x, y, z)]. (6.11)

This implication can be seen by looking at Figure 6.4, which gives a matrix whose
entries are the values of the predicate B(x, y, z) for fixed x and varying y and z. A
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full circle means that B(x, y, z) is true, and an empty circle means that B(x, y, z)
is false. The left-hand side of (6.11) says that every row y has many (namely, at
least three-quarters) full circles. The right-hand side of (6.11) says that for many
“windows” Z , every row of the window has at least one full circle.

Lemma 6.20 is applied in the proofs of Lemma 6.21 and Theorem 6.22 below.
The assertion of Lemma 6.21 is “almost” the unlikely inclusion

Σp
2 = (∃∀ | ∀∃) ⊆ (∀∃ | ∃∀) = Πp

2 ,

except that the rejection conditions of Lemma 6.21 have an ∃+ quantifier in place of
an ∃ quantifier.

Lemma 6.21. (∃∀ | ∀∃+) ⊆ (∀∃ | ∃+∀).
Proof. Let A be any set in (∃∀ | ∀∃+). By Definition 6.16, there exists a predicate
B ∈ P such that for each x,

x �∈ A =⇒ (∀y) (∃+z) [¬B(x, y, z)] as per Definition 6.16

=⇒ (∃+Z) (∀y) (∃z ∈ Z) [¬B(x, y, z)] by part 1 of Lemma 6.20

=⇒ (∃Z) (∀y) (∃z ∈ Z) [¬B(x, y, z)]

=⇒ (∀y) (∃z) [¬B(x, y, z)]

=⇒ x �∈ A,

where the last implication again follows from Definition 6.16, applying the contra-
positive of x ∈ A =⇒ (∃y) (∀z) [B(x, y, z)]. Now, defining the predicate C by

C(x, y, Z) ≡ (∀z ∈ Z) [B(x, y, z)],

it follows that

x �∈ A ⇐⇒ (∃+Z) (∀y) [¬C(x, y, Z)]; (6.12)

x �∈ A ⇐⇒ (∃Z) (∀y) [¬C(x, y, Z)]. (6.13)

Negating (6.13), we obtain

x ∈ A ⇐⇒ (∀Z) (∃y) [C(x, y, Z)]. (6.14)

Since Z contains only polynomially many elements, B ∈ P implies C ∈ P. By
Definition 6.16, it follows from (6.12) and (6.14) that A is a set in (∀∃ | ∃+∀).

The following result is known as the “BPP Theorem,” as it provides two addi-
tional useful characterizations of the class BPP in terms of quantifier-based complex-
ity classes. Note that Theorem 6.22 holds in any (sensible) quantifier context.

Theorem 6.22 (Zachos and Heller).

BPP = (∃+ | ∃+) = (∀∃+ | ∃+∀) = (∃+∀ | ∀∃+).
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Proof. It is enough to prove the equality (∃+ | ∃+) = (∀∃+ | ∃+∀). The other
equality follows immediately from Fact 6.18 and Corollary 6.19, since

(∀∃+ | ∃+∀) = co(∃+∀ | ∀∃+).

To prove the inclusion (∀∃+ | ∃+∀) ⊆ (∃+ | ∃+), let A be any set in (∀∃+ | ∃+∀).
By Definition 6.16, there exists a set B ∈ P such that for each x,

x ∈ A =⇒ (∀y) (∃+z) [B(x, y, z)]
=⇒ (∃+〈y, z〉) [C(x, 〈y, z〉)],

where the predicate C is defined by C(x, 〈y, z〉) ≡ B(x, y, z). Note that C is in P.
Furthermore, for each x,

x �∈ A =⇒ (∃+y) (∀z) [¬B(x, y, z)]
=⇒ (∃+〈y, z〉) [¬C(x, 〈y, z〉)].

Thus, A is in (∃+ | ∃+).
Conversely, to prove the inclusion (∃+ | ∃+) ⊆ (∀∃+ | ∃+∀), let A be any set

in (∃+ | ∃+). Thus, there exists a set B ∈ P such that for each x,

x ∈ A =⇒ (∃+y) [B(x, y)]; (6.15)

x �∈ A =⇒ (∃+y) [¬B(x, y)]. (6.16)

y s0 s1 s2 · · · sm−2 sm−1

z

s0 b0 b1 b2 · · · bm−2 bm−1

s1 b1 b2 b3 · · · bm−1 b0

s2 b2 b3 b4 · · · b0 b1

...
...

...
...

. . .
...

...
sm−2 bm−2 bm−1 b0 · · · bm−4 bm−3

sm−1 bm−1 b0 b1 · · · bm−3 bm−2

Table 6.3. Definition of predicate C in the proof of Theorem 6.22

Let p be some polynomial bounding the lengths of the variables y quantified
in (6.15) and (6.16). Let x be any fixed string of length n. Let S = {0, 1}≤p(n) be
the set of all binary strings of length at most p(n). Suppose that the strings in S are
lexicographically ordered, i.e., S = {s0, s1, . . . , sm−1}, where m = 2p(n)+1 − 1.
For fixed x, define a predicate C(x, y, z) as follows, where the variables y and z
range over the strings in S:

C(x, si, sj) ≡ B(x, si+j mod m),
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where i and j are from the set Zm = {0, 1, . . . , m− 1}, i.e., they are residues mod-
ulo m. Table 6.3 illustrates the definition of C: Letting bi = B(x, si) for i ∈ Zm, the
ith row of Table 6.3 gives the values of C(x, y, si) for varying y, and the jth column
of Table 6.3 gives the values of C(x, sj , z) for varying z. Note that C(x, y, z) is sym-
metric in its last two arguments. Thus, the rows are cyclically shifted by one position,
and so are the columns. Consequently, every row and every column in Table 6.3 has
the same number of ones and the same number of zeros.

Note that B ∈ P implies C ∈ P. From (6.15) it follows that for each x,

x ∈ A =⇒ (∀z) (∃+y) [C(x, y, z)] since each row has the
same number of ones

=⇒ (∀y) (∃+z) [C(x, y, z)] since C is symmetric in
its last two arguments

=⇒ (∀Y ) (∃+z) (∀y ∈ Y ) [C(x, y, z)]︸ ︷︷ ︸
D(x,z,Y )

by part 2 of Lemma 6.20,

where the predicate D is defined by D(x, z, Y ) ≡ (∀y ∈ Y ) [C(x, y, z)]. Since
the for-all quantifier in D ranges over a domain of polynomial size, C ∈ P implies
D ∈ P.

Similarly, from (6.16) it follows that for each x,

x �∈ A =⇒ (∀z) (∃+y) [¬C(x, y, z)] since each row has the
same number of zeros

=⇒ (∀y) (∃+z) [¬C(x, y, z)] since C is symmetric in
its last two arguments

=⇒ (∃+Z) (∀y) (∃z ∈ Z) [¬C(x, y, z)]︸ ︷︷ ︸
¬D(x,y,Z)

by part 1 of Lemma 6.20

=⇒ (∃+Z) (∀y) [¬D(x, y, Z)].

Thus, A is in (∀∃+ | ∃+∀).

Corollary 6.23. BPP ⊆ Σp
2 ∩Πp

2 .

Proof. Since BPP is closed under complementation as per Corollary 6.19, it is
enough to prove the inclusion BPP ⊆ Σp

2 . So, let A be any set in BPP. By Theo-
rem 6.22, BPP = (∃+∀ | ∀∃+). Thus, there exists some B ∈ P such that for each x,

x ∈ A =⇒ (∃+y) (∀z) [B(x, y, z)]
=⇒ (∃y) (∀z) [B(x, y, z)],

and

x �∈ A =⇒ (∀y) (∃+z) [¬B(x, y, z)]
=⇒ (∀y) (∃z) [¬B(x, y, z)].

By Theorem 5.31, A is in Σp
2 .
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6.3.2 Arthur-Merlin Hierarchy

Now listen to the story of King Arthur and Merlin, the mighty wizard.

Story 6.24 (Arthur-Merlin Games) Merlin and Arthur play the following game.
The goal of the game is for them to jointly solve some problem. For example, suppose
they are trying to solve the graph nonisomorphism problem. Given a pair of graphs,
G and H , they thus want to decide whether or not G and H are nonisomorphic. They
draw one after the other taking turns, and they gamble for every problem instance.
Merlin’s intention always is to convince Arthur that the given graphs indeed are
nonisomorphic, even if in fact they are isomorphic. So, one move of Merlin is to
present a proof that the given graphs are nonisomorphic.

However, Arthur is suspicious and does not trust the sneaky wizard. Of course, he
himself cannot come up with such powerful proofs of his own. After all, Merlin has
supernatural, nondeterministic powers and spells at his disposal, and Arthur does
not. Still, Arthur doubts that the proofs are valid, flips some coins and, depending
on these random choices, he challenges the wizard’s proofs. Such is one of Arthur’s
moves in this game. Again, it’s Merlin’s turn to move, and so on. Eventually, after a
finite number of moves, they will have determined whether or not to accept the input.
It is also possible that Arthur makes the first move in a game.

To be somewhat more specific, suppose that Merlin is represented by an NP ma-
chine M , and that Arthur is represented by a randomized polynomial-time bounded
Turing machine A. Let x be the problem instance at stake, and let L be the problem
they want to solve. One move of Merlin is a proof (or witness; cf. Example 5.22 and
Definition 5.23) for “x ∈ L,” and he can find such a proof by simulating M(x, y),
where y encodes the history of moves made as yet. That is, the string y describes
all nondeterministic choices of Merlin and all random choices of Arthur previously
made in this game. In order to satisfy the impatient king, Merlin must convince him
with overwhelming probability. One move of Arthur is given by the computation of
A(x, y) that depends on Arthur’s random choices, where again y encodes the previ-
ous history of the game.

Just as the polynomial hierarchy can be described by alternating (polynomi-
ally length-bounded) existential and universal quantifiers (see Theorem 5.31 in Sec-
tion 5.2), the idea of Arthur-Merlin games is captured by alternating (polynomially
length-bounded) existential and probabilistic quantifiers. The ∃ quantifier represents
one of Merlin’s moves, which is an NP computation, and the ∃+ quantifier repre-
sents one of Arthur’s moves, which is a BPP computation. According to the notation
from Definition 6.16, one obtains a hierarchy of complexity classes, the so-called
Arthur-Merlin hierarchy.

Definition 6.25 (Arthur-Merlin Hierarchy).
The levels of the Arthur-Merlin hierarchy are the following classes:

A = (∃+ | ∃+), AM = (∃+∃ | ∃+∀), AMA = (∃+∃∃+ | ∃+∀∃+),
M = (∃ | ∀), MA = (∃∃+ | ∀∃+), MAM = (∃∃+∃ | ∀∃+∀), . . .

Define the Arthur-Merlin hierarchy, AMH, as the union of all these classes.
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Example 6.26 (Arthur-Merlin Hierarchy). Consider the class MA, which consists
of precisely those problems L for which there exist an NPTM M and a randomized
polynomial-time Turing machine A such that for each input x:

• If x ∈ L, then there exists a path y of M(x) such that A(x, y) accepts with
probability at least 3/4. That is, Arthur cannot refute Merlin’s correct proof y for
“x ∈ L,” and Merlin wins.

• If x �∈ L, then for each path y of M(x), A(x, y) rejects with probability at
least 3/4. That is, Arthur cannot be fooled by Merlin’s false proofs for “x ∈ L”
and thus wins.

Analogously, the classes AM, MAM, AMA, . . . can be described, see Exercise 6.8.

Certainly, an error probability of up to 1/4 is unacceptably large. Note, how-
ever, that the probability threshold of 3/4 in defining the majority quantifier ∃+

(see Definition 6.17), which occurs in the classes introduced in Definition 6.25, is
chosen at will. Other thresholds would work as well. Using the probability amplifi-
cation techniques from Section 6.2, the error probability can be made exponentially
small. In other words, one might use even a probability threshold of 1/2 + ε for an
arbitrary, fixed constant ε > 0 in the definition of the ∃+ quantifier—and thus in
Definition 6.25—and would still be able to amplify so as to achieve an exponentially
small error probability. An error that unlikely can be considered negligible, as even
hardware errors may be expected to occur with a higher probability.

The following result shows that, for a constant number of moves, the Arthur-
Merlin hierarchy collapses down to AM. Whether or not any of the inclusions NP ⊆
MA ⊆ AM or BPP ⊆ MA is proper is an open question. Moreover, it is open
whether or not MA and AM are closed under complement.

Theorem 6.27. NP ∪ BPP ⊆ MA ⊆ AM = AMA = MAM = · · · = AMH.

Proof. By Definition 6.25, NP ⊆ MA and BPP ⊆ MA. To prove the inclusion
MA ⊆ AM, we first characterize these classes in terms of quantifier-based classes
and then apply Lemma 6.21. That is, we will prove that

MA = (∃∀ | ∀∃+) ⊆ (∀∃ | ∃+∀) = AM. (6.17)

In what follows, we apply Lemma 6.21 and Theorem 6.22 in certain quantifier
contexts. The quantifiers to which the lemma or the BPP Theorem are applied are
underlined so as to distinguish them from their quantifier context.

The first equality in (6.17) can be seen as follows:

MA = (∃∃+ | ∀∃+) by Definition 6.25

= (∃∃+∀ | ∀∀∃+) by Theorem 6.22 in quantifier context

⊆ (∃∃∀ | ∀∀∃+) since (∃+v) [· · · ] implies (∃v) [· · · ]
= (∃∀ | ∀∃+) by combining adjacent quantifiers of the same type

⊆ (∃∃+ | ∀∃+) since (∀v) [· · · ] implies (∃+v) [· · · ]
= MA by Definition 6.25.
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The last equality in (6.17) can be seen as follows:

AM = (∃+∃ | ∃+∀) by Definition 6.25

= (∀∃+∃ | ∃+∀∀) by Theorem 6.22 in quantifier context

⊆ (∀∃∃ | ∃+∀∀) since (∃+v) [· · · ] implies (∃v) [· · · ]
= (∀∃ | ∃+∀) by combining adjacent quantifiers of the same type

⊆ (∃+∃ | ∃+∀) since (∀v) [· · · ] implies (∃+v) [· · · ]
= AM by Definition 6.25.

By Lemma 6.21, inclusion (6.17) is proven, so MA ⊆ AM.
We now show that the entire Arthur-Merlin hierarchy collapses down to AM. It

is clear that we have the inclusions AM ⊆ MAM, AM ⊆ AMA, etc. Conversely,
applying the inclusion MA ⊆ AM from (6.17) in a quantifier context implies

AMA ⊆ AAM ⊆ AM,

since two adjacent ∃+ quantifiers can be combined to one ∃+ quantifier the same
way that this can be done for the ∃ or the ∀ quantifier.3

The inclusion MAM ⊆ AM can be seen as follows:

MAM = (∃∃+∃ | ∀∃+∀) by Definition 6.25

= (∃∃+∀∃ | ∀∀∃+∀) by Theorem 6.22 in quantifier context

⊆ (∃∃∀∃ | ∀∀∃+∀) since (∃+v) [· · · ] implies (∃v) [· · · ]
= (∃∀∃ | ∀∃+∀) by combining adjacent quantifiers of the same type

⊆ (∀∃∃ | ∃+∀∀) by Lemma 6.21 in quantifier context

= (∀∃ | ∃+∀) by combining adjacent quantifiers of the same type

⊆ (∃+∃ | ∃+∀) since (∀v) [· · · ] implies (∃+v) [· · · ]
= AM by Definition 6.25.

Thus, AM = MAM = AMA. The remaining equalities now follow by induction.

The following corollary states the relations between the Arthur-Merlin classes
and the polynomial hierarchy. In addition, the containment of BPP in the second
level of the polynomial hierarchy stated in Corollary 6.23 is strengthened.

Corollary 6.28. 1. MA ⊆ Σp
2 and AM ⊆ Πp

2 .
2. If NP ⊆ coAM then Σp

2 = Πp
2 = PH.

3. BPP ⊆ MA ∩ coMA.

3 Note that, for example, (∃+∃+ | ∃+∃+) = (∃+ | ∃+) = BPP. Equivalently, this can be
written as BPPBPP = BPP, see Problem 6.3(a).
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Proof. 1. MA = (∃∃+ | ∀∃+) = (∃∀ | ∀∃+) ⊆ (∃∀ | ∀∃) = Σp
2 , where the second

equality follows from (6.17) in the proof of Theorem 6.27. The inclusion AM ⊆ Πp
2

can be shown analogously.
2. Suppose that NP ⊆ coAM, i.e., (∃ | ∀) ⊆ (∃+∀ | ∃+∃). Then,

Πp
2 = (∀∃ | ∃∀) ⊆ (∀∃+∀ | ∃∃+∃) = coMAM = coAM ⊆ Σp

2 ,

where the last inclusion follows from part 1 of this corollary. By Theorem 5.33, the
polynomial hierarchy collapses down to its second level.

3. This follows immediately from Theorem 6.27 and the closure of BPP under
complementation stated in Fact 6.14.

Theorem 6.29 (Schöning). Σp,AM∩coAM
2 = Σp

2 .

Proof. The proof is akin to the (relativized version of the) proof of Theorem 5.31.
The inclusion Σp

2 ⊆ Σp,AM∩coAM
2 is straightforward. To prove the converse inclusion,

Σp,AM∩coAM
2 ⊆ Σp

2 , we will show the equivalent inclusion Πp,AM∩coAM
2 ⊆ Πp

2 . So
let L be any set in Πp,AM∩coAM

2 . By the relativized version of Corollary 5.32, there
exists a set A ∈ AM ∩ coAM and a predicate B ∈ PA such that for each x,

x ∈ L ⇐⇒ (∀y) (∃z) [B(x, y, z)],

where all quantifiers are polynomially length-bounded as usual. Let M be some
DPOTM deciding B with oracle A, i.e., L(MA) = B. Define a predicate C as
follows:

C(u, v, x, y, z) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
MA(x, y, z) accepts, u = 〈u1, u2, . . . , uk〉,
and v = 〈v1, v2, . . . , v�〉, where u and v
contain exactly the queries of MA(x, y, z),
and exactly the queries in u have the answer “yes”
and exactly the queries in v have the answer “no.”

Define the sets

Ayes = {〈u1, u2, . . . , uk〉 | u1, u2, . . . , uk ∈ A};
Ano = {〈v1, v2, . . . , v�〉 | v1, v2, . . . , v� �∈ A}.

Since both A and A are in AM, both Ayes and Ano are in AM. Defining a predicate
D by D(u, v) ≡ (u ∈ Ayes ∧ v ∈ Ano), it follows that D also is in AM. Thus, for
each x,

x ∈ L ⇐⇒ (∀y) (∃z) [MA(x, y, z) accepts]
⇐⇒ (∀y) (∃z) (∃u) (∃v) [C(u, v, x, y, z) ∧

u1, u2, . . . , uk ∈ A ∧ v1, v2, . . . , v� �∈ A]
⇐⇒ (∀y) (∃z) (∃u) (∃v) [C(u, v, x, y, z) ∧ D(u, v)].
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By (6.17) in the proof of Theorem 6.27, we have AM = (∀∃ | ∃+∀). Thus, there
exists a predicate E in P such that

D(u, v) =⇒ (∀r) (∃s) [E(u, v, r, s)];
¬D(u, v) =⇒ (∃+r) (∀s) [¬E(u, v, r, s)].

Thus, for each x,

x ∈ L =⇒ (∀y) (∃z) (∃u) (∃v) [C(u, v, x, y, z) ∧ (∀r) (∃s) [E(u, v, r, s)]]
=⇒ (∀y) (∃z) (∃u) (∃v) (∀r) (∃s) [C(u, v, x, y, z) ∧ E(u, v, r, s)]

and

x �∈ L =⇒ (∃y) (∀z) (∀u) (∀v) [¬C(u, v, x, y, z) ∨ (∃+r) (∀s) [¬E(u, v, r, s)]]
=⇒ (∃y) (∀z) (∀u) (∀v) (∃+r) (∀s) [¬C(u, v, x, y, z) ∨ ¬E(u, v, r, s)].

Combining contiguous quantifiers of the same type to one quantifier, we conclude
that L is a member of the class

(∀∃∀∃ | ∃∀∃+∀) ⊆ (∀∀∃∃ | ∃∃+∀∀) ⊆ (∀∃ | ∃∀) = Πp
2 ,

where the first inclusion follows from applying Lemma 6.21 in a quantifier con-
text (again underlining the quantifiers to which the lemma is applied). The second
inclusion follows from combining contiguous quantifiers of the same type to one
quantifier and from weakening ∃+ to ∃.

Problem 6.3(c) states that AM∩ coAM is low for AM, i.e., AMAM∩coAM = AM.
As an immediate consequence, Theorem 6.29 implies that every coAM set in NP

is low for the second level of the polynomial hierarchy. This result will be applied in
the proof of the forthcoming Theorem 6.45, which says that the graph isomorphism
problem is in Low2.

Corollary 6.30 (Schöning). NP ∩ coAM ⊆ Low2.

6.4 Counting Classes

In Section 6.2, probabilistic classes such as PP, RP, ZPP, and BPP were introduced
based on the probability weight of accepting computations. Remark 6.3 pointed out
an alternative view on these classes that is based on counting the accepting and reject-
ing computations of NPTMs. In this section, we develop a theory of counting-based
complexity classes, which will be employed later in Section 6.5 to prove certain
lowness properties of the graph isomorphism problem.

We start by defining the function classes #P and GapP and stating some of their
basic properties. The proof of Proposition 6.32 is left to the reader as Exercise 6.11.
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Definition 6.31 (#P and GapP). For any NPTM M and for any input string x,
let accM (x) denote the number of accepting computation paths of M(x), and let
rejM (x) denote the number of rejecting computation paths of M(x). Both accM and
rejM map from Σ∗ to N. Define the function gapM : Σ∗ → Z by

gapM (x) = accM (x)− rejM (x).

Define the following two function classes:

#P = {accM |M is some NPTM};
GapP = {gapM |M is some NPTM}.

Note that the NPTMs in Definition 6.31 are not required to be normalized. This
is reasonable because, for example, normalized machines always have an even gap.

Proposition 6.32. 1. GapP = #P − #P = #P − FP = FP − #P, where the
minus sign refers to elementwise subtraction, not to set-theoretic difference, i.e.,
for function classes F and G, F − G = {f − g | f ∈ F and g ∈ G}.

2. FP ⊆ #P ⊆ GapP.

#P and GapP share some useful closure properties, including closure under ad-
dition and multiplication, that will be useful later on. On the other hand, GapP is
even closed under subtraction, a property #P is unlikely to possess. We summarize
below some of the closure properties of GapP. The proof of Lemma 6.33 is left to the
reader as Exercise 6.11, which also asks to find out which of the closure properties
stated for GapP are shared by #P. Of the closure properties stated in Lemma 6.33,
closure under binomial coefficients is perhaps the most useful and least obvious.

Lemma 6.33 (Closure Properties of GapP).

1. GapP is closed under subtraction: If f ∈ GapP then −f ∈ GapP.
2. If f ∈ GapP and p ∈ IPol, then the functions a and b defined below are in GapP:

a(x) =
∑

|y|≤p(|x|)
f(〈x, y〉) and b(x) =

∏
0≤y≤p(|x|)

f(〈x, y〉).

3. If f, g ∈ GapP and 0 ≤ g(x) ≤ p(|x|) for some polynomial p, then the functions
c, d, and e defined below are in GapP:

c(x) = f(〈x, g(x)〉) and d(x) =
(

f(x)
g(x)

)
and e(x) = f(x)g(x).

It was noted in Remark 6.3 that PP can be characterized using #P functions.
Alternatively, PP can be characterized using GapP functions; see Exercise 6.9(a).
Definition 6.34 introduces the counting classes ⊕P, C=P, and SPP via GapP func-
tions. They are examples of so-called gap-definable complexity classes. In light of
Proposition 6.32, ⊕P, C=P, and SPP can be characterized via #P functions as well,
just as PP was characterized via #P functions in Remark 6.3; see Exercise 6.9(b).
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Definition 6.34 (Counting Classes). Define the following language classes:

C=P = {A | (∃f ∈ GapP) (∀x ∈ Σ∗) [x ∈ A ⇐⇒ f(x) = 0]};
⊕P = {A | (∃f ∈ GapP) (∀x ∈ Σ∗) [x ∈ A ⇐⇒ f(x) ≡ 1 mod 2]};

SPP =
{

A
(∃f ∈ GapP) (∀x ∈ Σ∗)
[(x ∈ A =⇒ f(x) = 1) ∧ (x �∈ A =⇒ f(x) = 0)]

}
.

SPP is an acronym for stoic probabilistic polynomial time. An SPP machine is
“stoic” in the sense that its “gap”—the difference between the number of accept-
ing and the number of rejecting computation paths—takes on only two values out
of the exponentially many values an NPTM can have. In this regard, SPP resembles
the class UP, see Definition 3.81. Replacing “GapP” by “#P” in the definition of
SPP yields UP, so SPP is the gap-analog of UP. Just like UP and unlike PP, ⊕P,
or C=P, the class SPP is a promise class, since an SPP machine M “promises” that
gapM (x) is in {0, 1} for all x; see also Exercise 6.10. SPP is the smallest “reason-
able” gap-definable counting class, where a class is said to be reasonable if and only
if it contains both the empty set and Σ∗.

The inclusions between PP, C=P, ⊕P, SPP, and other classes are stated in Propo-
sition 6.35. They are easy to prove, see Exercise 6.12. Some proofs (e.g., that of
C=P ⊆ PP) are greatly simplified by the use of GapP functions. Note that, just like PP,
both SPP and⊕P are closed under complementation, whereas C=P is unlikely to share
this property. None of the inclusions stated in Proposition 6.35 is known to be proper.

Proposition 6.35. 1. SPP ⊆ ⊕P.
2. P ⊆ UP ⊆ SPP ⊆ C=P and P ⊆ coUP ⊆ SPP ⊆ coC=P.
3. P ⊆ coUP ⊆ coNP ⊆ C=P ⊆ PP and P ⊆ UP ⊆ NP ⊆ coC=P ⊆ PP.

The notion of lowness, introduced in Section 5.7, can be defined for every rela-
tivizable complexity class C. In the notation of Definition 6.36 below, the kth level
Lowk of the low hierarchy (see Definition 5.73) contains precisely those NP sets that
are Σp

k-low. And Theorem 6.29 says that AM ∩ coAM is Σp
2 -low.

Definition 6.36 (Lowness). Let C be any relativizable complexity class.

• A set A is said to be C-low if and only if CA = C.
• A class A of sets is said to be C-low if and only if every A in A is C-low.

The following theorem says that SPP contains precisely the sets that are low
for GapP. Consequently, all sets in SPP are low for each class definable via GapP
functions, including not only SPP itself but also PP,⊕P, and C=P. Complexity classes
C that are low for themselves—i.e., they satisfy CC = C—are said to be self-low.

Theorem 6.37. SPP = {A |GapPA = GapP}.
Proof. To prove that SPP contains all GapP-low sets, suppose that A is any set
satisfying GapPA = GapP. Define an NPOTM M that on input x asks its oracle
about x. If the answer is “yes” (i.e., if x belongs to the oracle set), then M accepts on
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exactly one path; otherwise, if the answer is “no,” then M generates one accepting
and one rejecting path. Thus, for each oracle B, the gap of MB(x) coincides with
the characteristic function of B at x, i.e., gapMB ≡ χB . Specifically, for our oracle
set A, we have

gapMA(x) =
{

1 if x ∈ A
0 if x �∈ A.

By our assumption that GapPA = GapP, there exists an NPTM N (which does not
have an oracle) such that gapN ≡ gapMA . Thus, N witnesses that A is in SPP.

Conversely, we have to prove that SPP ⊆ {A | GapPA = GapP}. Let M be a
given NPOTM, and let A be any set in SPP. Suppose that, no matter which oracle
is used, M on input x makes exactly k(|x|) queries on each path, for some polyno-
mial k. Fix x, and let k = k(|x|). Let S be some NPTM witnessing that A ∈ SPP,
i.e., gapS ≡ χA.

We now define an NPTM N (without an oracle) that satisfies gapN ≡ gapMA .

Step 1: On input x, N guesses a tuple a = (a1, a2, . . . , ak) of answer bits, where
ai = 1 corresponds to the answer “yes,” and ai = 0 corresponds to the answer
“no.”

Step 2: N guesses a computation path α of M (·)(x), substituting the answers of a
instead of querying the oracle, i.e., if qi is the ith query of M (·)(x) on α, then
N(x) continues the simulation according to the answer ai.

Step 3: For each such path α, N extends α by creating a subtree below α that has a
gap Gα, which is defined as follows: For each i with 1 ≤ i ≤ k, let

gi =
{

gapS(qi) if ai = 1
1− gapS(qi) if ai = 0 and Gα =

{∏k
i=1 gi if α accepts

−∏k
i=1 gi if α rejects.

By the closure properties of GapP, Gα is in GapP, so N can generate the corre-
sponding gap Gα for each path α. Note that, for each i with 1 ≤ i ≤ k, gi = 1 if
and only if ai is the correct answer, i.e., if and only if ai = χA(qi). Thus, for each
path α, Gα ∈ {−1, 1} if all queries along α were answered correctly, and Gα = 0
otherwise. It follows that no path with incorrect answers contributes to the gap of N ,
and the remaining gap corresponds to that path along which all oracle answers of
MA(x) were correctly simulated. Thus, gapN (x) = gapMA(x) for each x. Hence,
A satisfies GapPA = GapP.

Corollary 6.38. 1. GapPSPP = GapP.
2. SPP is closed under ≤p

T-reductions, i.e., PSPP = SPP.
3. SPP is PP-low, i.e., PPSPP = PP.
4. SPP is ⊕P-low, i.e., ⊕PSPP = ⊕P.
5. SPP is C=P-low, i.e., C=PSPP = C=P.
6. SPP is self-low, i.e., SPPSPP = SPP.
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The proof of Corollary 6.38 is straightforward and thus omitted, but see Ex-
ercise 6.13(a). In contrast to the first item of Corollary 6.38, it is unlikely that
#PSPP = #P, or even that #PUP = #P; see Exercise 6.13(b).

Lemma 6.40 below states some useful properties of SPP to be applied in Sec-
tion 6.5. We omit the proof of Lemma 6.40 but note that it is a straightforward con-
sequence of the self-lowness of SPP (i.e., SPPSPP = SPP) and the following result,
Theorem 6.39. The proof of Theorem 6.39 is also omitted; it uses a technique similar
to the proof of Theorem 6.37, see Exercise 6.14.

Theorem 6.39. Let A ∈ NP via an NPTM N , and let M be some NPOTM satisfying
that for each input x, MA(x) makes only “UP-like” queries (i.e., queries q for which
accN (q) ≤ 1). Then, the function f(x) = gapMA(x) is in GapP.

Lemma 6.40. 1. Let A ∈ NP via an NPTM N , and let L ∈ SPPA via an NPOTM
M satisfying that for each input x, MA(x) makes only “UP-like” queries (i.e.,
queries q for which accN (q) ≤ 1). Then, L is in SPP.

2. Let A ∈ NP via an NPTM N , and let f ∈ FPA via an DPOTM M satisfying
that for each input x, MA(x) makes only “UP-like” queries (i.e., queries q for
which accN (q) ≤ 1). Then, f is in FPSPP.

6.5 Graph Isomorphism and Lowness

In this section, we show the lowness properties of the graph isomorphism problem.
In particular, GI is low for the second level of the polynomial hierarchy, and it is also
low for probabilistic classes and counting classes, including PP, C=P, ⊕P, and SPP.

6.5.1 Graph Isomorphism Is in the Low Hierarchy

We start by showing that GI is contained in Low2. This result provides strong evi-
dence that the graph isomorphism problem is not NP-complete. Why? Suppose GI
were NP-complete. By Theorem 5.76, High0 contains all ≤p

T-complete sets in NP
and thus, in particular, all≤p

m-complete NP sets . By Theorem 5.77, High0 ⊆ High2;
so GI is in High2. However, also by Theorem 5.77, Low2∩High2 is nonempty if and
only if the polynomial hierarchy collapses down to Σp

2 , which is considered unlikely.
In order to prove, as Theorem 6.45 below, that GI is in Low2, we need as a

technical prerequisite the so-called hashing lemma, stated as Lemma 6.42 below.
Hashing is a method used in computer science for dynamic data management. Every
data set is uniquely identified by some (short) key. The set of all potential keys, called
the universe U , is usually very large, whereas the set V ⊆ U of all keys actually used
can be much smaller. A hashing function h : U → T maps the elements of U to the
hashing table T = {0, 1, . . . , k − 1}. Hashing functions are many-to-one, which
means that distinct keys from U can be mapped to the same address in T . If possible,
however, any two distinct keys from V should be mapped to distinct addresses in T .
That is, one seeks to avoid collisions on the set of actually used keys. In other words,
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a hashing function should, if possible, be injective on V . Hashing is also a very useful
technique in cryptographic applications. Cryptographic hash functions usually map
large keys to smaller keys in a “secure” manner.

Among the various hashing techniques, universal hashing is of particular interest
for proving Theorem 6.45. Universal hashing was invented by Carter and Wegman
in 1979. The idea is to not focus on a particular, concrete hashing function, but rather
to randomly select one from a suitable family of hashing functions. This hashing
technique is universal in the sense that it no longer depends on a specific set V of
keys that are actually used; instead, it seeks to avoid collisions on all sufficiently
small sets V with high probability. The probability is taken over the random choice
of hashing functions. In what follows, we think of keys as strings over the alphabet
Σ = {0, 1}, and we denote by Σn the set of all length n strings in Σ∗.

Definition 6.41 (Universal Hashing). Let Σ = {0, 1}, and let m and t be integers
with t > m. A hashing function h : Σt → Σm is a linear mapping determined by a
boolean (t×m) matrix Bh = (bi,j)i,j , where bi,j ∈ {0, 1}.

For x ∈ Σt and for each j with 1 ≤ j ≤ m, the jth bit of y = h(x) ∈ Σm is
given by

yj = (b1,j ∧ x1)⊕ (b2,j ∧ x2)⊕ · · · ⊕ (bt,j ∧ xt),

where ⊕ denotes the exclusive-or operation (a.k.a. the parity operation, see Defi-
nition 4.18 and Table 4.14 in Section 4.2). Note that ⊕ is associative. We can thus
write:

a1 ⊕ a2 ⊕ · · · ⊕ an = 1 ⇐⇒ ||{i | ai = 1}|| ≡ 1 mod 2.

Let Ht,m = {h : Σt → Σm | Bh is a boolean (t×m) matrix} be a family of
hashing functions for the parameters t and m. We assume the uniform distribution
on Ht,m: A hashing function h is chosen from Ht,m by picking the bits bi,j in Bh

independently according to the uniform distribution.
Let V ⊆ Σt. For any subfamily Ĥ ofHt,m, we say there is a collision on V if

(∃v ∈ V ) (∀h ∈ Ĥ) (∃x ∈ V ) [v �= x ∧ h(v) = h(x)].

Otherwise, Ĥ is collision-free on V .

A collision on V means that the injectivity of each hashing function from the
subfamily Ĥ is destroyed on V . Lemma 6.42 says that on every sufficiently small
set V , a randomly selected subfamily ofHt,m is collision-free with high probability.
If V is too large, however, a collision cannot be avoided.

Lemma 6.42 (Hashing Lemma). Let t, m ∈ N be fixed parameters, let V ⊆ Σt,
and let Ĥ = (h1, h2, . . . , hm+1) be some family of hashing functions randomly
selected fromHt,m under the uniform distribution. Let the collision predicate be

Col(V ) = {Ĥ | (∃v ∈ V ) (∀h ∈ Ĥ) (∃x ∈ V ) [v �= x ∧ h(v) = h(x)]}.

That is, Col(V ) is the event that, given Ĥ, a collision occurs on V . Then, the follow-
ing two statements are true:
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1. If ||V || ≤ 2m−1, then Col(V ) occurs with probability at most 1/4.
2. If ||V || > (m + 1)2m, then Col(V ) occurs with probability 1.

The proof of Lemma 6.42 is left to the reader as Exercise 6.15.

Definition 6.43 (Graph Nonisomorphism Problem).
Define the graph nonisomorphism problem by

GNI = {〈G, H〉 |G and H are nonisomorphic graphs}.
The Arthur-Merlin hierarchy is introduced in Definition 6.25, and Theorem 6.27

says that this hierarchy collapses down to AM. We now show that the graph noni-
somorphism problem is contained in AM. Consequently, GI is in coAM. By Corol-
lary 6.30, every NP set in coAM is a member of Low2. It follows that GI is in Low2.

Lemma 6.44. GNI is in AM.

Proof. Let G and H be two graphs with n vertices each. We want to apply the
hashing lemma. It seems to be reasonable to use as the set V from Lemma 6.42 the
set

A(G, H) = {〈F, ϕ〉 | F ∼= G ∧ ϕ ∈ Aut(F )} ∪ {〈F, ϕ〉 | F ∼= H ∧ ϕ ∈ Aut(F )}
defined right before Lemma 2.53 in Section 2.4.3. By Lemma 2.53, ||A(G, H)|| = n!
if G and H are isomorphic, and ||A(G, H)|| = 2n! if G and H are nonisomorphic.

The AM machine for GNI to be defined below is, of course, polynomial-time
bounded. This bound requires the parameters t and m from the hashing lemma to
be polynomially in n. However, in order to apply this lemma, we had to choose the
polynomial m = m(n) such that

n! ≤ 2m−1 < (m + 1)2m < 2n!, (6.18)

since otherwise the set V = A(G, H) would not be large enough to tell two isomor-
phic graphs G and H apart from two nonisomorphic graphs, with sufficiently high
probability as per Lemma 6.42. Unfortunately, it is not possible to find a polynomial
m satisfying (6.18).

That is why we choose, as our V from Lemma 6.42, a set other than A(G, H),
one that creates a gap between the upper and the lower bound in (6.18) that is large
enough so as to tell isomorphic graphs apart from nonisomorphic graphs. Define

V = A(G, H)n = A(G, H)×A(G, H)× · · · ×A(G, H)︸ ︷︷ ︸
n times

.

Now, (6.18) becomes

(n!)n ≤ 2m−1 < (m + 1)2m < (2n!)n, (6.19)

and this inequality can be satisfied by setting m = m(n) = 1 + "n log n!#, which is
polynomially in n.
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Define an AM machine M for GNI as follows. Given two graphs G and H with
n vertices each, M starts by computing the parameter m = m(n). Note that the set
V = A(G, H)n contains n-tuples of pairs of the form 〈F, ϕ〉, where F is a graph
with n vertices, and ϕ is a permutation in the automorphism group Aut(F ). The ele-
ments of V can be suitably encoded as strings over the alphabet Σ = {0, 1}, where
t = t(n) is an appropriate polynomial. So far, all computations are deterministic.

Then, M performs a probabilistic move by Arthur: Randomly choose a family
Ĥ = (h1, h2, . . . , hm+1) of hashing functions under the uniform distribution. Each
such hashing function hi ∈ Ĥ is given by a boolean (t ×m) matrix whose entries
are chosen independently and uniformly distributed. The m + 1 hashing functions
hi ∈ Ĥ can thus be encoded by a string r bH ∈ Σ∗ of length p(n), for some suitable
polynomial p.

Modify the collision predicate Col(V ) from Lemma 6.42 as follows:

B =
{
〈G, H, r bH〉

(∃v ∈ V ) (∀i : 1 ≤ i ≤ m + 1)
(∃x ∈ V ) [v �= x ∧ hi(v) = hi(x)]

}
.

Since the ∀ quantifier in B ranges over only polynomially many i, it can be evaluated
deterministically in polynomial time. Thus, the two ∃ quantifiers in B can be com-
bined to just one polynomially length-bounded ∃ quantifier. By Theorem 5.31, B is
a set in Σp

1 = NP. Let N be an NPTM for B. If r bH is the randomly chosen string
encoding m + 1 independently and uniformly distributed hashing functions from
Ht,m, then simulating the computation of N(〈G, H, r bH〉) corresponds to Merlin’s
move. This completes the description of M .

Suppose that G and H are nonisomorphic. By Lemma 2.53, ||A(G, H)|| = 2n!.
Inequality (6.19) implies ||V || = (2n!)n > (m + 1)2m. By Lemma 6.42, the proba-
bility of 〈G, H, r bH〉 being in B is 1, i.e., a collision occurs with certainty. Thus, for
each choice of r bH, there exists an accepting computation path of N(〈G, H, r bH〉).

Now suppose that G and H are isomorphic. By Lemma 2.53, ||A(G, H)|| = n!.
Inequality (6.19) implies ||V || = (n!)n ≤ 2m−1. By Lemma 6.42, the probability
of 〈G, H, r bH〉 being in B is at most 1/4. Thus, for more than 3/4 of the possible
choices of r bH, N(〈G, H, r bH〉) has no accepting computation path. It follows that
GNI is in (∃+∃ | ∃+∀) = AM, which proves the lemma.

Theorem 6.45 (Schöning). GI is in Low2.

Proof. By Corollary 6.30, NP∩ coAM ⊆ Low2. From Lemma 6.44 it follows that
GI is in NP ∩ coAM. So GI ∈ Low2.

Corollary 6.46. GI is not contained in any of the classes Highk, unless the polyno-
mial hierarchy collapses down to Σp

max(k,2). In particular, GI is not ≤p
m-complete

in NP, unless PH = Σp
2 .

Proof. The argument is given in the first paragraph of Section 6.5.1.
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6.5.2 Graph Isomorphism Is in SPP

We now prove that the graph isomorphism problem is in SPP. By Corollary 6.38,
GI is low for PP, ⊕P, C=P, and SPP. To prove this result, stated as Theorem 6.50
below, we first show that the lexicographically least permutation in a right co-set
can be efficiently computed. Recall the notions defined in Sections 2.4.2 and 2.4.3.
In particular, recall that the isomorphism set, ISO(G, H), of two isomorphic graphs
G and H is a right co-set of the automorphism group Aut(G) in the permutation
group Sn. In symbols, ISO(G, H) = Aut(G)τ , where τ ∈ ISO(G, H). Recall also
the notions from Definition 2.47 in Section 2.4 and (2.13). The lexicographical order
on Sn is defined in Example 5.26.

Theorem 6.47. Let G ≤ Sn be a permutation group represented by a generator G,
i.e., G = 〈G〉, and let π ∈ Sn be a permutation. There is a polynomial-time algo-
rithm that, given G and π, determines the lexicographically least permutation in the
right co-set Gπ of G in Sn.

Proof. Let G be a generator of the permutation group G ≤ Sn, i.e., G = 〈G〉,
and let π ∈ Sn be a permutation. Figure 6.5 shows the algorithm LERC: Given G
and π, LERC computes the lexicographically least permutation in the right co-set
Gπ of G in Sn.

LERC(G, π) {
Compute the tower G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) of stabilizers in G;
ϕ0 = π;
for (i = 0, 1, . . . , n − 1) {

x := i + 1;
Compute the element y in the orbit G(i)(x) for which ϕi(y) is minimum;
Determine a permutation τi in G(i) with τi(x) = y;
ϕi+1 := τiϕi;

}
return ϕn;

}

Fig. 6.5. Algorithm LERC for computing the least element in the right co-set Gπ

By Theorem 2.48, the tower id = G(n) = G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G
of stabilizers of G can be computed in polynomial time. More precisely, for each i
with 1 ≤ i ≤ n, the algorithm determines the complete right transversals Ti of G(i)

in G(i−1) and thus a strong generator S =
⋃n−1

i=1 Ti of G.
Since ϕ0 = π and G(n−1) = G(n) = id, for proving that LERC is cor-

rect, it is enough to show that for each i with 0 ≤ i ≤ n − 1, the lexicograph-
ically least permutation of G(i)ϕi is contained in G(i+1)ϕi+1. By induction, this
implies that G(n)ϕn = {ϕn} contains the lexicographically least permutation of
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Gπ = G(0)ϕ0. Thus, algorithm LERC outputs indeed the lexicographically least
permutation of Gπ.

For any permutation group H ≤ Sn, let H(x) denote the orbit of the element
x ∈ [n] in H. To prove the above claim, let τi be the permutation in G(i) that maps
i+1 onto the element y in the orbit G(i)(i+1) for which ϕi(y) = x is the minimum
element in the set {ϕi(z) | z ∈ G(i)(i + 1)}. By Theorem 2.48, the orbit G(i)(i + 1)
can be computed in polyomial time, and since G(i)(i + 1) contains at most n − i
elements, y can be determined efficiently. The algorithm is designed so as to satisfy
ϕi+1 = τiϕi. Note that every permutation in G(i) maps each element of [i] onto
itself and that τi ∈ G(i). Thus, for each j with 1 ≤ j ≤ i, for each τ ∈ G(i), and for
each σ ∈ G(i+1), we have

(σϕi+1)(j) = ϕi+1(j) = (τiϕi)(j) = ϕi(j) = (τϕi)(j).

In particular, for the lexicographically least permutation µ in G(i)ϕi, it follows that
every permutation from G(i+1)ϕi+1 coincides with µ in the first i elements, i.e.,
it coincides with µ on [i]. In addition, for each σ ∈ G(i+1) and for the element
x = ϕi(y) defined above, we have

(σϕi+1)(i + 1) = ϕi+1(i + 1) = (τiϕi)(i + 1) = x.

Clearly, G(i+1)ϕi+1 = {ϕ ∈ G(i)ϕi | ϕ(i + 1) = x}. The claim now follows from
the fact that µ(i + 1) = x for the lexicographically least permutation µ of G(i)ϕi.
We have thus shown that algorithm LERC works efficiently and correctly.

Theorem 6.47 can easily be extended to Corollary 6.48, see Exercise 6.16.

Corollary 6.48. Let G ≤ Sn be a permutation group represented by a generator G,
i.e., G = 〈G〉, and let π and ψ be two permutations in Sn. There is a polynomial-
time algorithm that, given 〈G, π, ψ〉, determines the lexicographically least permu-
tation in ψGπ.

We now define a problem that we need in the proof of Theorem 6.50; see also the
notions from Section 2.4, in particular Definitions 2.47 and 2.49.

Definition 6.49. Define the functional problem auto as follows: Given a graph G,
compute a strong generator of the automorphism group Aut(G).

By Mathon’s [Mat79] result, the problems auto and GI are ≤p
T-equivalent; see

Exercise 6.17. That is, auto ∈ FPGI and GI ∈ Pauto.
We now are ready to prove Theorem 6.50, the main result in this section.

Theorem 6.50 (Arvind and Kurur). GI is in SPP.

Proof. In order to prove the theorem, it is enough to show that auto is in FPSPP.
Why? Suppose that auto ∈ FPSPP. As mentioned above, auto and GI are ≤p

T-

equivalent, so GI is in Pauto ⊆ PFPSPP

= PSPP. By Corollary 6.38, SPP is closed
under≤p

T-reductions, i.e., PSPP = SPP. It follows that GI is in SPP.
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So, we have to design an FPSPP algorithm for auto. Given any graph G, this
algorihm computes a strong generator S =

⋃n−1
i=0 Ti for Aut(G), where

id = Aut(G)(n) ≤ Aut(G)(n−1) ≤ · · · ≤ Aut(G)(1) ≤ Aut(G)(0) = Aut(G)

is the tower of stabilizers of Aut(G), and Ti is a complete right transversal of
Aut(G)(i+1) in Aut(G)(i), 0 ≤ i < n.

Starting with the trivial case of Aut(G)(n) = id, we construct, step by step, a
strong generator for Aut(G)(i), where i is decreasing. Eventually, we thus obtain a
strong generator for Aut(G)(0) = Aut(G). So let us assume we have already found a
strong generator Si =

⋃n−1
j=i Tj for Aut(G)(i). We now describe how the FPSPP algo-

rithm will determine a complete right transversal Ti−1 of Aut(G)(i) in Aut(G)(i−1).
To this end, we define the following set:

A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩〈G, S, i, j, π〉

S ⊆ Aut(G) and 〈S〉 is a pointwise stabilizer of [i]
in Aut(G), π is a partial permutation that pointwise
stabilizes [i− 1] and satisfies π(i) = j, and there
exists a τ ∈ Aut(G)(i−1) such that τ(i) = j and
LERC(S, τ) extends π

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

By Theorem 6.47, the lexicographically least permutation LERC(S, τ) of the
right co-set 〈S〉τ can be computed in polynomial time by the algorithm in Figure 6.5.
The partial permutation π is part of the input instance 〈G, S, i, j, π〉, since the set A
will be used as an oracle in a prefix search for the lexicographically least permutation
τ ∈ Aut(G)(i−1) with τ(i) = j. (For another prefix search algorithm, see Figure 5.9
in Example 5.26.)

N(〈G, S, i, j, π〉) {
Verify that S ⊆ Aut(G)(i);
Nondeterministically guess a permutation τ ∈ Sn; // G has n vertices
if (τ ∈ Aut(G)(i−1) and τ (i) = j and τ extends π and τ = LERC(S, τ ))

accept and halt;
else reject and halt;

}

Fig. 6.6. NP machine N accepting the set A

Figure 6.6 shows an NPTM N for the oracle set A. So A is in NP. Observe that
if τ(i) = j then σ(i) = j for each permutation σ in the right co-set 〈S〉τ .

We now prove that the number of accepting computation paths of N on input
〈G, S, i, j, π〉 is either 0 or 1, provided that 〈S〉 = Aut(G)(i). In general, regardless
of whether or not 〈S〉 = Aut(G)(i), we have accN (〈G, S, i, j, π〉) ∈ {0, k}, where

k =
||Aut(G)(i)||
||〈S〉|| .
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Suppose that 〈G, S, i, j, π〉 is in A and 〈S〉 = Aut(G)(i). If τ(i) = j for some
τ ∈ Aut(G)(i−1) and j > i, then the right co-set 〈S〉τ consists of exactly those
permutations in Aut(G)(i−1) that map i to j. Hence, the only accepting computation
path of N(〈G, S, i, j, π〉) corresponds to the uniquely determined lexicographically
least permutation τ = LERC(S, τ). On the other hand, if 〈S〉 is a proper subgroup
of Aut(G)(i), then Aut(G)(i)τ can be written as the disjoint union of k right co-
sets of 〈S〉. In general, N(〈G, S, i, j, π〉) thus has k accepting computation paths if
〈G, S, i, j, π〉 is in A, and it has no accepting path otherwise.

MA(G) {
Set Ti := {id} for each i, 0 ≤ i ≤ n − 2; // G has n vertices

// Ti will eventually be a complete right transversal of Aut(G)(i+1) in Aut(G)(i)

Set Si := ∅ for each i, 0 ≤ i ≤ n − 2;
Set Sn−1 := {id}; // Si will be a strong generator for Aut(G)(i)

for (i = n − 1, n − 2, . . . , 1) {
// before the ith iteration, Si is already found and Si−1 is to be computed

Let π : [i− 1] → [n] be the partial permutation with π(a) = a for each a ∈ [i − 1]
// for i = 1, π = ∗ · · · ∗| {z }

n

is the empty permutation, in the notation of Example 5.26

for (j = i + 1, i + 2, . . . , n) {
Set π̂ := πj; // π̂ extends π by the pair (i, j), i.e., π̂(i) = j
if (〈G, Si, i, j, π̂〉 ∈ A) {
// prefix search constructs the least permutation in Aut(G)(i−1) mapping i to j
for (k = i + 1, i + 2, . . . , n) {

Find the element � not in the image of π̂ such that 〈G, Si, i, j, π̂�〉 ∈ A;
π̂ := π̂�;

} // π̂ now is a total permutation in Sn

Ti−1 := Ti−1 ∪ π̂;
}

} // Ti−1 now is a complete right transversal of Aut(G)(i) in Aut(G)(i−1)

Si−1 := Si ∪ Ti−1;
}
return S0; // S0 is a strong generator for Aut(G) = Aut(G)(0)

}

Fig. 6.7. FPSPP algorithm MA for auto

Figure 6.7 shows the FPA algorithm MA for auto. Note that the DPOTM M
makes only queries q = 〈G, Si, i, j, π〉 to its oracle A for which 〈Si〉 = Aut(G)(i).
Hence, accN (q) ≤ 1 for each query q actually asked. By part 2 of Lemma 6.40,
auto ∈ FPSPP.

That the output S0 of MA(G) is a strong generator for Aut(G) = Aut(G)(0) can
be shown by induction on n. The induction base is n−1, and Sn−1 = {id} certainly
generates Aut(G)(n−1) = id. For the induction step, suppose that, at the beginning
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of the ith iteration, a strong generator Si for Aut(G)(i) has already been found. We
prove that after the ith iteration, the set Si−1 = Si ∪ Ti−1 is a strong generator for
Aut(G)(i−1). For each j with i+1 ≤ j ≤ n, the oracle query “〈G, Si, i, j, π̂〉 ∈ A?”
checks whether or not there is a permutation in Aut(G)(i−1) mapping i to j.

By asking suitable oracle queries, the subsequent prefix search constructs the lex-
icographically least permutation π̂ in Aut(G)(i−1) such that π̂(i) = j. As mentioned
above, A is asked only about queries q with accN (q) ≤ 1, since Si is a strong gen-
erator for Aut(G)(i), i.e., 〈Si〉 = Aut(G)(i). By construction, at the end of the ith

iteration, Ti−1 is a complete right transversal of Aut(G)(i) in Aut(G)(i−1). Hence,
Si−1 = Si∪Ti−1 is a strong generator for Aut(G)(i−1). Eventually, after n iterations,
a strong generator S0 for Aut(G) = Aut(G)(0) has been determined.

Corollary 6.38 and Theorem 6.50 have the following corollary.

Corollary 6.51. GI is low for SPP, PP, C=P, and ⊕P, i.e., SPPGI = SPP, PPGI = PP,
C=PGI = C=P, and ⊕PGI = ⊕P.

6.6 Exercises and Problems

Exercise 6.1 Run the algorithm BACKTRACKING-SAT from Figure 6.1 for the
boolean formula

ϕ = (x∨ y ∨¬z)∧ (¬x∨¬y ∨ z)∧ (¬u∨ y ∨ z)∧ (u∨¬y ∨¬z)∧ (u∨ ¬y ∨ z).

Construct a satisfying assignment of ϕ according to BACKTRACKING-SAT step by
step, if one exists. Draw the corresponding recursion tree, and mark those subtrees
that are pruned.

Exercise 6.2 Argue why choosing the number t = "(4/3)n# of repetitions in the al-
gorithm RANDOM-SAT from Figure 6.2 achieves an error probability small enough.

Hint: Recall the rule of thumb mentioned in Section 6.1.2 (see also page 47 in Sec-
tion 2.5): To achieve a sufficiently small error probability, the number of repetitions
needed is roughly reciprocal to the success probability of one trial. More precisely,
suppose that the algorithm executes t independent trials each having success proba-
bility p. Show that the error probability can then be estimated by

(1− p)t ≤ e−t·p.

where e = 2.71828 · · · is the base of the natural logarithm. Suppose further that ε is
a fixed error probability that should not be exceeded. Show that this can be achieved
by choosing t large enough to satisfy t ≥ ln(1/ε)/p.

Exercise 6.3 Prove the second part of Theorem 6.4: PP = coPP.

Exercise 6.4 Prove Corollary 6.7: RP is closed under union and intersection.
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Exercise 6.5 Prove that PP, BPP, RP, and ZPP are closed under≤p
m-reductions.

Exercise 6.6 Prove Fact 6.18: For each sensible pair (Q1, Q2) of quantifier strings,
(Q1 |Q2) = co(Q2 |Q1).

Exercise 6.7 Prove the second statement of Lemma 6.20:

(∀y) (∃+z) [B(x, y, z)] =⇒ (∀Y ) (∃+z) (∀y ∈ Y ) [B(x, y, z)].

Exercise 6.8 Describe the classes AM, MAM, and AMA of the Arthur-Merlin hi-
erarchy (see Definition 6.25) analogous to the way the class MA is described in
Example 6.26.

Exercise 6.9 (a) Characterize the class PP by GapP functions similar to the defini-
tion of ⊕P, C=P, and SPP in Definition 6.34.

(b) Characterize the classes⊕P, C=P, and SPP from Definition 6.34 by #P functions
similar to the characterization of PP as per Remark 6.3.

Exercise 6.10 (a) Which of the following classes are promise classes: NP, coNP,
PP, RP, coRP, ZPP, BPP, AM, coAM, MA, coMA, PPpath, BPPpath, and RPpath?
For the definition of the latter three classes, see Problem 6.1.

(b) Do promise classes have complete problems?

Exercise 6.11 (a) Prove Proposition 6.32.

(b) Prove the closure properties of GapP stated in Lemma 6.33.

Hint: The proof can be found in [FFK94]. Here are some hints.

• Subtraction: Use Proposition 6.32.

• Addition: Given f = gapM and x, guess all strings y of length at most p(|x|)
and simulate M on input 〈x, y〉 for each y guessed.

• Multiplication: Given f = gapM and x, NPTM N guesses a sequence of
computation paths of M on the inputs 〈x, 0〉, 〈x, 1〉, . . . , 〈x, p(|x|)〉 and ac-
cepts if and only if an even number of these paths are accepting. Now, the
proof of

b(x) =
∏

0≤y≤p(|x|)
f(〈x, y〉) = gapN (x)

can be completed by induction on n = p(|x|).
• Binomial coefficients, limited composition, and exponentiation: First,

prove a weaker version of the closure property under binomial coefficients:
If f ∈ GapP and k ∈ FP such that k(x) is polynomially bounded in |x|,
then h(x) =

(f(x)
k(x)

)
is a function in GapP. To this end, prove the following

combinatorial lemma.

Lemma 6.52. For each r, s ∈ Z and for each k ∈ N,(
s

k

)
=

k∑
i=0

(−1)i

(
r + i

i

)(
r + s + 1

k − i

)
.
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The binomial coefficients are defined by(
x

y

)
=

x(x − 1)(x− 2)(x− y + 1)
y!

for all real numbers x (including negative x) and for nonnegative integers y.
By convention,

(
x
0

)
= 1.

To prove Lemma 6.52, use Vandermonde’s convolution [GKP89, p. 174],
which states that for each a, b ∈ Z and for each k ∈ N,(

a + b

k

)
=

k∑
i=0

(
a

i

)(
b

k − i

)
. (6.20)

The intuition behind (6.20) is that choosing a committee of k members from
a set of a women and b men is nothing other than first choosing i women and
then k − i men independently for each i.

Next, consider the following “δ” functions that will be useful below: For all
integers k and B with 0 ≤ k ≤ B and for each integer x, define

δB
k (x) =

(
x

k

)(
B − x

B − k

)
.

Note that these functions are in FP (and thus in GapP) and that

δB
k (x) =

{
1 if x = k
0 if 0 ≤ x ≤ B and x �= k.

(6.21)

Using the above-mentioned weaker closure property under binomial coeffi-
cients and (6.21), prove that c(x) = f(〈x, g(x)〉) is in GapP if f and g are
in GapP. This closure of GapP under limited composition, in turn, can be
used to prove the stronger version of closure under binomial coefficients and
closure under exponentiation: If f and g are in GapP and 0 ≤ g(x) ≤ p(|x|)
for some polynomial p, then d and e are in GapP, where

d(x) =
(

f(x)
g(x)

)
and e(x) = f(x)g(x).

(c) Which of the closure properties stated for GapP in Lemma 6.33 are shared
by #P? Prove your answers.

Hint: If you doubt that #P is closed under some property π, show that π is
“hard” for the closure properties of #P in the sense that #P is closed under π
if and only if it is closed under every polynomial-time computable operation.
Results of this form were established by Ogihara and L. Hemaspaandra [OH93]
who developed a general theory of closure properties of #P and related classes.

Exercise 6.12 Prove Proposition 6.35.
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Exercise 6.13 (a) Prove Corollary 6.38.

(b) Prove that #PUP = #P implies UP = coUP. Hint: See [KST89].

Exercise 6.14 (a) Prove Theorem 6.39.

Hint: Apply the technique used in the proof of Theorem 6.37. See also Theo-
rem 4.2 in [KST92] for a slightly more general result.

(b) Show that Theorem 6.39 and the self-lowness of SPP (i.e., SPPSPP = SPP) imply
Lemma 6.40.

Exercise 6.15 Prove Lemma 6.42.

Exercise 6.16 Modify the proof of Theorem 6.47 so as to prove Corollar 6.48.

Exercise 6.17 Prove that the problems GI and auto, defined in respectively Def-
inition 2.49 and Definition 6.49, are ≤p

T-equivalent, that is, auto ∈ FPGI and
GI ∈ Pauto. Hint: See Köbler, Schöning, and Torán [KST93].

Problem 6.1 (Threshold Classes: PPpath, RPpath, and BPPpath)
As stated in Remark 6.3, probabilistic complexity classes such as PP and RP can be
defined in terms of probability weights or, alternatively, in terms of the number of
accepting paths of normalized NPTMs. Is the normalization requirement necessary
for the proof to work? In particular, define the function totM : Σ∗ → N for any given
NPTM M by

totM (x) = ||{α | α is some path of M(x)}||,
and consider the classes:

PPpath =
{

A
there is some NPTM M such that for each input x,
x ∈ A ⇐⇒ accM (x) ≥ (1/2)totM (x)

}
;

RPpath =

⎧⎨⎩A
there is some NPTM M such that for each input x,
x ∈ A =⇒ accM (x) ≥ (1/2)totM (x);
x �∈ A =⇒ accM (x) = 0

⎫⎬⎭ ;

BPPpath =

⎧⎨⎩A
there is some NPTM M and some ε > 0 such that for each x,
x ∈ A =⇒ accM (x) ≥ (1/2 + ε)totM (x);
x �∈ A =⇒ accM (x) ≤ (1/2− ε)totM (x)

⎫⎬⎭ ,

where the machines are not necessarily normalized. PPpath, RPpath, and BPPpath are
sometimes dubbed threshold complexity classes. Prove the following claims:

(a) PPpath = PP.

(b) RPpath = NP.

(c) NP ⊆ BPPpath ⊆ PP.

(d) PNP[O(log)] ⊆ BPPpath. Hint: Prove that BPPpath is closed under≤p
tt -reductions

and use the equality PNP[O(log)] = PNP
tt from Corollary 5.55.
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(e) BPP is low for BPPpath, i.e., BPPBPP
path = BPPpath. Hint: See [HHT97].

(f) BPP ⊆ NPBPP ⊆ MA ⊆ BPPpath ⊆ BPPNP. Hint: See [HHT97].

(g) Insert the classes PPpath, BPPpath, and RPpath in Figure 6.8.

Problem 6.2 (Closure Properties of PP)
(a) Prove that the class PP is closed under intersection.

Hint: See Beigel, Reingold, and Spielman [BRS91]. The key to this proof is
to find a rational function Rn : Z → Z such that for each x and y with
−2n ≤ x, y ≤ 2n, Rn(x, y) is positive if and only if both x and y are positive.
Here, x and y represent the gaps between the number of accepting and rejecting
paths of NPTMs (i.e., the values of the given GapP functions) for the given PP
languages X and Y , and Rn(x, y) represents the value of the GapP function, to
be constructed, for the set Z = X ∩Y . How to construct such a function Rn and
how to prove the required properties of Rn can be found in [BRS91].

(b) Prove that the class PP is closed even under ≤p
tt -reductions.

Hint: See Fortnow and Reingold [FR96].

Problem 6.3 (Lowness for Probabilistic and Counting Classes)
Prove the following lowness results:

(a) BPP is self-low, i.e., BPPBPP = BPP. Hint: Use the probability amplification
technique stated in Theorem 6.13. See also [Ko82, Zac82].

(b) ⊕P is self-low, i.e., ⊕P⊕P = ⊕P. Hint: See [PZ83].

(c) AM ∩ coAM is low for AM, i.e., AMAM∩coAM = AM.

Hint: The proof is similar to the proof of Theorem 6.29 stating that AM∩coAM
is low for Σp

2 , i.e., Σp,AM∩coAM
2 = Σp

2 . See also part 2 of Theorem 5.76 stating
that NP ∩ coNP is low for NP, i.e., NPNP∩coNP = NP. See also Theorem 2.44
in [KST93].

6.7 Summary and Bibliographic Remarks

Dantsin et al. [DGH+02] established the currently best upper bound for the deter-
ministic time complexity of k-SAT for k ≥ 3, see Table 6.1. The random walk al-
gorithm for 3-SAT presented in Section 6.1.2 is due to Schöning [Sch99, Sch02b].
The error and running time analysis of RANDOM-SAT, which was only roughly
sketched in Section 6.1.2, can be found in more detail in Schöning’s book [Sch01].
For k-SAT with k ≥ 4, the algorithm by Paturi et al. [PPSZ98] is even slightly bet-
ter than Schöning’s algorithm. The currently best randomized algorithm for k-SAT
with 3 ≤ k ≤ 4, which is due to Iwama and Tamaki [IT03], has a running time
of Õ(1.324n) for 3-SAT and of Õ(1.474n) for 4-SAT. Their algorithm is a clever
combination of the algorithm by Paturi et al. [PPSZ98] and Schöning’s random walk
algorithm [Sch99]. For k-SAT with k ≥ 5, Iwama and Tamaki’s algorithm is not bet-
ter than the one by Paturi et al. [PPSZ98]. Comprehensive surveys on algorithmics
in exponential time are due to Woeginger [Woe03] and Schöning [Sch05].
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Probabilistic Turing machines and the classes PP, RP, ZPP, and BPP were in-
troduced and studied by Gill [Gil77]. Simon [Sim75] introduced the related notion
of threshold machines that are based on the portion of accepting paths rather than
the probability weight of accepting paths; see Remark 6.3. Problem 6.1(a) is taken
from [Sim75]. Han, L. Hemaspaandra, and Thierauf [HHT97] pursued this line of
research. In particular, they carefully studied the class BPPpath, which is defined in
Problem 6.1, with respect to its relation to other complexity classes and with respect
to secure database access. Problems 6.1(b) through 6.1(f) are taken from [HHT97].
The closure of PP under intersection was proven by Beigel, Reingold, and Spiel-
man [BRS91]. Fortnow and Reingold [FR96] improved this result by proving that
PP is closed even under the ≤p

tt -reducibility, as mentioned in Section 6.2.1 and in
Problem 6.2.

Arthur-Merlin games were introduced by Babai and Moran [BM88, Bab85].
Independently, Goldwasser, Micali und Rackoff [GMR89] developed the theory
of interactive proof systems that yields an essentially equivalent concept. One of
the best and most comprehensive sources for this theory is Chapter 4 in Gold-
reich’s book [Gol01]. Other nice introductions to this field can be found in, e.g.,
the books by Balcázar, Dı́az, and Gabarró [BDG90], Beutelspacher [Beu02], Buch-
mann [Buc01], Köbler, Schöning, and Torán [KST93], Papadimitriou [Pap94], Sa-
lomaa [Sal96], Stinson [Sti02], and Wechsung [Wec00], and in the surveys [Gol88,
Gol89, Rot02]. Lemmas 6.20 and 6.21 and Theorem 6.22 are due to Zachos and
Heller [Zac88, ZH86]. Corollary 6.23, which shows that BPP is contained in the
second level of the polynomial hierarchy, is due to Gács (in Sipser [Sip83]) and, in-
dependently, to Lautemann [Lau83]. Part 2 of Corollary 6.28 is due to Boppana,
Håstad, and Zachos [BHZ87]. Theorem 6.29 and Corollary 6.30 were shown by
Schöning [Sch88], who also provided results generalizing the collapse stated in part 2
of Corollary 6.28 and the lowness for probabilistic classes stated in Theorem 6.29,
see [Sch89]. Vereshchagin [Ver92] proved that MA ⊆ PP.

As noted above, Arthur-Merlin games and interactive proof systems are essen-
tially the same concept. One (notational) difference is that, in the latter model, Merlin
is called the prover and Arthur is called the verifier. Prover and verifier don’t play
games, they communicate via a protocol similar to a cryptographic protocol, even
though not for the purpose of conveying secret messages. Another, at first glance
more significant, difference between Arthur-Merlin games and interactive proof sys-
tems is that, in the former model, Arthur’s random bits are public (and in particular
known to Merlin), whereas in the latter model the verifier’s random bits are private.
However, Goldwasser and Sipser [GS89] proved that this difference between the two
models in fact is irrelevant: it does not matter whether or not one uses private or
public coins.

If the two players (Arthur and Merlin, or verifier and prover) do not play a con-
stant number of rounds but polynomially many rounds, one obtains a complexity
class that is dubbed IP. By definition, IP contains all of NP, and in particular GI.
It also contains problems from coNP suspected to not be in NP, such as the graph
nonisomorphism problem, which by Theorem 6.45 is a member of AM and thus
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of IP. A celebrated result by A. Shamir [Sha92] says that IP equals PSPACE, thus
characterizing IP by a traditional complexity class.

The class #P was introduced by Valiant [Val79a, Val79b]. Fenner, Fortnow, and
Kurtz [FFK94] generalized #P to obtain the class GapP and developed a theory
of gap-definable counting classes. Similar ideas were independently developed by
Köbler, Schöning, Toda, and Torán [KSTT92, KST92], Gupta [Gup91], and Ogihara
and Hemaspaandra [OH93]. Probabilistic complexity classes such as PP are gap-
definable, and so are many other counting classes, such as ⊕P, C=P, and SPP. The
class⊕P was introduced by Papadimitriou and Zachos [PZ83] and, independently, by
Goldschlager and Parberry [GP86]. The “exact counting” class C=P was introduced
by Simon [Sim75], see also [Wag86]. Analogous to the polynomial hierarchy and
based on operators corresponding to the classes PP and C=P, Wagner [Wag86] defined
the counting hierarchy, which was also intensely studied by Torán [Tor91]. Papadim-
itriou and Zachos proved that⊕P is self-low; see Problem 6.3(b). Ko [Ko82] and Za-
chos showed that BPP is self-low (see Problem 6.3(a)), and Köbler et al. [KSTT92]
proved that BPP is PP-low.

The class SPP was introduced in [FFK94]. The first SPP-like machine was de-
scribed in [KSTT92], see also [KST92]. SPP was independently introduced by Ogi-
hara and Hemaspaandra [OH93] under the name XP, and by Gupta [Gup91] under
the name ZUP. Theorem 6.37 and Corollary 6.38 are due to Fenner, Fortnow, and
Kurtz [FFK94]. Theorem 6.39 and Lemma 6.40 are due to Köbler, Schöning, and
Torán [KST92]. A slightly more general version of Theorem 6.39 can be found as
Theorem 4.2 in [KST92]. SPP generalizes Valiant’s [Val76] class UP, which is de-
fined in Definition 3.81 of Section 3.6. The promise classes UP and SPP have been
intensely studied; see, e.g., [Val76, HH88, Sel92, KST92, KSTT92, FFK94, RRW94,
Rot95, HR97b, HRW97b, BHR00, RH02, AK02b, HT03b, Hom04].

The relationship between the polynomial hierarchy and the counting classes PP,
C=P,⊕P, and SPP is open. The highest level of the polynomial hierarchy known to be
contained in PP is Θp

2 , by Beigel, Hemaspandra, and Wechsung’s result [BHW91].
In contrast, Beigel [Bei91b] proved that, relative to an oracle, PP does not con-
tain ∆p

2. Further relativized separation results involving the counting classes PP,
C=P, and ⊕P and the polynomial hierarchy have been obtained by Balcázar and
Russo [Bal85, BR88], Bruschi [Bru92], Green [Gre91], Ko [Ko90], Rothe [Rot99],
and Torán [Tor91]. Some of these results employ lower bounds on the circuit com-
plexity of certain boolean functions, which were obtained by, e.g., Razborov [Raz87],
Smolensky [Smo87], and Furst, Saxe, and Sipser [FSS84].

In contrast, Toda [Tod91] proved that every set from the polynomial hierar-
chy ≤p

T-reduces to some set PP, i.e., PH ⊆ PPP. Even better, his technique es-

tablished that the entire polynomial hierarchy is low for PPP, i.e., PPPPH

= PPP.
Generalizing a seminal result by Valiant and Vazirani [VV86], Toda and Ogi-
hara [TO92, Tod91] and, independently, Tarui [Tar93] proved that counting classes
are at least as hard as the polynomial hierarchy. More precisely, they showed that, for
each C ∈ {PP,⊕P, C=P}, every set in CPH reduces to some set in C under polynomial-
time randomized many-one reductions. Rothe [Rot95] showed that, in the context of
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promise problems and reductions between promise problems as introduced by Even,
Selman, and Yacobi [EY80, ESY84, Sel88b], every set in the polynomial hierarchy
randomly reduces to a class, denoted SPP , that generalizes SPP. The complexity-
theoretic investigations in [EY80, ESY84, Sel88b, GS88] are motivated by questions
arising in public-key cryptography. Further results on counting classes can be found,
e.g., in the papers [Her90, BG92, Gup93, OH93, HO93, Tar93].

Köbler, Schöning, and Torán [KST93] have written a comprehensive treatise
on the graph isomorphism problem, in particular regarding its complexity-theoretic
properties. Hoffman [Hof82] investigates group-theoretic algorithms for GI.

Lemma 6.44 was independently proven by Goldreich, Micali, and Wigder-
son [GMW91] and by Goldwasser and Sipser [GS89]. Theorem 6.45 is due to
Schöning [Sch88]. Arvind and Köbler [AK02a] improved Schöning’s result by prov-
ing that the graph isomorphism problem is even low for the class ZPPNP, which is
contained in Σp

2 . Lemma 6.42, which is applied in the proof of Theorem 6.45, is
called Sipser’s Coding Lemma and first appeared in [Sip83], see also [GS89]. It can
be seen as an application of universal hashing due to Carter and Wegman [CW79].
Köbler et al. [KST92, KSTT92] achieved the first lowness results for GI with re-
spect to probabilistic and counting classes such as PP and C=P. They also showed
that the graph automorphism problem, GA, is in SPP and thus low for SPP, ⊕P, PP,
and C=P. Arvind and Kurur [AK02b] showed that GI is contained in SPP as well,
which implies that it is low for SPP and other counting classes, see Theorem 6.50.

Figure 6.8 gives an overview over the known inclusion relations between proba-
bilistic classes, Arthur-Merlin classes, and counting classes and the polynomial hier-
archy. This inclusion structure is shown as a Hasse diagram, that is, containment of
a class C in a class D is indicated by a line going from C upward to D. None of the
inclusions shown is known to be strict.

Finally, we mention some interesting problems related to GI that are inspired by
the Graph Reconstruction Conjecture, which is due to P. J. Kelly and S. M. Ulam,
cf. [Har69, Har74]. Though stated already in 1942, this conjecture is still open and
is considered to be very hard to solve. First, some definitions are in order. Let G be
a graph with n vertices, V (G) = {1, 2, . . . , n}. A sequence G = (G1, G2, . . . , Gn)
of graphs is said to be a deck of G if and only if there is a permutation π ∈ Sn such
that for each i with 1 ≤ i ≤ n, Gπ(i) is isomorphic to the graph obtained from G
by deleting the vertex i and all incident edges. If G is a deck of G, then G is called a
preimage of G. A sequence G = (G1, G2, . . . , Gn) is said to be a legitimate deck if
and only if it has some preimage. The Graph Reconstruction Conjecture states that
for any legitimate deck, there exists only one preimage up to isomorphism. Define
the following problems:

Deck-Checking = {〈G,G〉 |G is a preimage of G = 〈G1, G2, . . . , Gn〉};
Legitimate-Deck = {G | G = 〈G1, G2, . . . , Gn〉 is a legitimate deck}.

Kratsch and L. Hemaspaandra [KH94] proved that

Deck-Checking≤p
m GI≤p

m Legitimate-Deck.
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Fig. 6.8. Probabilistic, Arthur-Merlin, and counting classes and the polynomial hierarchy

The question of whether Legitimate-Deck ≤p
m-reduces to GI is left open. Köbler,

Schöning, and Torán [KST92] proved that if the Graph Reconstruction Conjec-
ture holds, then Legitimate-Deck is low for certain probabilistic and counting
classes, including PP and C=P. For some more recent complexity results in graph
reconstruction, see E. Hemaspaandra, L. Hemaspaandra, Radziszowski, and Tri-
pathi [HHRT04].
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RSA Cryptosystem, Primality, and Factoring

The problem of distinguishing prime numbers from composites, and of resolving composite numbers into their
prime factors, is one of the most important and useful in all of arithmetic. . . . The dignity of science seems to
demand that every aid to the solution of such an elegant and celebrated problem be zealously cultivated.

(Taken from “Disquisitiones Arithmeticae” by Carl Friedrich Gauß,
the translation from Latin into English is taken from [Knu98])

Again turning to cryptography, the last two chapters introduce a number of funda-
mental cryptographic protocols. The security of such protocols usually depends on
the assumption that certain problems from number theory and algebra are intractable.
Thus, to describe these cryptosystems and protocols and to discuss the related secu-
rity issues, we need number-theoretical, algebraic, and complexity-theoretic notions,
methods, and results.

Section 7.1 presents the famous RSA cryptosystem, invented by Rivest, Shamir,
and Adleman in 1978. Their result is a milestone in the history of cryptography,
as RSA was the very first public-key cryptosystem (in the open literature, see the
bibliographic remarks in Section 7.6). RSA is still very popular and is used in various
cryptographic applications. For example, the RSA system can be modified so as to
yield a digital signature scheme.

The RSA system uses large prime numbers. The primality problem, which asks
whether or not a given integer is prime, has been studied since ancient times. This
problem can be solved efficiently in random polynomial time, and Section 7.2
presents some of the common randomized primality tests, such as the Miller–Rabin
test and the Solovay–Strassen test. The number-theoretical results on which these
tests rest are presented in as much depth as needed in order to understand the tests.
We also mention a celebrated result by Agrawal, Kayal, and Saxena, which says that
the primality problem can even be solved in deterministic polynomial time.

The RSA system is secure only if large integers cannot be factored efficiently.
Section 7.3 studies the factoring problem, which as yet has defied all attempts to
design efficient algorithms for it. There are tons of literature on factoring algorithms
and their applications in practice, and some of them are discussed in Section 7.3.
Section 7.4 investigates the security of RSA by presenting certain potential attacks
against this cryptosystem and discussing appropriate countermeasures.
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7.1 RSA

We have seen in Chapter 4 that many of the symmetric cryptosystems can be broken
by certain types of attacks. In particular, affine linear block ciphers are vulnerable
to known-plaintext attacks. In addition to such security issues (and notwithstanding
their advantages with respect to efficiency), another major disadvantage of symmet-
ric cryptosystems is the problem of key management and key distribution. If many
users participate in a large computer network or communicate over the internet, the
issue of how to distribute and how to share keys for symmetric cryptosystems can be
quite troublesome.

An elegant solution to this problem, the Diffie–Hellman protocol, will be pre-
sented in Section 8.1. Interestingly, their solution to the secret-key agreement prob-
lem in symmetric cryptography opened the door to a fundamentally different, new
direction in cryptography in which there is no longer any need to share and to dis-
tribute any private keys. In public-key cryptography, Bob chooses both a private key,
which he keeps secret, and a public key, which is made available to all other users in
a public directory. If Alice wants to send him a message, she looks up his public key
and uses it to encrypt her message. The idea is that Bob can easily decrypt her ci-
phertext using his private key, whereas any unauthorized party, such as eavesdropper
Erich, fails when trying to decipher Alice’s ciphertext because he lacks Bob’s private
key.

7.1.1 RSA Public-Key Cryptosystem

Many of the protocols presented in Chapters 7 and 8 require elementary notions from
number theory, see Section 2.4. In particular, to describe the RSA cryptosystem, we
need the multiplicative group

Z∗
k = {i | 1 ≤ i ≤ k − 1 and gcd(i, k) = 1},

which was introduced in Example 2.35. Recall also the Euler function ϕ from Def-
inition 2.36, which gives the order of Z∗

k, and recall the arithmetics in the ring
Zk = {0, 1, . . . , k − 1} from Problem 2.1. The notion of a public-key cryptosys-
tem is introduced formally in Definition 4.1.

Figure 7.1 summarizes the single steps of the RSA protocol. We now describe
these steps in more detail.

Step 1: Key Generation. Bob chooses two distinct large prime numbers, p and q
with p �= q, and computes their product n = pq. Then, he chooses an exponent
e ∈ N satisfying

1 < e < ϕ(n) = (p− 1)(q − 1) and gcd(e, ϕ(n)) = 1. (7.1)

Using the extended Euclidean Algorithm from Figure 2.2, he then determines
the inverse element of e mod ϕ(n), i.e., the unique number d satisfying

1 < d < ϕ(n) and e · d ≡ 1 mod ϕ(n). (7.2)

The pair (n, e) is Bob’s public key, and d is Bob’s private key.
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Step Alice Erich Bob

1 chooses two large primes, p and q,
at random, computes n = pq and
ϕ(n) = (p − 1)(q − 1), his pub-
lic key (n, e), and his private key d
satisfying (7.1) and (7.2)

2 ⇐ (n, e)

3 encrypts m as c = me mod n

4 c ⇒
5 decrypts c as m = cd mod n

Fig. 7.1. RSA protocol

Step 2: Communication. Bob makes his key (n, e) public.
Step 3: Encryption. As in Chapter 4, messages are strings over an alphabet Σ,

which can be viewed as natural numbers in ||Σ||-adic representation. Every mes-
sage can be encoded block-wise with a fixed block length. Let m < n be the
number encoding one block of the message Alice wants to send to Bob. Alice
knows Bob’s public key (n, e) and encrypts m as the number c = E(n,e)(m),
where the encryption function is defined by

E(n,e)(m) = me mod n. (7.3)

Step 4: Communication. Alice sends her encrypted message c to Bob.
Step 5: Decryption. Let c with 0 ≤ c < n be the number encoding one block of

the ciphertext that Bob receives. The eavesdropper Erich may also know c, but
he does not know Bob’s private key d. Bob decrypts c using d and the following
decryption function:

Dd(c) = cd mod n. (7.4)

Theorem 7.1 says that the RSA scheme described above indeed is a cryptosystem
as per Definition 4.1. That is, encryption and decryption are inverse to each other.

Theorem 7.1. Let (n, e) be the public key, and let d be the private key used in the
RSA protocol. Then, for each message m with 0 ≤ m < n,

m = (me)d mod n.

Proof. By (7.2), we have e · d ≡ 1 mod ϕ(n). Thus, there exists an integer k such
that

e · d = 1 + k(p− 1)(q − 1),

where n = pq. Hence, we have

(me)d = me·d = m1+k(p−1)(q−1)

= m
(
mk(p−1)(q−1)

)
= m

(
mp−1

)k(q−1)
.
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It follows that
(me)d ≡ m mod p, (7.5)

since if p divides m then both sides of (7.5) are congruent to 0 mod p, and if p does
not divide m (i.e., gcd(p, m) = 1) then we have

mp−1 ≡ 1 mod p (7.6)

by Fermat’s Little Theorem. A symmetric argument shows that

(me)d ≡ m mod q. (7.7)

Since p and q are distinct primes, (7.6) and (7.7) imply via Theorem 2.46

(me)d ≡ m mod n.

Since m < n, the proof is complete.

The RSA protocol can be executed efficiently. Note that Alice has to compute
c = me mod n and Bob has to compute m = cd mod n. Performed naively, these
computations would require a large number of multiplications depending on the
size of the exponent. Fortunately, however, the modular exponentiation function can
be computed efficiently by employing the “square-and-multiply” algorithm that is
shown in Figure 7.2.

SQUARE-AND-MULTIPLY(a, b, m) {
// a is the exponent, b < m is the base, and m is the modulus

Determine the binary expansion of the exponent a =
Pk

i=0 ai2
i, where ai ∈ {0, 1};

Successively, compute b20
, b21

, . . . , b2k

by applying the congruence

b2i+1 ≡
“
b2i

”2

mod m;

// the intermediate values b2i

need not be stored

In the arithmetics modulo m, compute ba =
Qk

i = 0
ai=1

b2i

;

return ba;
}

Fig. 7.2. The “square-and-multiply” algorithm

The computation of ba mod m in Figure 7.2 is correct, since in the arithmetics
modulo m,

ba = b
Pk

i=0 ai2
i

=
k∏

i=0

(
b2i

)ai

=
k∏

i = 0
ai=1

b2i

.
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How should one choose the prime numbers p and q in the RSA protocol from
Figure 7.1? First of all, they must be large enough, since otherwise Erich could fac-
tor the number n in Bob’s public key (n, e). Knowing n, he could use the extended
Euclidean Algorithm from Figure 2.2 to determine Bob’s private key d, which is the
unique inverse of e mod ϕ(n), where ϕ(n) = (p−1)(q−1). That is why the primes
p and q must be kept secret and thus need to be large enough to prevent this direct at-
tack. In practice, they should be chosen so as to have at least 80 decimal digits. One
generates numbers of this size randomly and then checks—using one of the com-
mon primality tests—whether or not the numbers chosen are primes indeed. By the
prime number theorem, there are approximately N/ lnN primes not exceeding N ,
see Theorem 7.3. Thus, the odds are good to hit a prime after reasonably few trials.
Primality tests are described in Section 7.2. Example 7.2 gives a concrete application
of the RSA system. Of course, this is just a toy example with way too small numbers
and thus far from being secure.

Example 7.2 (RSA). Bob chooses the primes p = 67 and q = 11 and computes
n = 67 · 11 = 737 and ϕ(n) = (p− 1)(q− 1) = 66 · 10 = 660. If Bob now chooses
the smallest possible exponent for ϕ(n) = 660, which is e = 7, then his public key is
the pair (n, e) = (737, 7). Using the extended Euclidean Algorithm from Figure 2.2,
Bob determines his private key d = 283, and we have (see Exercise 7.1):

e · d = 7 · 283 = 1981 ≡ 1 mod 660.

As in Section 4.1, the alphabet Σ = {A, B, . . . , Z} is identified with the set
Z26 = {0, 1, . . . , 25}. Messages again are strings over Σ and will be encoded block-
wise, with a fixed block length, as nonnegative integers in 26-adic representation. In
our example, the block length is


 = �log26 n� = �log26 737� = 2.

Any block b = b1b2 · · · b� of length 
 with bi ∈ Z26 is represented by the integer
mb =

∑�
i=1 bi · 26�−i. From the definition of the block length 
 = �log26 n�, we

have

0 ≤ mb ≤ 25 ·
�∑

i=1

26�−i = 26� − 1 < n.

Using the RSA encryption function (7.3), the integer mb corresponding to the block
b is encrypted by cb = (mb)e mod n, where cb = c0c1 · · · c� with ci ∈ Z26 is
the ciphertext for block b. RSA thus maps blocks of length 
 injectively to blocks
of length 
 + 1. Table 7.1 shows how some message of length 34 is subdivided
into 17 blocks of length 2, and how the single blocks written as integers are then
encrypted. For example, the first block, “RS,” is turned into an integer as follows:
the “R” corresponds to 17 and the “S” to 18, and we have

17 · 261 + 18 · 260 = 442 + 18 = 460.

The resulting integer cb is again written in 26-adic representation and may have
length 
 + 1:
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R S A I S T H E K E Y T O P U B L I C K E Y C R Y P T O G R A P H Y
mb 460 8 487 186 264 643 379 521 294 62 128 69 639 508 173 15 206

cb 697 387 229 340 165 223 586 5 189 600 325 262 100 689 354 665 673

Table 7.1. Example of an RSA encryption

cb =
�∑

i=0

ci · 26�−i,

where ci ∈ Z26, see Exercise 7.1. In particular, the first block, 697 = 676 + 21 =
1 · 262 + 0 · 261 + 21 · 260, is turned into the ciphertext “BAV.”

Decryption also works block-wise. For instance, to decrypt the first block using
the private key d = 283, compute 697283 mod 737, again employing the fast expo-
nentiation from Figure 7.2. It is useful to reduce modulo n = 737 after each multi-
plication to prevent the integers from becoming too large. The binary expansion of
the exponent is 283 = 20 + 21 + 23 + 24 + 28, and we obtain

697283 ≡ 69720 ·69721 ·69723 ·69724 ·69728 ≡ 697 ·126 ·9 ·81 ·15 ≡ 460 mod 737

as desired.

7.1.2 RSA Digital Signature Scheme

The RSA public-key cryptosystem from Figure 7.1 can be modified so as to obtain
a protocol for digital signatures as shown in Figure 7.3. It is easy to verify that the
protocol works, see Exercise 7.2. This protocol is vulnerable to chosen-plaintext at-
tacks, i.e., the attacker can choose plaintexts and learns the corresponding ciphertexts
from which the keys used can be determined. Section 7.4 describes this attack and
possible countermeasures to prevent it.

Step Alice Erich Bob

1 chooses n = pq, her public
key (n, e) and her private key
d just as Bob does in the RSA
protocol from Figure 7.1

2 (n, e) ⇒
3 signs the message m with

sigA(m) = md mod n
4 〈m, sigA(m)〉 ⇒
5 verifies Alice’s signature by

m ≡ (sigA(m))e mod n

Fig. 7.3. RSA digital signature scheme
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7.2 Primality Tests

As mentioned in Section 7.1.1, many public-key cryptosystems make use of large
prime numbers. In practice, they are obtained by randomly picking large numbers
of the required size and then checking whether or not they indeed are prime num-
bers. This checking is done by means of one of the randomized primality tests to
be described in this section, which also investigates the complexity of the primality
problem. Both the generation of large numbers and the primality tests require a suit-
able source of randomness. Ideally, one would like to toss a fair coin to generate a
random bit stream or a fair “dice” with n faces to randomly pick a number in the
interval {1, 2, . . . , n} under the uniform distribution. In practice, however, one uses
pseudorandom generators, which produce sequences of numbers (or bits) that “look”
random in the sense that they cannot be distinguished statistically or efficiently from
truly random sequences.

A natural number n ≥ 2 is said to be a prime number if it has no divisors other
than the trivial ones, 1 and n. Otherwise, if n is not prime, it is said to be composite,
i.e., n = x · y for integers x and y with 1 < x, y < n. The reason the method of
finding primes described in the previous paragraph is likely to be successful is that
the prime numbers are sufficiently dense in intervals of the form {1, 2, . . . , N}. This
fact is known as the prime number theorem, a deep result from number theory the
proof of which is omitted here.

Theorem 7.3 (Prime Number Theorem). If π(N) denotes the number of primes
p ≤ N and lnN denotes the natural logarithm, then

lim
N→∞

π(N) ln N

N
= 1.

It is often enough to consider the following weaker version of the prime num-
ber theorem, which gives (up to constants) approximate upper and lower bounds
of π(N):

O
(

N

log N

)
≤ π(N) ≤ O

(
N

log N

)
.

The primality problem asks, given an integer n ≥ 2 in binary, whether or not n
is prime. This utterly natural, intriguing problem was first studied in ancient Greece,
long before its practical importance (e.g., in cryptographic applications) became ev-
ident, and it has continued to fascinate mathematicians and computer scientists ever
since.

Definition 7.4 (Primality Problem). Define the primality problem by

Primes = {bin(n) | n is a prime number}.

Of course, this problem would be trivial if Primes were a finite set. However,
Euclid proved that there are infinitely many prime numbers, see Exercise 7.3. A
well-known method to generate a finite list of primes is the sieve of Eratosthenes.
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Example 7.5 (Sieve of Eratosthenes). Informally stated, this ancient algorithm
works as follows. Suppose you want to find out which numbers in {2, 3, . . . , n}
are primes. Initially, none of the elements in this interval is marked. For each

i = 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

i = 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

i = 4 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

i = 5 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

i = 6 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Table 7.2. Sieve of Eratosthenes

i ∈ {2, 3, . . . , �√n�} in this order, carry out the following steps: If i is unmarked,
then mark all multiples of i, i.e., all numbers j = k · i with i ≤ k ≤ n/i. No prime
number can ever be marked by this procedure, since only numbers with nontrivial di-
visors are marked. However, all composite numbers in {2, 3, . . . , n} will be marked.
For a concrete example, look at Table 7.2 that shows which numbers from the interval
{2, 3, . . . , 39} are marked in the course of applying the sieve of Eratosthenes.

TRIAL-DIVISION(n) { // n ∈ N with n ≥ 2
for (i = 2, 3, . . . , �√n�) {
if (i divides n) return “n is composite” and halt;

}
return “n is prime” and halt;

}

Fig. 7.4. Trial division to solve the primality problem

Figure 7.4 shows a naive approach to solving the primality problem, the trial
division algorithm. Starting with i = 2, this algorithm checks in each loop whether
the current value of i divides n. If so, n is composite. Otherwise, i is incremented by
one to check the next candidate, and so on until i is �√n�. If none of the tests reveals
that i is composite, the algorithm answers that n is prime. If 
 = �log n� + 1 is the
length of the input n given in binary, this algorithm runs in the worst case in time
O(2�/2) and thus is far from being efficient.
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One might try to improve the TRIAL-DIVISION algorithm. For example, check-
ing if n is divisible by 2, 3, 5, or 7 in a preparatory phase and then skipping all
multiples of 2, 3, 5, and 7 in the for loop will speed this computation up. However,
such tricks do not help to save an appreciable amount of computing time. In contrast,
randomized algorithms employing certain number-theoretical results are much more
appropriate when one seeks efficient ways of checking primality. In the following
sections, randomized algorithms for the primality problem are discussed.

7.2.1 Fermat Test

Recall Fermat’s Little Theorem (see Corollary 2.39), which says that if p is a prime
number and 1 ≤ a < p, then ap−1 ≡ 1 mod p. This result provides a criterion for
checking primality that we are going to employ in a randomized primality test.

Example 7.6. Let a = 3. Table 7.3 gives the pairs (n, 3n−1 mod n) for each n with
4 ≤ n ≤ 23. All composite numbers n in this table have a value 3n−1 mod n
distinct from 1, whereas all prime numbers n satisfy 3n−1 mod n = 1. It thus seems
that Fermat’s Little Theorem provides a good criterion for checking primality.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

3n−1 mod n 3 1 3 1 3 0 3 1 3 1 3 9 11 1 9 1 7 9 3 1

Table 7.3. Using Fermat’s Little Theorem for testing primality

We now introduce the notion of a Fermat witness and a Fermat liar. Intuitively,
a Fermat witness certifies compositeness: By the contrapositive of Fermat’s Little
Theorem, if n and a, 1 ≤ a < n, satisfy an−1 �≡ 1 mod n, then n must be composite.
Such an a is called a Fermat witness for n. On the other hand, a Fermat liar a makes
n look like a prime number in that it satisfies an−1 ≡ 1 mod n, even though n in
fact is composite.

Definition 7.7 (Fermat Witness and Fermat Liar).

• For each n ≥ 2, any number a, 1 ≤ a < n, satisfying an−1 �≡ 1 mod n is said
to be a Fermat witness for n.

• For each odd composite number n ≥ 3, any number a, 1 ≤ a < n, satisfying
an−1 ≡ 1 mod n is said to be a Fermat liar for n.

Note that a Fermat witness a for a composite number n does not provide any
information about the prime factors of n. That is why the Fermat test given in Fig-
ure 7.5 below is not a factoring algorithm. Exercise 7.4 asks you to show that 2 is a
Fermat witness for each n ≤ 340, yet is a Fermat liar for 341 = 11 · 31. In contrast,
3 is a Fermat witness for 341, since 3340 ≡ 56 mod 341.

The existence of Fermat liars shows that the converse of Fermat’s Little Theorem
is not true, i.e., the condition an−1 ≡ 1 mod n does not imply that n is prime. For
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example, as noted above, 2340 ≡ 1 mod 341, yet 341 is composite. However, one
can show a claim somewhat weaker than this converse.

Lemma 7.8. Let n ≥ 2 be any integer.

1. If a satisfies 1 ≤ a < n and ak ≡ 1 mod n for some k ≥ 1, then a ∈ Z∗
n.

2. If n is an odd composite number, then there exists some Fermat witness a for n.

Proof. 1. Suppose that ak ≡ 1 mod n for some k ≥ 1 and a with 1 ≤ a < n.
Then a · ak−1 ≡ 1 mod n. It is easy to show that a ∈ Z∗

n if and only if there exists
some b ∈ Zn with a · b ≡ 1 mod n, see Exercise 7.5. With b = ak−1 ∈ Zn, the
claim follows.

2. We prove the contrapositive. Suppose that n has no Fermat witness. For each
a with 1 ≤ a < n, we thus have an−1 ≡ 1 mod n. By the first part of this lemma,
Z∗

n = {1, 2, . . . , n− 1}. But this means that n has no nontrivial divisors and thus is
a prime number.

One can even assert a claim stronger than the second part of Lemma 7.8: For
each odd composite number n, the set

{1, 2, . . . , n− 1} − Z∗
n = {a | 1 ≤ a < n and gcd(a, n) �= 1}

does not contain any Fermat liar. Unfortunately, this set is very sparse for many
composite numbers. In the RSA cryptosystem, for instance, one chooses two primes,
p and q, and takes their product n = pq. A number a satisfies gcd(a, n) �= 1 if and
only if a is a multiple of p or q. There are exactly p + q − 2 such numbers in the set
{1, 2, . . . , n− 1}, very few compared with n if p and q are roughly of the same size.

Example 7.9 (Fermat Witness and Fermat Liar). Suppose that n = 143 = 11 · 13.
Table 7.4 shows all Fermat witnesses for n and all Fermat liars for n. The Fermat
witnesses are partitioned into three subsets: multiples of p, multiples of q, and Fermat
witnesses in Z∗

143. Observe that the latter group of Fermat witnesses is way larger
than the set of multiples of p and q.

FERMAT(n) { // n ≥ 3 is an odd integer
Randomly choose a number a ∈ {2, 3, . . . , n − 2} under the uniform distribution;
if (an−1 �≡ 1 mod n) return “n is composite” and halt;
else return “n is prime” and halt;

}

Fig. 7.5. Fermat test for primality

Figure 7.5 describes the Fermat test, our first randomized primality test. As per
Table 7.4 from Example 7.9, if the Fermat test runs on input n = 143, then the
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Multiples of 11 11 22 33 44 55 66 77 88 99 110 121 132

Multiples of 13 13 26 39 52 65 78 91 104 117 130

Fermat witnesses 2 3 4 5 6 7 8 9 10 14 15 16
in Z∗

143 17 18 19 20 21 23 24 25 27 28 29 30
31 32 34 35 36 37 38 40 41 42 43 45
46 47 48 49 50 51 53 54 56 57 58 59
60 61 62 63 64 67 68 69 70 71 72 73
74 75 76 79 80 81 82 83 84 85 86 87
89 90 92 93 94 95 96 97 98 100 101 102

103 105 106 107 108 109 111 112 113 114 115 116
118 119 120 122 123 124 125 126 127 128 129 133
134 135 136 137 138 139 140 141

Fermat liars 1 12 131 142

Table 7.4. Fermat witnesses and Fermat liars for n = 143

probability that it answers “n is composite” is 138/140 ≈ 0.9857, since there are
only two Fermat liars other than the trivial ones, 1 and 142. In other words, the
Fermat witnesses outnumber the Fermat liars clearly in this example. If this were
the case for all odd composite numbers, the Fermat test would be a no-biased Monte
Carlo algorithm for the primality problem or, equivalently, a yes-biased Monte Carlo
algorithm for the complementary problem of deciding whether a given number is
composite.

Recall from Section 6.2.1 that if a yes-biased Monte Carlo algorithm for some
decision problem L gives the answer “yes” then the input is in L; conversely, if the
input is in L then the (correct) answer “yes” occurs with probability at least 1/2, but
an incorrect answer “no” can occur with probability less than 1/2. Thus, yes-biased
Monte Carlo algorithms always give correct “yes” answers but perhaps incorrect
“no” answers.

If the Fermat test from Figure 7.5 gives the answer “n is composite,” then a
Fermat witness was picked at random, which implies that n is composite indeed.
However, if n is composite, then the Fermat test does not say so with probability
at least 1/2 for each given n, and thus is not a Monte Carlo algorithm. To wit, in
the extreme case, there exist composite numbers n for which all elements of Z∗

n are
Fermat liars. Such stubborn numbers are called Carmichael numbers; the smallest
example is 561 = 3 · 11 · 17. Carmichael numbers also have Fermat witnesses in
Zn − Z∗

n, i.e., the Fermat witnesses of a Carmichael number n is not coprime to n.
It is known that there are infinitely many Carmichael numbers.

Theorem 7.12 below says that the Fermat test has a sufficiently high success
probability for “good” inputs. To this end, we first need some elementary group-
theoretic facts. Lemma 7.10 below provides a condition sufficient to prove that a
subset of a finite group in fact is a subgroup. Note that the assumption that the group
be finite is crucial here. For example, although N ⊆ Z and N contains 0 and is closed
under addition, (N, +) is not a subgroup of (Z, +) because Z is not finite.

Recall from Definition 2.34 in Section 2.4.1 that H = (H, ◦) is a subgroup of a
group G = (G, ◦) if H ⊆ G and H satisfies the group axioms: H is closed under
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the group operation ◦, which is associative on H ; H inherits the neutral element e
from G; and all elements of H have inverses.

Lemma 7.10. If G = (G, ◦) is a finite group with neutral element e and H is a
subset of G such that e ∈ H and H is closed under the group operation ◦, then
H = (H, ◦) is a subgroup of G.

Proof. It is enough to show that all elements of H have inverses. Given any element
x of H , define the function σx : H → H by

σx(y) = x ◦ y.

Since H is closed under the group operation ◦, every function σx is well-defined.
Since G = (G, ◦) is a group, every function σx is injective. Since G is finite, every
σx is a bijection on H . Since σx is a bijection on H and since e, the neutral element
in G, belongs to H , there exists an element z ∈ H such that σx(z) = x ◦ z = e.
Thus, z = x−1 is the inverse element of x in H.

Recall that Z∗
n is a finite multiplicative group of order ϕ(n). The following

lemma says that the order of any finite group G is divided by the order of each
subgroup of G. The proof of Lemma 7.11 is left to the reader as Exercise 7.6.

Lemma 7.11. If G = (G, ◦) is a finite group and H is a subgroup of G, then the
order of H divides the order of G.

We are now ready to prove the following result that gives a good probability
bound of the Fermat test for many composite numbers, namely, for all numbers that
are not Carmichael numbers.

Theorem 7.12. If n ≥ 3 is an odd composite number that has at least one Fermat
witness in Z∗

n, then the Fermat test on input n gives the correct answer “n is com-
posite” with probability at least 1/2.

Proof. By the first part of Lemma 7.8, the set of Fermat liars for any number n is
a subset of Z∗

n. For each n ≥ 3, define this set by

F-Liarsn = {a | 1 ≤ a < n and an−1 ≡ 1 mod n}.
We now show that F-Liarsn even is a subgroup of Z∗

n. Since Z∗
n is a finite multiplica-

tive group, Lemma 7.10 can be applied. Thus, it is enough to prove that F-Liarsn

contains the neutral element of Z∗
n and is closed under multiplication modulo n. The

neutral element of Z∗
n is 1 and, as mentioned above, 1 trivially is in F-Liarsn, see Ex-

ercise 7.4(c). To show that the set F-Liarsn is closed under multiplication modulo n,
note that if an−1 ≡ 1 mod n and bn−1 ≡ 1 mod n, then

(a · b)n−1 ≡ an−1 · bn−1 ≡ 1 · 1 ≡ 1 mod n.

By Lemma 7.10, F-Liarsn is a subgroup of Z∗
n.
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By assumption, there is at least one Fermat witness for n in Z∗
n. Thus, F-Liarsn

even is a proper subgroup of Z∗
n. This fact can be employed to establish a much better

bound on the size of F-Liarsn than ϕ(n) − 1, the size of Z∗
n minus the one Fermat

witness in Z∗
n. Since F-Liarsn is a proper subgroup of Z∗

n, Lemma 7.11 implies that
the size of F-Liarsn is a nontrivial divisor of ϕ(n). Since ϕ(n) < n − 1, the size of
F-Liarsn is at most (n− 2)/2.

Consider the event that an integer a randomly chosen from {2, 3, . . . , n− 2} by
the Fermat test is a Fermat liar other than the trivial ones, 1 or n− 1. It follows that
this event occurs with probability at most

(n− 2)/2− 2
n− 3

=
n− 6

2(n− 3)
<

1
2

as desired.

7.2.2 Miller–Rabin Test

As mentioned above, the reason why the Fermat test is not a Monte Carlo algorithm
for Primes is that Z∗

n contains too many Fermat liars for infinitely many composite
numbers n, namely, for all Carmichael numbers n. In this case, Z∗

n consists of noth-
ing else than Fermat liars. Thus, given a Carmichael number n as input, the Fermat
test gives the wrong answer “n is prime” with probability

ϕ(n)− 2
n− 3

>
ϕ(n)

n
.

Since one can show that ϕ(n)/n equals
∏

(1 − 1/p), where the product is taken
over all prime factors p of n, the error probability of the Fermat test running on a
Carmichael number n is annoyingly close to one. This disadvantage is avoided by
the Miller–Rabin test, one of the most popular randomized primality tests, which is
shown in Figure 7.6.

Theorem 7.19 below says that the Miller–Rabin test is a no-biased Monte Carlo
algorithm for Primes, that is, its “no” answers are always reliable, whereas its “yes”
answers may be erroneous. In symbols, Primes is in coRP. The class RP, introduced
in Definition 6.2, contains precisely the problems A for which there is an NPTM M
such that for each input x, if x ∈ A then M(x) accepts with a probability of at
least 1/2, and if x �∈ A then M(x) rejects with certainty. And coRP = {A |A ∈ RP}
is the class of complements of RP sets.

The proof of Theorem 7.19 requires some basic number-theoretical facts some of
which are provided without proof here. The proof of Lemma 7.13 is left to the reader
as Exercise 7.7(a).

Lemma 7.13. Every Carmichael number is the product of at least three distinct
prime factors.
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MILLER-RABIN(n) { // n ≥ 3 is an odd integer
Determine the representation n − 1 = 2km, where m is odd;
Randomly choose a number a ∈ {1, 2, . . . , n − 1} under the uniform distribution;
x := am mod n;
if (x ≡ 1 mod n) return “n is prime” and halt;
for (j = 0, 1, . . . , k − 1) {
if (x ≡ −1 mod n) return “n is prime” and halt;
else x := x2 mod n;

}
return “n is composite” and halt;

}

Fig. 7.6. Primality test by Miller and Rabin

Definition 2.43 introduced the notion of quadratic residues modulo n. An element
x is a quadratic residue modulo n if and only if there is some a, 1 ≤ a < n, such
that x ≡ a2 mod n. If x = 1, such an a is said to be a square root of 1 modulo n.
Trivially, 1 and n− 1 are always square roots of 1 modulo n, since

12 ≡ 1 mod n and (n− 1)2 ≡ (−1)2 ≡ 1 mod n.

If n is a prime number, then it has no square roots of 1 modulo n other than the trivial
ones. The proof of Lemma 7.14 is left to the reader as Exercise 7.7(b).

Lemma 7.14. Every prime number n has only the two trivial square roots of 1 mod-
ulo n, namely ±1 mod n.

Hence, if n has a nontrivial square root of 1 modulo n, then n must be composite.
Conversely, if n = p1p2 · · · pk is composite, where the pi are odd prime numbers,
then the Chinese Remainder Theorem (see Theorem 2.46) can be applied to show
that n has exactly 2k square roots of 1 modulo n. More precisely, the square roots of
1 modulo n are all numbers a, 1 ≤ a < n, that satisfy a mod pi ∈ {1, pi − 1} for
1 ≤ i ≤ k. Thus, trying to find nontrivial square roots of 1 modulo n by randomly
picking a number a is hopeless, unless n happens to have extraordinarily many prime
factors.

Example 7.15 (Nontrivial Square roots of 1 modulo n). Continuing Example 7.9,
consider the composite number n = 143 = 11 · 13. Since 143 has two prime factors,
there are four square roots of 1 modulo 143, namely 1, 12, 131, and 142. The non-
trivial square roots of 1 modulo 143 are 12 and 131. In this example, the square roots
of 1 modulo 143 happen to be just the Fermat liars for 143, see Table 7.4. In general,
however, this is not the case.

The Miller–Rabin test uses a criterion that strengthens Fermat’s Little Theorem.
To describe this criterion, we now introduce the notion of a Miller–Rabin witness and
a Miller–Rabin liar (for short, MR-witness and MR-liar). Intuitively, an MR-witness
a certifies that a number n is composite, and an MR-liar a makes n look like a prime
number, even though n in fact is composite.
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Definition 7.16 (MR-Witness and MR-Liar).
Let n ≥ 3 be any odd number, and let a be any number in Z∗

n. Define m = (n−1)/2k,
where k = max{j ∈ N | 2j divides n− 1}.
• We say that a is an MR-witness for n if and only if none of (7.8) and (7.9) is true:

am ≡ 1 mod n; (7.8)

(∃j ∈ {0, 1, . . . , k − 1}) [a2jm ≡ −1 mod n]. (7.9)

• We say that a is an MR-liar for n if and only if n is a composite number and a is
not an MR-witness.

Example 7.17 (MR-Witness and MR-Liar). Consider n = 561 = 3 · 11 · 17, the
above-mentioned smallest Carmichael number. Table 7.5 displays 22 selected MR-

a a35 mod 561 a70 mod 561 a140 mod 561 a280 mod 561 a560 mod 561

1 1 1 1 1 1

2 263 166 67 1 1

3 78 474 276 441 375

4 166 67 1 1 1

5 23 529 463 67 1

6 318 144 540 441 375

7 241 298 166 67 1

8 461 463 67 1 1

9 474 276 441 375 375

10 439 298 166 67 1

11 209 484 319 220 154

12 45 342 276 441 375

13 208 67 1 1 1

14 551 100 463 67 1

15 111 540 441 375 375

16 67 1 1 1 1

17 527 34 34 34 34

18 120 375 375 375 375

19 76 166 67 1 1

20 452 100 463 67 1

30 21 441 375 375 375

40 505 331 166 67 1

50 560 1 1 1 1

101 560 1 1 1 1

452 320 298 166 67 1

460 1 1 1 1 1

Table 7.5. MR-witnesses and MR-liars for the Carmichael number n = 561
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witnesses for 561 and four MR-liars for 561. Note that 13 of the 22 MR-witnesses
for 561 are in Z∗

561, while nine of them are multiples of the prime factors of 561. In
contrast, no element of Z∗

561 is a Fermat witness for 561, since 561 is a Carmichael
number. Thus, the Fermat test is not able to detect that 561 is composite.

As per Definition 7.16, since 560 = 35 · 24 and no larger power of two di-
vides 560, we have k = 4 and m = 35. In the leftmost column of Table 7.5, each of
the numbers a other than those from {1, 50, 101, 460} is an MR-witness, since nei-
ther condition (7.8) nor condition (7.9) is satisfied. However, (7.9) is true for a = 50:

5020·35 = 5035 ≡ −1 mod 561,

and similarly so for 101. Thus, both 50 and 101 are MR-liars. And 1 and 460 are
MR-liars as well, since they satisfy condition (7.8):

135 ≡ 46035 ≡ 1 mod 561.

By definition of k and m, we have an−1 = a2km for each a; the corresponding
values of a560 ≡ a24·35 mod 561 are in the rightmost column of Table 7.5. As men-
tioned above, all a ∈ Z∗

561 in this column are Fermat liars for 561, since 561 is a
Carmichael number.

The following lemma is easy to verify, see Exercise 7.7(c) and also the proof of
Theorem 7.19.

Lemma 7.18. If there exists an MR-witness for n, then n is composite.

Theorem 7.19. Primes is in coRP.

Proof. We show that the Miller–Rabin test accepts Primes with a one-sided error
probability. First, we prove that if the input n indeed is a prime number, then the
algorithm from Figure 7.6 must answer that n is prime. For a contradiction, assume
that n is prime, yet the Miller–Rabin test halts with the output: “n is composite.” We
show that it then must have found an MR-witness a for n, which by Lemma 7.18
certifies that n must be composite contradicting the assumption.

Since the Miller–Rabin test outputs “n is composite,” we have am �≡ 1 mod n,
where a ∈ {1, 2, . . . , n − 1} is the number randomly picked by the Miller–Rabin
test. Since x is squared in each for loop, the alogrithm tests sequentially the values
am, a2m, . . ., a2k−1m. For none of these values does the algorithm answer that n is
a prime. It follows that for each j with 0 ≤ j ≤ k − 1,

a2jm �≡ −1 mod n.

Since n−1 = 2km, it follows from Fermat’s Little Theorem (see Corollary 2.39) that
a2km ≡ 1 mod n. Thus, a2k−1m is a square root of 1 modulo n. Since n is prime by
our assumption, Lemma 7.14 implies that there are only the two trivial square roots
of 1 modulo n, namely ±1 mod n, see also Exercise 7.7(b).
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Since a2k−1m �≡ −1 mod n and n is prime, it follows that a2k−1m ≡ 1 mod n.
Thus, a2k−2m is also a square root of 1 modulo n. Applying the same argument, we
again have a2k−2m ≡ 1 mod n. Repeatedly applying this argument, we eventually
obtain am ≡ 1 mod n, a contradiction. Thus, the Miller–Rabin test correctly outputs
“n is prime” for each prime number n.

Conversely, if n is composite, we show that the Miller–Rabin test incorrectly
outputs that n is prime with probability less than 1/2. However, we cannot do so by
applying the same argument as in the proof of Theorem 7.12: We cannot bound the
number of MR-liars by showing that the set

MR-Liarsn = {a | a is an MR-liar for n}
forms a proper subgroup of Z∗

n, since this is not true in general; see Exercise 7.8(c)
for some counterexamples. That is why we use a different argument: We specify
some set containg MR-Liarsn and forming a proper subgroup of Z∗

n. Distinguish
two cases.

Case 1: n is not a Carmichael number. So MR-Liarsn ⊆ F-Liarsn �= Z∗
n, and

the argument of Theorem 7.12 can be applied to prove that the probability of
hitting an MR-liar when randomly picking a number in {1, 2, . . . , n− 1} is less
than 1/2.

Case 2: n is a Carmichael number. In this case, MR-Liarsn ⊆ F-Liarsn = Z∗
n,

so the set of Fermat liars is not a proper subgroup of Z∗
n. In order to specify a

proper subgroup of Z∗
n that still contains all MR-liars, let m and k be as in Def-

inition 7.16: m = (n− 1)/2k is odd, and k = max{j ∈ N | 2j divides n− 1}.
Since m is odd, (n − 1)m ≡ (−1)m ≡ −1 mod n. Thus, there exist MR-liars
a satisfying (7.9). Let jmax be the maximum j ∈ {0, 1, . . . , k − 1} such that
a2jm ≡ −1 mod n. Since n is a Carmichael number, we have

a2km = an−1 ≡ 1 mod n,

so jmax < k. Define the set

MR-LIARSn = {a | 0 ≤ a < n and am·2jmax ≡ ±1 mod n}.
The following proposition says that MR-LIARSn has the desired properties.

Proposition 7.20. 1. MR-Liarsn ⊆ MR-LIARSn.
2. MR-LIARSn is a proper subgroup of Z∗

n.

Proof of Proposition 7.20. 1. Let a be an arbitrary MR-liar. Thus, a sat-
isfies either condition (7.8) or condition (7.9). If a satisfies condition (7.8),
i.e., if am ≡ 1 mod n, then am·2jmax ≡ 1 mod n, which implies that a is
in MR-LIARSn.
On the other hand, if a satisfies condition (7.9), i.e., if a2jm ≡ −1 mod n for
some j with 0 ≤ j < k, then j ≤ jmax by the definition of jmax. If j = jmax, then
a is immediately in MR-LIARSn. If j < jmax, then
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am·2jmax ≡ am·2j ·2jmax−j ≡
(
am·2j

)2jmax−j

≡ 1 mod n,

which implies that a is in MR-LIARSn.
2. Since Z∗

n is a finite group, Lemma 7.10 implies that MR-LIARSn is a sub-
group of Z∗

n. Clearly, the neutral element of Z∗
n is in MR-LIARSn, since

1m·2jmax ≡ 1 mod n.

To prove that MR-LIARSn is closed under multiplication, the group operation
in Z∗

n, let a and b be arbitrary elements of MR-LIARSn. Thus, both am·2jmax
and

bm·2jmax
are congruent to ±1 mod n.

Note that 1 · 1 = 1 and 1(n− 1) ≡ −1 mod n and (n− 1)(n− 1) ≡ 1 mod n.
Hence,

(a · b)m·2jmax ≡ am·2jmax · bm·2jmax ≡ ±1 mod n.

Thus, the product a · b is in MR-LIARSn. By Lemma 7.10, MR-LIARSn is a
subgroup of Z∗

n.
To prove that MR-LIARSn is a proper subgroup of Z∗

n, we apply Lemma 7.13,
which says that every Carmichael number is the product of at least three distinct
prime factors. Thus, n can be written as n = n1 · n2 for odd numbers n1 and n2

with gcd(n1, n2) = 1.
Let â be a fixed MR-liar satisfying âm·2jmax ≡ −1 mod n. Let a1 = â mod n1.
Since gcd(n1, n2) = 1, the Chinese Remainder Theorem (see Theorem 2.46)
implies that the system of two congruences:

a ≡ a1 mod n1

a ≡ 1 mod n2

has the unique solution a = a1 · n2 · n−1
2 + 1 · n1 · n−1

1 mod n, where n−1
1 is

the inverse element of n1 in Z∗
n2

and n−1
2 is the inverse element of n2 in Z∗

n1
.

We show that this solution a is in Z∗
n −MR-LIARSn.

To see that a does not belong to MR-LIARSn, note that

am·2jmax ≡ âm·2jmax ≡ −1 mod n1; (7.10)

am·2jmax ≡ 1m·2jmax ≡ 1 mod n2. (7.11)

where (7.10) follows from a ≡ a1 ≡ â mod n1. Congruence (7.10) implies that
am·2jmax �≡ 1 mod n, and congruence (7.11) implies that am·2jmax �≡ −1 mod n.
Thus, am·2jmax �≡ ±1 mod n. It follows that a is not in MR-LIARSn.
To see that a does belong to Z∗

n, note that (7.10) and (7.11) imply:

am·2jmax+1 ≡ 1 mod n1;

am·2jmax+1 ≡ 1 mod n2.

By the Chinese Remainder Theorem, am·2jmax+1 ≡ 1 mod n. Now, the first part
of Lemma 7.8 implies that a is in Z∗

n. Proposition 7.20
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Using Proposition 7.20, an argument as in the proof of Theorem 7.12 can now
be used to show that also in Case 2 the error probability of the Miller–Rabin test
is less than 1/2.

To complete the proof of Theorem 7.19, note that the Miller–Rabin test runs in poly-
nomial time, see Exercise 7.7(d). Theorem 7.19

Remark 7.21. 1. By a more sophisticated analysis, one can show that the error prob-
ability of the Miller–Rabin test does not exceed the threshold of 1/4, see Prob-
lem 7.1.

2. By running sufficiently many (but still only polynomially many in log n) inde-
pendent trials, the error probability can be made arbitrarily close to zero, see
Theorem 6.6 and its proof for details. The formal proof of this claim is left to the
reader as Exercise 7.7(e).

7.2.3 Solovay–Strassen Test

Solovay and Strassen developed a primality test that is based on different number-
theoretical results than the Miller–Rabin test. Their no-biased Monte Carlo algorithm
for the primality problem can be used alternatively to prove Theorem 7.19. However,
the Solovay–Strassen test is less popular than the Miller–Rabin test, since it is less
efficient in practice and less accurate. To explain the Solovay–Strassen test, recall
the following notions and facts from Section 2.4.1, see Definitions 2.43 and 2.45:

• A quadratic residue modulo n is any element a in Z∗
n satisfying a ≡ w2 mod n

for some w ∈ Zn. Otherwise, a is a quadratic nonresidue modulo n.
• The Euler criterion (see Theorem 2.44) states that for each odd prime number p,

a is a quadratic residue modulo p if and only if a(p−1)/2 ≡ 1 mod p.

• The Legendre symbol
(

a
p

)
for a ∈ Zp and prime number p expresses the property

of being or not being a quadratic residue modulo p as follows:

(
a

p

)
=

⎧⎨⎩
0 if a ≡ 0 mod p
1 if a is a quadratic residue modulo p
−1 if a is a quadratic nonresidue modulo p.

By the Euler criterion, a(p−1)/2 ≡ 1 mod p if and only if
(

a
p

)
= 1. On the other

hand, if a is a multiple of p then a(p−1)/2 ≡ 0 mod p, and if a is a quadratic
nonresidue modulo p then a(p−1)/2 ≡ −1 mod p, since(

a(p−1)/2
)2

≡ ap−1 ≡ 1 mod p and a(p−1)/2 �≡ 1 mod p.

To summarize, for each odd prime number p, we have
(

a
p

)
≡ a(p−1)/2 mod p.

Thus, the Legendre symbol can be computed efficiently.
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• The Jacobi symbol
(

a
n

)
, which extends the Legendre symbol to composite “de-

nominators” n with prime power factorization n = pe1
1 · · · pek

k , is introduced in
Definition 2.45 as follows: ( a

n

)
=

k∏
i=1

(
a

pi

)ei

. (7.12)

Let n ≥ 3 be an odd number. It follows from the above definitions and observa-
tions that if n is prime, then for each a,( a

n

)
≡ a(n−1)/2 mod n. (7.13)

If n is composite, however, then
(

a
n

) ≡ a(n−1)/2 mod n may or may not be true.
Thus, congruence (7.13) provides a reliable criterion for checking compositeness: If(

a
n

) �≡ a(n−1)/2 mod n for some a, then n must be composite. On the other hand,
if (7.13) is true for some randomly picked a, then n may or may not be prime. This
criterion is employed by the Solovay–Strassen test shown in Figure 7.7.

SOLOVAY-STRASSEN(n) { // n ≥ 3 is an odd integer
Randomly choose a number a ∈ {1, 2, . . . , n − 1} under the uniform distribution;
x :=

`
a
n

´
;

if (x = 0) return “n is composite” and halt;
y := a(n−1)/2 mod n;
if (x ≡ y mod n) return “n is prime” and halt;
else return “n is composite” and halt;

}

Fig. 7.7. Primality test by Solovay and Strassen

Two questions arise: First, is the Solovay–Strassen test an efficient algorithm?
Second, what is its error probability? As mentioned above, by (7.13), if n is prime,
then SOLOVAY-STRASSEN on input n correctly says so with certainty. So what is the
probability that the Solovay–Strassen test, given a composite number n, incorrectly
answers that n is prime?

Let us deal with the first question first. We have already seen that a(n−1)/2 mod n
can be computed efficiently by the fast exponentiation algorithm from Figure 7.2.
And we know from Euler’s criterion that if n is prime, computing a(n−1)/2 mod n
is enough to evaluate the Legendre symbol

(
a
n

)
. However, if n is composite, it is not

clear yet how to evaluate the Jacobi symbol
(

a
n

)
efficiently.

Since the Jacobi symbol is defined in terms of the prime power factorization of n,
one might be tempted to think that finding the prime factors of n would be necessary
to determine the value of the Jacobi symbol

(
a
n

)
. But factoring n (which itself is a

hard task, see Section 7.3) would already answer the question of whether or not n
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is prime and would thus render the primality test superfluous. Fortunately, however,
the Jacobi symbol

(
a
n

)
can be efficiently computed without finding the prime factors

of n first. This efficient algorithm crucially draws on the following properties of the
Jacobi symbol, which are stated here without proof.

Proposition 7.22 (Properties of the Jacobi Symbol).

1. Law of Quadratic Reciprocity: If m and n are odd positive integers, then(m

n

)
=

{− (
n
m

)
if m ≡ n ≡ 3 mod 4(

n
m

)
otherwise.

2. If n is an odd positive integer and a ≡ b mod n, then
(

a
n

)
=

(
b
n

)
.

3. Multiplicativity: If n is an odd positive integer and a and b are integers, then(
a · b
n

)
=

(a

n

)(
b

n

)
.

In particular, if m = a · 2k and a is odd, then
(

m
n

)
=

(
a
n

) (
2
n

)k
.

4. If n is an odd positive integer, then(
2
n

)
=

{
1 if n ≡ ±1 mod 8
−1 if n ≡ ±3 mod 8.

5. If n is an odd positive integer, then
(

1
n

)
= 1 and

(
0
n

)
= 0.

Exercise 7.9(a) asks you to design an efficient algorithm for the Jacobi symbol,
using its number-theoretical properties stated in Proposition 7.22. The following ex-
ample illustrates the application of these properties.

Example 7.23 (Computing the Jacobi Symbol). Suppose you want to determine
the value of the Jacobi symbol

(
5775
6399

)
. Note that both 5775 = 3 · 52 · 7 · 11 and

6399 = 34 ·79 are composite. In particular, since 6399 is not a prime number,
(

5775
6399

)
is not a Legendre symbol. Apply the properties of Proposition 7.22 as follows:(

5775
6399

)
= − (

6399
5775

)
by Property 1, since 5775 ≡ 6399 ≡ 3 mod 4

= − (
624
5775

)
by Property 2, since 6399 ≡ 624 mod 5775

= − (
39

5775

) (
2

5775

)4
by Property 3, since 624 = 39 · 24

= − (
39

5775

)
by Property 4, since 5775 ≡ −1 mod 8

=
(

5775
39

)
by Property 1, since 39 ≡ 5775 ≡ 3 mod 4

=
(

3
39

)
by Property 2, since 5775 ≡ 3 mod 39

= − (
39
3

)
by Property 1, since 3 ≡ 39 ≡ 3 mod 4

= − (
0
3

)
by Property 2, since 39 ≡ 0 mod 3

= 0 by Property 5.
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Hence, if SOLOVAY-STRASSEN(6399) has picked the number a = 5775 at random,
it correctly outputs: “6399 is composite,” since

(
5775
6399

)
= 0.

Now consider the case that SOLOVAY-STRASSEN(6399) has picked the number
a = 1111 at random. Again computing the Jacobi symbol gives:(

1111
6399

) (1)
= − (

6399
1111

) (2)
= − (

844
1111

) (3)
= − (

211
1111

) (
2

1111

)2 (4)
= − (

211
1111

)
(1)
=

(
1111
211

) (2)
=

(
56
211

) (3)
=

(
7

211

) (
2

211

)3 (4)
= − (

7
211

)
(1)
=

(
211
7

) (2)
=

(
1
7

) (5)
= 1,

where
(i)
= denotes that Property i from Proposition 7.22 is applied. On the other hand,

computing a(n−1)/2 mod n for a = 1111 and n = 6399 means that we have to
compute 11113199 mod 6399 using fast exponentiation, see Figure 7.2. The binary
expansion of the exponent is

3199 = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 210 + 211,

and Table 7.6 shows the values a2i

mod n computed sequentially by the “square-

a20
a21

a22
a23

a24
a25

a26
a27

a28
a29

a210
a211

1111 5713 3469 3841 3586 3805 3487 1069 3739 4705 2884 5155

Table 7.6. Computing a(n−1)/2 mod n for the Solovay–Strassen primality test

and-multiply” algorithm. Multiplying the values in the gray boxes of Table 7.6 and
reducing modulo 6399, we obtain

11113199 ≡ 6088 mod 6399.

Thus,
(

1111
6399

)
= 1 �= 6088 ≡ 11113199 mod 6399, and SOLOVAY-STRASSEN(6399)

correctly outputs “6399 is composite,” for the random number a = 1111.
On the other hand, if SOLOVAY-STRASSEN(6399) picks a number a ∈ {1, 6398}

at random, then it incorrectly outputs “6399 is prime,” since(
1

6399

) (5)
= 1 = 13199 mod 6399, and (7.14)(

6398
6399

) (3)
=

(
3199
6399

) (
2

6399

) (4)
=

(
3199
6399

) (1)
= − (

6399
3199

) (2)
= − (

1
3199

)
(5)
= −1 = (−1)3199 mod 6399. (7.15)

Note that the behavior shown in (7.14) and (7.15) is not a coincidence. Given a
composite number n, the Solovay–Strassen algorithm from Figure 7.7 always gives
the wrong answer “n is prime” when it has picked some number a ∈ {1, n− 1}, see
Exercise 7.9(b). That is why the Solovay–Strassen test can as well be implemented
so as to pick random numbers a only in the range {2, 3, . . . , n− 2}.
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We now turn to the second question raised above: What is the probability that
the Solovay–Strassen test, given a composite number n, incorrectly answers that n is
prime? In Example 7.23, we have seen that the Solovay–Strassen test, running on a
composite number n, may or may not give the correct answer, depending on the ran-
dom number a it picks. We now introduce the notion of a Solovay–Strassen witness
and a Solovay–Strassen liar (for short, SS-witness and SS-liar), based on the crite-
rion (7.13). Intuitively, an SS-witness a certifies that a number n is composite, and
an SS-liar a makes n look like a prime number, even though n in fact is composite.

Definition 7.24 (SS-Witness and SS-Liar). Let n ≥ 3 be an odd number.

• We say that a is an SS-witness for n if and only if a does not satisfy (7.13):(a

n

)
�≡ a(n−1)/2 mod n.

• We say that a is an SS-liar for n if and only if n is a composite number and a is
not an SS-witness, i.e., a does satisfy (7.13):(a

n

)
≡ a(n−1)/2 mod n.

Define the set SS-Liarsn = {a | a is an SS-liar for n}.
The following theorem says that the error probability of the Solovay–Strassen

test is at most 1/2. In other words, at most one half of the elements in Z∗
n are SS-

liars for n. Theorem 7.25 follows from Lemma 7.26 by the argument given in the
proof of Theorem 7.12.

Theorem 7.25. The Solovay–Strassen test is an efficient no-biased Monte Carlo al-
gorithm for Primes with error probability of at most 1/2.

Lemma 7.26. For each odd composite number n ≥ 3, SS-Liarsn is a proper sub-
group of Z∗

n.

Proof. It is easy to see that SS-Liarsn ⊆ F-Liarsn, see Exercise 7.9(d). Thus,
SS-Liarsn ⊆ Z∗

n. We again apply Lemma 7.10 to show that SS-Liarsn is a subgroup
of Z∗

n.
As noted in Example 7.23, the neutral element 1 of Z∗

n is in SS-Liarsn, see also
Exercise 7.9(b). To show that SS-Liarsn is closed under multiplication, let a and b be
any elements of SS-Liarsn, so

(
a
n

) ≡ a(n−1)/2 mod n and
(

b
n

) ≡ b(n−1)/2 mod n.
By the multiplicativity of the Jacobi symbol (see Property 3 of Proposition 7.22), it
follows that(

a · b
n

)
=

( a

n

)(
b

n

)
≡

(
a(n−1)/2

)(
b(n−1)/2

)
≡ (a · b)(n−1)/2 mod n.

Thus, a · b is in SS-Liarsn. By Lemma 7.10, SS-Liarsn is a subgroup of Z∗
n.

To show that SS-Liarsn is a proper subgroup of Z∗
n, we prove that Z∗

n contains
at least one SS-witness. Distinguish the following two cases.
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Case 1: There exists some odd prime number p such that p2 divides n. In this
case, we construct a Fermat witness a ∈ Z∗

n for n. Since SS-Liarsn ⊆ F-Liarsn

(see Exercise 7.9(d)), it follows that a is an SS-witness for n as well. Thus,
SS-Liarsn �= Z∗

n.
Since p2 divides n, we have n = k · pi for some i ≥ 2 and some odd k with
gcd(p, k) = 1. Thus gcd(p2, k) = 1. Define

a =
{

p + 1 if k = 1
(p + 1) · k · k−1 + 1 · p2 · (p2)−1 mod k · p2 if k ≥ 3,

where (p2)−1 is the inverse element of p2 in Z∗
k and k−1 is the inverse element

of k in Z∗
p2 . Note that, if k ≥ 3, then by the Chinese Remainder Theorem (see

Theorem 2.46), a is the unique solution of the system

a ≡ p + 1 mod p2

a ≡ 1 mod k.

Since a− (p+1) ≡ 0 mod p2, we have gcd(p, a) = 1. Since a−1 ≡ 0 mod k,
we have gcd(k, a) = 1. It follows that gcd(n, a) = 1. Thus, a ∈ Z∗

n.
To prove that a is a Fermat witness for n, suppose an−1 ≡ 1 mod n for a con-
tradiction. Since p2 divides n, this assumption implies an−1 ≡ 1 mod p2. By
the Binomial Theorem,

an−1 ≡ (p + 1)n−1 ≡ 1 + (n− 1)p +
∑

2≤i≤n−1

(
n− 1

i

)
pi

≡ 1 + (n− 1)p mod p2.

Since an−1 ≡ 1 mod p2, p2 divides (n− 1)p, which is a contradiction because
p does not divide n− 1 = k · pi − 1.

Case 2: All prime factors of n are distinct. In this case, we have n = k · p for
some odd numbers k and p such that p is prime and gcd(p, k) = 1. Let x ∈ Z∗

p

be some quadratic nonresidue modulo p. Thus,
(

x
p

)
= −1, by the definition

of the Legendre symbol. By the Chinese Remainder Theorem, the system of
congruences

a ≡ x mod p

a ≡ 1 mod k

has a unique solution a. Clearly, since p does not divide a and gcd(a, k) = 1,
we have that a is in Z∗

n.
We now show that this solution a is an SS-witness for n. By Proposition 7.22,(a

n

)
=

(a

k

)(
a

p

)
=

(
1
k

)(
x

p

)
= (−1) · 1 = −1. (7.16)

If a were in SS-Liarsn, then (7.16) would imply that
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a(n−1)/2 ≡ −1 mod n.

Since k divides n, it follows that a(n−1)/2 ≡ −1 mod k, which contradicts
a ≡ 1 mod k. Thus, a is an SS-witness for n.

The proof of Lemma 7.26 is complete.

7.2.4 Primality Is in P

All efficient primality tests introduced so far are randomized algorithms. Can the
primality problem be solved even in deterministic polynomial time? This intriguing
question had been open in complexity theory for many decades. Eventually, Agrawal,
Kayal, and Saxena achieved a decisive breakthrough and solved this problem in their
“Primes is in P” paper [AKS02].

Their celebrated result that primality can be decided in deterministic polyno-
mial time created much sensation, not only in complexity theory but also in number
theory, cryptology, and even in the daily press such as in The New York Times. Imme-
diately after the authors had published this result on their website on August 6, 2002,
the news spread faster than a bushfire. Why is this result so important and spectac-
ular? Just as the graph isomorphism problem, the primality problem had been con-
sidered one of the rare candidates of a problem that is neither in P nor NP-complete,
see Sections 3.6.1 and 5.7 and, in particular, Section 6.5.

Primes now has lost its status as a good candidate, but in return has won the
status of being an efficiently solvable problem. We state this result without proof,
referring the reader to the original source [AKS02] and to Dietzfelbinger’s excellent
presentation [Die04]. Surprisingly enough, Agrawal, Kayal, and Saxena’s elegant
proof of Theorem 7.27 applies number-theoretical results that are rather elementary.

Theorem 7.27 (Agrawal, Kayal, and Saxena). Primes is in P.

The importance of Theorem 7.27 notwithstanding, it seems unlikely that this de-
terministic algorithm for the primality problem will soon replace the randomized
primality tests such as the Miller–Rabin test. The original paper [AKS02] obtains a
running time of O(n12), where n is the length of the input. Using a more careful
analysis, this bound has been improved to O(n6) meanwhile. Nonetheless, the com-
mon randomized primality tests are still more efficient. And for practical purposes,
the error probabilities of these randomized algorithms can be made small enough so
as to be negligible.

7.3 Factoring

As mentioned in Section 7.1, RSA is secure only if large numbers cannot be factored
efficiently. Traditionally, the factoring problem is a functional problem: Given an
integer n ≥ 2, determine the prime factorization of n, where the factors are listed in
increasing order.
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Definition 7.28 (Factoring Problem). Define the factoring problem as a func-
tional problem by

factoring(n) = 〈p1, p2, . . . , pk〉,
where n =

∏k
i=1 pi is the prime factorization of n and pi ≤ pj for i < j. As usual,

all numbers are represented in binary over the alphabet Σ = {0, 1}.
For example, factoring(1453452) = 〈2, 2, 3, 7, 11, 11, 11, 13〉 means that

1453452 = 2 · 2 · 3 · 7 · 11 · 11 · 11 · 13. Equivalently, the factoring problem can be
formulated as a decision problem, see Exercises 7.10(a) and (b).

No efficient algorithm for the factoring problem is known, despite considerable
effort in the past to design such algorithms. Thus, factoring is not known to be
in FP. That is to say that the factoring problem, suitably formalized as a decision
problem, is not known to be in P. On the other hand, the factoring problem is easily
seen to be in NP, see Exercise 7.10(c). It is even known to be in UP ∩ coUP, see
Fellows and Koblitz [FK92]. This result can be viewed as evidence that the factor-
ing problem is unlikely to be NP-complete, just as the graph isomorphism problem.
Thus, it is yet another candidate of a problem that seems to be neither in P nor NP-
complete. Unlike GI, however, the factoring problem is not known to be low or to
have any similar properties; cf. Sections 5.7, 6.5, and Section 7.6.

The hypothesis that factoring is a hard problem—on which the security of RSA
largely rests—is supported merely by the persistent inability of designing an efficient
algorithm for it. This is rather weak evidence for the hardness of factoring, of course.
As noted in Section 7.2.4, the primality problem had been considered to be a hard
problem as well, merely due to the persistent inability to find efficient algorithms
for it. Eventually, however, it turned out that primality can be checked efficiently by
some clever deterministic algorithm that applies profound number theory.

And even if someone would find a rigorous proof of the above hypothesis that
factoring is hard, this proof would not guarantee security of the RSA cryptosystem.
Breaking RSA is at most as hard as factoring integers, yet it is not known whether
these two problems are equally hard. It might well be the case that one can break
RSA without factoring the RSA modulus n in the public key (n, e). Potential attacks
on the RSA system and suitable countermeasures against these attacks are discussed
in Section 7.4. In the current section, we survey some of the known algorithms for
the factoring problem.

7.3.1 Trial Division

The first observation is that the trial division algorithm from Figure 7.4 can be used
for factoring as well. More precisely, to find the prime factors of a given integer
n ≥ 2, do the following.

Step 1: Compute all primes less than or equal to some prespecified bound b. This
can be done using the sieve of Eratosthenes from Example 7.5.

Step 2: For each prime p in this list, determine the maximum power of p divid-
ing n, i.e., the maximum exponent ep such that pep divides n, and output the
corresponding prime factors of n in increasing order.
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A typical bound would be b = 1 000 000, and a typical RSA modulus n would
have at least 768 bits. In our toy example below, however, we are content with a
much smaller bound and a much smaller integer to be factored.

Example 7.29 (Factoring by Trial Division). Suppose you want to factor the inte-
ger n = 1404. In Step 1, choosing the bound b = 39, determine all primes not ex-
ceeding 39 using the sieve of Eratosthenes. Table 7.2 shows the resulting list. Step 2
now gives the following prime power factorization: 1404 = 22 · 33 · 13. Thus, the
output is 〈2, 2, 3, 3, 3, 13〉.

7.3.2 Pollard’s Algorithm

Some factoring algorithms work especially well for numbers n having certain prop-
erties. Thus, such numbers must be avoided when choosing the modulus n in the
public key of the RSA cryptosystem. For example, Pollard’s p−1 method for factor-
ing works well for composite numbers n having a prime factor p such that the prime
factors of p− 1 are small. Figure 7.8 presents the algorithm, which runs on input n
and a prespecified bound B.

POLLARD(n, B) { // n ≥ 3 is an odd integer and B is a prespecified bound
x := 2;
for (i = 2, 3 . . . , B) { x := xi mod n; }
d := gcd(n, x − 1);
if (1 < d < n) {
return d;
Recurse by calling POLLARD(d, B) and POLLARD(n/d, B); }
else return “failure” and restart with a new bound B̃ > B;

}

Fig. 7.8. Pollard’s p − 1 factoring algorithm

Let p be a prime factor of n, and let B be an upper bound of every prime power
dividing p − 1. That is, qk ≤ B for each prime q and k ≥ 1 such that qk divides
p− 1. Then, B! is a multiple of p− 1. After the for loop in Figure 7.8, the value of
the variable x satisfies x ≡ 2B! mod n. Since p is a prime factor of n, it follows that
x ≡ 2B! mod p as well. By Fermat’s Little Theorem (see Corollary 2.39),

2p−1 ≡ 1 mod p.

And since B! is a multiple of p− 1, we have

x ≡ 2B! ≡ 2p−1 ≡ 1 mod p.

Thus, p divides x−1. Since p also divides n, p divides d = gcd(n, x−1). It follows
that, unless x = 1, d is a nontrivial factor of n, and we can recursively apply this
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procedure to factor d and n/d. If no nontrivial divisor of n is found, the algorithm
restarts with a new bound B̃ > B. Provided that the bound chosen is large enough,
this method eventually finds all prime factors of n.

Example 7.30 (Pollard’s p − 1 Method). Let n = 56291. Choosing the bound
B = 10 and starting with x = 2, Table 7.7 shows the values of x = xi mod 56291
for 2 ≤ i ≤ 10, which are obtained during the for loop in Figure 7.8.

i 2 3 4 5 6 7 8 9 10

x 4 64 2498 29092 49595 2535 5793 25522 1268

Table 7.7. Computing xi mod n for Pollard’s p − 1 factoring algorithm

At the end of the for loop, we have x = 1268 ≡ 210! mod 56291. Then,
gcd(56291, 1267) = 181 can be determined by the Euclidean Algorithm from Fig-
ure 2.1. Indeed, p = 181 is a prime factor of n = 56291, and the other prime factor
of n is q = 311. Note that all prime powers dividing 180 = 22 · 32 · 5 are smaller
than B = 10. Thus, p − 1 = 180 does divide 10! = 3628800 = 180 · 20160 as
desired.

If N is the length of the integer n to be factored and if B is the bound chosen, then
it is easy to see that the running time of one execution of Pollard’s p−1 method from
Figure 7.8 is inO(B log BN2+N3), not taking account of the recursion or the restart
with a new bound. The proof of this claim is left to the reader as Exercise 7.11(c). It
follows that if B is polynomially in N , i.e., B ∈ O(Nk) for some fixed constant k,
then Pollard’s p − 1 algorithm runs in polynomial time. Unfortunately, for such a
small bound B, the probability that all prime powers dividing p − 1 are below B
is rather small. Thus, the algorithm is unlikely to be successful in this case. On the
other hand, if we choose a large bound B, say B ∈ O(

√
n), the method is guaranteed

to work, yet it runs no faster than trial division.

7.3.3 Quadratic Sieve

Some of the currently best factoring methods are based on the following quite simple
idea. Suppose you want to factor an odd integer n ≥ 3. Using an appropriate sieving
method, which will be described in more detail below, determine integers a and b
satisfying

a2 ≡ b2 mod n and a �≡ ±b mod n. (7.17)

Hence, n divides a2 − b2 = (a − b)(a + b) but neither a − b nor a + b. Thus, both
gcd(n, a− b) and gcd(n, a + b) are nontrivial factors of n.
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Example 7.31 (Quadratic Sieve Idea). Let n = 561, a = 322, and b = 256. Then,
a2 = 103684 ≡ 460 mod 561 and b2 = 65536 ≡ 460 mod 561, so a2 ≡ b2 mod n.
On the other hand, a ≡ −239 mod 561 and b ≡ −305 mod 561, so a �≡ ±b mod n,
and (7.17) is satisfied. Hence, 561 divides

103684− 65536 = (322− 256)(322 + 256) = 66 · 578 = 38148 = 68 · 561,

but 561 does not divide either of 66 or 578. Thus, both gcd(561, 66) = 33 and
gcd(561, 578) = 17 are nontrivial factors of 561.

To give yet another example, let n = 1269, a = 213, and b = 210. Then,
we have a2 = 45369 ≡ 954 mod 1269 and b2 = 44100 ≡ 954 mod 1269, so
a2 ≡ b2 mod n. Since a ≡ −1056 mod 1269 and b ≡ −1059 mod 1269, we further
have a �≡ ±b mod n, and (7.17) is satisfied. Hence, 1269 divides

45369− 44100 = (213− 210)(213 + 210) = 3 · 423 = 1269,

but 1269 does not divide either of 3 or 423. Thus, both gcd(1269, 3) = 3 and
gcd(1269, 423) = 3 are nontrivial factors of 1269.

There are various such sieving methods that differ in the specific way of how to
determine the numbers a and b satisfying (7.17). An example of a very successful
sieving method is the “number field sieve.” This section introduces the quadratic
sieve, which is older but still widely used in practice and may be somewhat easier to
comprehend.

How were the numbers a and b satisfying (7.17) found in Example 7.31? Well,
to be honest, the numbers a = 322 and b = 256 in the first example (for n = 561)
were determined simply by trial and error. The second example (where n = 1269)
was more carefully contrived, though, as will be shown below.

Example 7.32 (Quadratic Sieve—Continued). As in Example 7.31, suppose you
want to factor n = 1269. Let s = �√n� = 35. Define a function σ : Z → Z by

σ(x) = (x + s)2 − n.

So, in our example, we have σ(x) = (x + 35)2 − 1269. Table 7.8 shows the values
of σ(x) for −5 ≤ x ≤ 5.

x −5 −4 −3 −2 −1 0 1 2 3 4 5

σ(x) −369 −308 −245 −180 −113 −44 27 100 175 252 331

Table 7.8. Computing σ(x) for the quadratic sieve factoring algorithm

In particular, for x ∈ {3, 4}, we have:

σ(3) = 382 − 1269 = 175 = 52 · 7 (7.18)

σ(4) = 392 − 1269 = 252 = 22 · 32 · 7. (7.19)
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Equations (7.18) and (7.19) imply

382 ≡ 52 · 7 mod 1269 (7.20)

392 ≡ 22 · 32 · 7 mod 1269. (7.21)

Now, multiplying (7.20) and (7.21), we obtain

(38 · 39)2 ≡ (2 · 3 · 5 · 7)2 mod 1269. (7.22)

Thus, on both sides of (7.22), we have a square number, where the square on the
right-hand side consists of small primes. Setting

a = 38 · 39 mod 1269 = 213 and b = 2 · 3 · 5 · 7 mod 1269 = 210

now gives the values of a and b from Example 7.31.

In (7.18) and (7.19) and in Table 7.8 from Example 7.32, we determined σ(x)
for certain arguments x such that σ(x) has only small prime factors and

(x + s)2 ≡ σ(x) mod n. (7.23)

We then selected suitable congruences of the form (7.23) such that their product
yields a square on both sides. The left-hand side of (7.23) is a square, so taking
the product of left-hand sides always yields a square again. The problem is to find
congruences of the form (7.23) such that the right-hand sides yield a square as well
when multiplied. Obviously, this will be the case if the sum of the exponents of −1
and of the prime factors of σ(x) is even. Thus, to select suitable congruences of the
form (7.23), we simply have to solve a linear system of equations over the field Z2.
This is shown in the following example, which continues Example 7.32.

Example 7.33 (Quadratic Sieve—Continued). We show how to select suitable con-
gruences of the form (7.23) such that their product yields a square on both sides. For
illustration, suppose that we are given not only the equations (7.18) and (7.19) for
σ(x) with x ∈ {3, 4}, which imply the congruences (7.20) and (7.21), but we are
given two more equations for σ(x), where x ∈ {−4,−2}. Thus, we are faced with
the problem of selecting the suitable ones among the following four congruences of
the form (7.23):

312 ≡ −1 · 22 · 7 · 11 mod 1269
332 ≡ −1 · 22 · 32 · 5 mod 1269
382 ≡ 52 · 7 mod 1269
392 ≡ 22 · 32 · 7 mod 1269.

In order to select those congruences whose right-hand side product is a square, one
has to find coefficients αi ∈ {0, 1}, where 1 ≤ i ≤ 4, such that

(−1 · 22 · 7 · 11)α1(−1 · 22 · 32 · 5)α2(52 · 7)α3(22 · 32 · 7)α4 (7.24)

= (−1)α1+α2 · 22α1+2α2+2α4 · 32α2+2α4 · 5α2+2α3 · 7α1+α3+α4 · 11α1 .
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The coefficient αi corresponds to the exponent of the ith congruence. The number
in (7.24) is a square if and only if the exponents of −1 and of all prime factors are
even numbers. In other words, one has to solve the following system of congruences:

α1 + α2 ≡ 0 mod 2
2α1 + 2α2 + 2α4 ≡ 0 mod 2

2α2 + 2α4 ≡ 0 mod 2
α2 + 2α3 ≡ 0 mod 2

α1 + α3 + α4 ≡ 0 mod 2
α1 ≡ 0 mod 2.

Reducing modulo 2, we can eliminate two of these six congruences and obtain the
following simplified system of four congruences:

α1 + α2 ≡ 0 mod 2
α2 ≡ 0 mod 2

α1 + α3 + α4 ≡ 0 mod 2
α1 ≡ 0 mod 2,

which has the nontrivial (i.e., distinct from the zero vector) solution α1 = α2 = 0
and α3 = α4 = 1. Thus, exactly the equations (7.18) and (7.19) for σ(x) with
x ∈ {3, 4} are selected, just as in Example 7.32.

How does the quadratic sieve determine congruences of the form (7.23)? In prac-
tical applications, the integer n to be factored is likely to be much larger than the
n = 1269 in our example above; it will not have four digits but more than one hun-
dred digits. Here is a rough sketch of how the principle described above works in
general, omitting numerous tricks and mathematical refinements used so as to speed
up the computation in practice.

Step 1: Let n be the number to be factored. Choose a factor base B consisting of
−1 and prime numbers small enough to be allowed as factors in σ(x). More
precisely, let B be some “small” prespecified bound and define

B = {−1} ∪ {p | p is a prime number less than or equal to B}.
Step 2: Let s = �√n�. A function value σ(x) = (x+s)2−n is said to be B-smooth

if and only if all its prime factors are contained in B.
Step 3: Determine ||B|| integers x such that σ(x) is B-smooth.1

Step 4: Solve the corresponding system of ||B|| congruences to select suitable con-
gruences of the form (7.23) such that their product yields a square on both sides,
as is shown in Example 7.33. This can be done using either standard methods
such as Gaussian elimination or specialized methods that are more efficient.

1 In Example 7.33, the four equations corresponding to the integers x ∈ {−4,−2, 3, 4} are
actually too few for a reasonable factor base such as B = {−1, 2, 3, 5, 7, 11}. However, it
should be clear from that example how the method works in principle.
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Step 5: Determine the values of a and b satisfying (7.17) by taking the product of
the congruences selected, as is shown in Example 7.32.

Step 6: Determine the nontrivial factors d1 = gcd(n, a−b) and d2 = gcd(n, a+b)
of n, as is shown in Example 7.31. (Note that n = d1 · d2.)

Step 7: Recursively apply this procedure to d1 and d2 until the prime factorization
of n has been found.

It remains to specify the details of Step 3: How are the integers x1, x2, . . . , x||B||
to be determined such that each σ(xi) is B-smooth? This step is the actual sieving
procedure and is again explained by an illustrating example.

Example 7.34 (Quadratic Sieve—Continued). We continue Examples 7.31, 7.32,
and 7.33. Recall that n = 1269 is the number to be factored, that s = �√n� = 35,
and that σ(x) = (x + 35)2 − 1269. Choose the factor base B = {−1, 2, 3, 5, 7, 11}.

For these small numbers, one might take the naive approach of evaluating σ(x)
for each x ∈ {0,±1,±2, . . .} and then checking whether σ(x) is B-smooth by trial
division. However, this approach would take too long in practical applications. For
example, if n has 120 digits, then the factor base has roughly 245000 elements, and
all these elements have to be tested in order to check just one value σ(x). It is much
smarter to use a sieve instead.

Fix some sieve interval, S = {−D,−D+1, . . . ,−1, 0, 1, . . . , D−1, D}, where
D is a prespecified constant. For each x ∈ S, compute σ(x). For each prime p in
B and for each x in S, divide σ(x) by the maximum power of p. Note that σ(x) is
B-smooth if and only if this procedure eventually leaves the quotient±1.

Given a prime p in B and an x in S, it can be checked whether p divides σ(x) as
follows. First, determine all x ∈ Zp for which p divides σ(x), i.e., σ(x) ≡ 0 mod p.
Since σ(x) is a polynomial of degree 2, there are at most two such integers x in Zp.
Now, starting from these x and passing through the sieve interval to the left and to
the right in steps of distance p will reveal all x ∈ S for which p divides σ(x). This
procedure is called a sieve with p. The advantage is that a sieve with p considers only
those values σ(x) that are multiples of p, skipping any unsuccessful trial divisions.

x −5 −4 −3 −2 −1 0 1 2 3 4 5

σ(x) −369 −308 −245 −180 −113 −44 27 100 175 252 331

sieve with 2 −77 −45 −11 25 63

sieve with 3 −41 −5 1 7

sieve with 5 −49 −1 1 7

sieve with 7 −11 −1 1 1

sieve with 11 −1 −1

Table 7.9. Determining B-smooth values σ(x) using sieves with p
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Specifically, let S = {−5,−4, . . . ,−1, 0, 1, . . . , 4, 5} be our sieve interval. Ta-
ble 7.9 extends Table 7.8 from Example 7.32 by showing the sieve with p for each
prime p in B. Thus, σ(x) is B-smooth for each x ∈ {−4,−3,−2, 0, 1, 2, 3, 4}.

7.3.4 Other Factoring Methods

In this section, some further factoring methods and their running times are mentioned
without going into detail. In many cases, the running times of factoring algorithms
depend on certain assumptions and parameters, such as the choice of the size of the
factor base for the quadratic sieve, and thus allow only a heuristic analysis.

Usually, there is a trade-off between the success probability of some factoring
method and its running time. For example, choosing a large factor base B for the
quadratic sieve increases the probability of finding B-smooth values σ(x) and thus
the probability of successfully factoring n. On the other hand, the larger the factor
base is, the more congruences of the form (7.23) are obtained, which implies that
solving the corresponding system of congruences takes more time.

Applying certain number-theoretical results and making certain useful assump-
tions, one can show that the quadratic sieve runs on input n in time

O
(
e(1+o(1))

√
ln n ln ln n

)
,

where lnn denotes the natural logarithm of n, i.e., the logarithm base e = 2.71 · · · .
In particular, one uses the prime number theorem (see Theorem 7.3) to estimate the
size of the factor base by ||B|| = 1 + π(B) ≈ B/ lnB, where B is the prespecified
bound and π(B) denotes the number of primes p ≤ B.

Table 7.10 summarizes the best running times of selected factoring algorithms
running on input n currently known. Here, p denotes the smallest prime factor of n,
and the other notations are explained in the previous paragraph.

Algorithm Running time

Pollard’s p − 1 algorithm O(B log B(log n)2 + (log n)3)

Quadratic sieve O
“
e(1+o(1))

√
ln n ln ln n

”

Number field sieve O
“
e(1.92+o(1))

3√
ln n 3

√
(ln ln n)2

”

Elliptic curve method O
“
e(1+o(1))

√
2 ln p ln ln p

”

Table 7.10. Running times of selected factoring algorithms

Pollard’s p − 1 algorithm is presented and analyzed in Section 7.3.2, and Sec-
tion 7.3.3 explains how the quadratic sieve works. Dixon’s random squares method
uses the same principle as the quadratic sieve, see Stinson [Sti02]. A difference is
that the congruences are determined by factoring z2 mod n, where z is a variable
randomly chosen in Zn under the uniform distribution. Again, all prime factors are
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in the factor base B, and the product of z2 mod n is taken for some of these z so as
to find a congruence of the form (7.17).

The number field sieve also generalizes the quadratic sieve and factors n using
congruences of the form (7.17). A difference is that all computations are performed
in rings over algebraic integers, see A. Lenstra and H. Lenstra, Jr. [LL93]. Asymp-
totically, the number field sieve has the best running time of the factoring methods
currently known, see Table 7.10.

The elliptic curve method, a randomized algorithm developed by H. Lenstra in
the 1980s, is a generalization of Pollard’s p − 1 algorithm. Here, the computations
are done in groups defined on elliptic curves modulo p instead of the ring Zp. Its
running time depends on the size of the smallest prime factor of n. In the worst case,
all prime factors of n are of roughly the same size. In particular, if n has two prime
factors as in the case of the RSA cryptosystem, their size is approximately

√
n, so

the running times of the quadratic sieve and the elliptic curve method are essentially
equal asymptotically. If the prime factors of n are of differing sizes, however, the
elliptic curve method is more efficient. For example, a very large number that could
be factored by Brent using the elliptic curve method is 2211 − 1.

Numbers of the form Fm = 22m

+1 are called Fermat numbers. Fermat believed
that all Fm were prime numbers, which indeed is the case for F0 = 3, F1 = 5,
F2 = 17, F3 = 257, and F4 = 65537. However, F5 = 641 · 6700417 is a composite
number, as proven by Euler in 1732. F6 could be factored by Landry and Le Lasseur
in 1880. Brillhart and Morrison factored F7 in 1970, almost a century later. In 1980,
Brent and Pollard found the factorization of F8; A. Lenstra, H. Lenstra, Manasse,
and Pollard factored F9 in 1990; and Brent factored F10 in 1995:

F10 = 45592577 · 6487031809 · 4659775785220018543264560743076778192897 · P252,

where P252 denotes the 252th prime number; see also Exercise 7.12(c). Note that it
is crucial here to specify the input representation. If the input Fm = 22m

+1 is given
in binary, it has the form bin(Fm) = 102m−11. Even prior to Agrawal, Kayal, and
Saxena’s algorithm [AKS02] was it known that it can be checked in time polynomial
in the input length, 2m + 1, whether or not Fm is prime or composite. It is thus
common to measure the time for algorithms deciding primality of Fm in the length
of m written in binary.

Challenge Factoring method Year

RSA-129 quadratic sieve 1994
RSA-130 number field sieve 1996
RSA-140 number field sieve 1999
RSA-155 number field sieve 1999

Table 7.11. Factoring RSA-d numbers

The RSA-d numbers are a similar challenge to factoring algorithms as the Fermat
numbers. Each such number is a d-digit RSA modulus n having two prime factors
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of roughly the same size. The numbers RSA-100, RSA-110, . . . , RSA-500 were
made public on the internet, and factoring specialists around the world have been
trying to factor them. They often distribute the necessary computations to hundreds
of computers and workstations in order to jointly tackle one such challenge number.
This approach, sometimes dubbed “factoring by e-mail,” often proved successful.
Some of these milestones in the history of factoring are listed in Table 7.11.

7.4 Security of RSA: Possible Attacks and Countermeasures

The RSA protocol and the RSA digital signature scheme are presented in Section 7.1,
see Figures 7.1 and 7.3. As mentioned there, the security of the RSA cryptosystem
strongly depends on the assumption that factoring large integers is an intractable task.
Section 7.3 shows that the best factoring algorithms known run in superpolynomial
time and thus are not efficient, although some are subexponential-time algorithms.
Further, it is not known whether the factoring problem and the problem of cracking
the RSA system are equally hard.

In this section, we list various potential attacks on the RSA system, among which
the factoring attacks are the most obvious. To prevent these direct attacks, some
care must be taken in choosing the primes p and q, the modulus n, the exponent e,
and the private key d from Figure 7.1. There is an abbundance of literature on the
security of RSA, and the list of attacks presented here is far from being complete. For
each attack on RSA that has been proposed in the literature to date, some practical
countermeasures are known, rules of thumb that prevent the success of those attacks
or make their likelihood of success negligibly small.

Factoring Attacks

Attacker Erich aims at using the public key (n, e) to recover the private key d by
factoring n, i.e., by computing the prime factors p and q of n = pq. Knowing p and q,
he can compute ϕ(n) = (p− 1)(q − 1) and, just like Bob, he can find the inverse d
of e modulo ϕ(n), using the extended algorithm of Euclid; see Figure 2.1. There are
various ways in which factoring attacks on RSA can be mounted. We distinguish the
following types of factoring attacks.

Brute-force attack: By exhaustive search, Erich tries to factor n simply by trial
division, see Section 7.3.1. Choosing n sufficiently large will prevent this type of
attack. Currently, it is recommended to use a modulus n with at least 1024 bits, or
better yet 1024 bits. That is, the size of 512 bits formerly in use no longer provides
adequate protection today. Note that the number RSA-155, which was successfully
factored in 1999 (see Table 7.11), is roughly of the same size as a 512 bit number.
On the other hand, a recommendation such as 1024 bits has to be taken with care,
since the progress in algorithmics and in hardware developments is hard to predict. If
it turns out that factoring is an efficiently solvable problem, all cryptosystems based
on it, including RSA, are no longer secure.
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Of course, the time complexity of modular exponentiation grows rapidly with
the size of the modulus, and thus there is a trade-off between increasing the security
of RSA and decreasing its efficiency. Further, it is widely recognized that those n
whose prime factors p and q are of roughly the same size are the hardest to factor.

Special-purpose factoring methods: Pollard’s p − 1 method is an example of this
type of attack. As shown in Section 7.3.2, this factoring method seeks to exploit a
weakness of the prime factors of n chosen: If n = pq and p−1 has only small prime
factors, then Pollard’s p − 1 algorithm can efficiently factor the RSA modulus n.
This potential threat led to the introduction of “strong primes,” which are required
to satisfy certain conditions. For example, for p to be a strong prime factor of n, the
number p− 1 should have a large factor r to prevent the p− 1 method from working
efficiently. Similarly, r − 1 should also have a large factor, etc.

Another example of a special-purpose factoring method is Lenstra’s elliptic curve
method, which generalizes Pollard’s p− 1 method as noted in Section 7.3.4. It is the
more effective for breaking RSA, the smaller the smallest prime factor of n is.

Special-purpose factoring methods, which exploit certain properties of the prime
factors p and q of n, may be more effective and more successful than the general-
purpose factoring methods described below. However, since they depend on special
properties of the RSA parameters chosen, these types of attack are easier to avoid.

General-purpose factoring methods: Examples are the quadratic sieve and the
number field sieve discussed in Sections 7.3.3 and 7.3.4. Regardless of the form of
the prime factors of n, these factoring algorithms have a certain success probability.
Therefore, the most effective countermeasure against these methods is to use primes
of very large size. This countermeasure simultaneously provides, with high probabil-
ity, protection against all types of special-purpose factoring methods. In short, size
does matter, and large primes are more important than strong primes.

Using the Euler Function to Factor n

Suppose that Erich can determine ϕ(n), where ϕ is the Euler function. Knowing
both n and ϕ(n), he could then determine the prime factors of n = pq by solving the
following two equations for the unknowns p and q:

n = p · q
ϕ(n) = (p− 1)(q − 1).

Substituting q = n/p into the second equation gives a quadratic equation in p:

p2 − (n− ϕ(n) + 1)p + n = 0. (7.25)

By Vieta’s Theorem, p and q are the solutions of a quadratic equation of the form
p2 + ap + b = 0 if and only if p + q = −a and pq = b. Since the prime factors p
and q of n satisfy both pq = n and

p + q = pq − pq + p + q − 1 + 1 = pq − (p− 1)(q − 1) + 1 = n− ϕ(n) + 1,
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(7.25) has the roots p and q. It follows that a cryptanalyst who knows ϕ(n) can easily
break RSA. In other words, computing ϕ(n) is at least as hard as factoring n, and
vice versa. That is, computing ϕ(n) and factoring n are equally hard tasks.

Example 7.35. Let n = 60477719. Suppose that Erich was able to determine the
value ϕ(n) = 60462000. By (7.25), he can determine the prime factors of n simply
by solving the quadratic equation

p2 − 15720p + 60477719 = 0

as follows:

p =
15720

2
+

√(
15720

2

)2

− 60477719 = 9001 and

q =
15720

2
−

√(
15720

2

)2

− 60477719 = 6719.

Superencryption

Simmons and Norris proposed an attack on RSA as early as 1977, shortly after the
invention of RSA. Their attack, called superencryption, is based on the observation
that a sufficient number of encryptions, cycling through Zn, may eventually recover
the original message m. This attack is a threat to the security of RSA, provided that
the number of encryptions required to recover m is small. Fortunately, if the primes
p and q are large and are chosen at random, then superencryption is not a practical
attack.

Example 7.36 (Superencryption). Let n = 5 · 7 = 35, so ϕ(n) = 4 · 6 = 24.
Choose the encryption exponent e = 5; note that gcd(24, 5) = 1. Encrypting the
message m = 11 yields

115 mod 35 = 16.

Now, encrypting the message m′ = 16 recovers the original message:

165 mod 35 = 11,

which is not suprising, since the decryption key d happens to be equal to e in this
case: 52 mod 24 = 1, so d = 5 = e. In fact, every number e with gcd(24, e) = 1
equals its inverse modulo 24, see Exercise 7.13.

So, let us now choose n = 11 · 13 = 143. Then ϕ(n) = 10 · 12 = 120. The
encryption exponent e = 7 has the inverse d = 103 modulo 120, so e �= d in this
case. Still, encrypting the message m = 11 now yields

117 mod 143 = 132 and 1327 mod 143 = 11.

Thus, without knowing the private key d = 103, a cryptanalyst can recover the
original message simply by a double encryption.
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Small-Message Attack

If both the message m to be encrypted and the encryption exponent e are small
relative to the modulus n, then the RSA encryption is not effective. In particular, if
the ciphertext c = me is smaller than n, then m can be recovered from c by ordinary
root extraction. To prevent this from happening, the public exponent should be large
or the messages to be encrypted should always be large. It is this latter suggestion
that is more useful, since a small public exponent is often preferred in order to speed
up encryption and to preclude Wiener’s attack.

Wiener’s Attack

Wiener proposed an attack on the RSA system that uses a continued fraction approx-
imation and the public key (n, e) so as to compute the private key d. This attack is
efficient and practical, and thus is a concern only if the private key d is chosen to be
small relative to the modulus n. More precisely, Wiener’s attack works if and only if

3d < 4
√

n and q < p < 2q, (7.26)

where n = pq.
Here is a rough sketch of the idea. By (7.2), since the encryption and decryption

exponent satisfy ed ≡ 1 mod ϕ(n), there is some integer k < d such that

ed− kϕ(n) = 1,

which implies ∣∣∣∣ e

ϕ(n)
− k

d

∣∣∣∣ =
1

dϕ(n)
. (7.27)

Since n = pq > q2, we have q <
√

n. Since q < p < 2q by (7.26), Equation (7.27)
implies that

0 < n− ϕ(n) = p + q − 1 < 2q + q − 1 < 3q < 3
√

n.

Hence,∣∣∣∣ en − k

d

∣∣∣∣ =
∣∣∣∣ed− kn

dn

∣∣∣∣ =
∣∣∣∣1 + k(ϕ(n)− n)

dn

∣∣∣∣ <
3k
√

n

dn
=

3k

d
√

n
<

1
d 4
√

n
, (7.28)

where the latter inequality follows from 3k < 3d < 4
√

n, which is implied by k < d
and (7.26). Again, since 3d < 4

√
n, we have∣∣∣∣ en − k

d

∣∣∣∣ <
1

3d2
. (7.29)

Note that the encryption key (n, e) is public. Inequality (7.29) says that the fraction
k/d is a very close approximation to the fraction e/n. Hence, to recover the private
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key d from the public key (n, e), an attacker might employ the following fact known
from the theory of continued fractions: Every approximation of e/n that is as close as
shown in (7.29) must be one of the convergents of the continued fraction expansion
of e/n. A (finite) continued fraction is the rational number

c1 +
1

c2 + 1
c3+···+ 1

ct

, (7.30)

which is represented as the t-tuple (c1, c2, . . . , ct) of nonnegative integers, where
ct �= 0.

Suppose that a and b are positive integers satisfying gcd(a, b) = 1, and let
r0, r1, . . . , rt be the sequence of integers generated by running EUCLID(a, b), see
Figure 2.1. That is, r0 = a, r1 = b, and ri+1 ≡ ri−1 mod ri for 1 ≤ i < t, see the
left column of Table 2.1 for an example. Let ci = �ri−1/ri� for 1 ≤ i ≤ t. Then, a/b
equals the continued fraction from (7.30), and (c1, c2, . . . , ct) is said to be the con-
tinued fraction expansion of a/b. For each i with 1 ≤ i ≤ t, Ci = (c1, c2, . . . , ci) is
said to be the ith convergent of (c1, c2, . . . , ct), which can be written as the rational
number Ci = xi/yi, where xi and yi are defined to be the solutions of the following
recurrences:

xi =

⎧⎨⎩
1 if i = 0
c1 if i = 1
cixi−1 + xi−2 if i ≥ 2

and yi =

⎧⎨⎩
0 if i = 0
1 if i = 1
ciyi−1 + yi−2 if i ≥ 2.

(7.31)

Example 7.37 (Continued Fraction Expansion). To compute the continued frac-
tion expansion of a/b = 101/37, run EUCLID(101, 37). Table 7.12 shows the re-
sulting values. Thus, the continued fraction expansion of 101/37 is (2, 1, 2, 1, 2, 3),
which means that

101
37

= 2 +
1

1 + 1
2+ 1

1+ 1
2+ 1

3

.

i 0 1 2 3 4 5 6

ri 101 37 27 10 7 3 1

ci 2 1 2 1 2 3

Ci = xi
yi

2
1

3
1

8
3

11
4

30
11

101
37

Table 7.12. Computing the continued fraction expansion of 101/37 and its convergents

Table 7.12 also lists the convergents Ci = xi/yi of (2, 1, 2, 1, 2, 3), 1 ≤ i ≤ 6.
It can be verified that the xi and yi satisfy the recurrences (7.31).
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The crucial property of convergents of a continued fraction expansion that can be
used to break RSA is stated in the following result without proof.

Theorem 7.38. If a, b, c, and d are positive integers such that |a/b− c/d| < 1/(2d2)
and gcd(a, b) = gcd(c, d) = 1, then c/d is one of the convergents of the continued
fraction expansion of a/b.

By Theorem 7.38, (7.29) implies that k/d is one of the convergents of the con-
tinued fraction expansion of e/n. Since e/n is known, all one has to do to determine
k/d is to compute all convergents of e/n and to check if one of them is the correct
one. To this end, if some convergent Ci = xi/yi of e/n is suspected to be equal
to k/d, one computes the value of ϕ(n) by

ϕ(n) =
e · d− 1

k
=

e · yi − 1
xi

.

Once both n and ϕ(n) are known, n can be factored by solving the quadratic equa-
tion (7.25), whose roots will be the prime factors of n. If this test fails, then Ci was
not the correct convergent, and one proceeds to check the next suspect. If none of
the convergents of e/n was tested successfully, one concludes that the assumptions
made in (7.26) do not apply. For a concrete implementation of Wiener’s attack, see
Exercise 7.14(a).

Example 7.39 (Wiener’s Attack). Let n = 60477719. Note that this is the same n
as in Example 7.35. Suppose that the public exponent is e = 47318087, so the public
key is (n, e) = (60477719, 47318087). Thus, a cryptanalyst knows the value

e

n
=

47318087
60477719

= 0.78240528549.

Running EUCLID(47318087, 60477719)and computing the values ri and ci as above
gives the following continued fraction expansion of e/n:

(0, 1, 3, 1, 1, 2, 8, 1, 9, 4, 1, 4, 1, 1, 4, 2, 1, 1, 2, 2, 3). (7.32)

Now, using the recurrences (7.31) to compute the xi and yi, one can determine the
21 convergents Ci = xi/yi of this continued fraction expansion of e/n. Table 7.13
shows the first 10 convergents; see also Exercise 7.14(c).

i 1 2 3 4 5 6 7 8 9 10 · · ·
ci 0 1 3 1 1 2 8 1 9 4 · · ·

Ci = xi
yi

0 1 3
4

4
5

7
9

18
23

151
193

169
216

1672
2137

6857
8764

· · ·

Table 7.13. Computing the convergents of the continued fraction expansion in Wiener’s attack
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Each convergent is a suspect of being equal to k/d, and one after the other is to
be checked. The first five tests will fail. However, when checking C6 = 18/23, one
obtains

ϕ(n) =
e · y6 − 1

x6
=

47318087 · 23− 1
18

= 60462000,

which is precisely the value of ϕ(n) from Example 7.35. As in this example, the
cryptanalyst proceeds to compute the prime factors 6719 and 9001 of n = 60477719.
Note that Wiener’s attack works in this example, since the prime factors of n are of
roughly the same size and 3 · 23 = 69 < 88 =

⌊
4
√

60477719
⌋
, so (7.26) is satisfied.

As noted above, Wiener’s attack is a real threat only if the hypotheses in (7.26)
are satisfied, in particular, only if 3d < 4

√
n. However, since the encryption exponent

e is chosen first and is usually chosen to be small to speed up encryption, it is unlikely
that a small d will be generated. That is, if e is small enough, then d is likely to be
large enough to resist Wiener’s attack. One should keep in mind, though, that it might
be dangerous if one seeks to speed up decryption by using a small private key d.

Another interesting observation is that if an attacker knows the decryption expo-
nent d, be it small or large, it is possible to factor n using a randomized algorithm.
That is to say that computing d is no easier than factoring n, see Problem 7.3.

Low-Exponent Attack

A recommended value of the encryption exponent e that is commonly used today is
e = 216 + 1. One advantage of this value for e is that its binary expansion has only
two ones, which implies that the “square-and-multiply” algorithm from Figure 7.2
requires very few operations.2 Thus, encryption is very efficient.

However, one should be cautious not to choose the public encryption exponent
too small. A preferred value of e that has been used often in the past is e = 3. Suppose
that three parties participating in the same system encrypt the same message m using
the same public exponent e = 3, yet distinct RSA moduli, say n1, n2, and n3. Then,
a cryptanalyst can easily compute m from the three ciphertexts:

c1 ≡ m3 mod n1

c2 ≡ m3 mod n2

c3 ≡ m3 mod n3.

Since the message m must be smaller than each of the moduli ni, it follows that m3

must be smaller than n1n2n3. Using the Chinese Remainder Theorem (see Theo-
rem 2.46), one can compute the unique solution

c ≡ m3 mod n1n2n3 = m3.

Hence, one can recover m from c by ordinary root extraction.

2 How many exactly?
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More generally, suppose that k related plaintexts are encrypted with the same
exponent e:

c1 ≡ (a1m + b1)e mod n1

c2 ≡ (a2m + b2)e mod n2

...

ck ≡ (akm + bk)e mod nk,

where ai and bi, 1 ≤ i ≤ k, are known constants, k > e(e + 1)/2, and we have
min(ni) > 2e2

. Then, an attacker can solve the above system of k congruences for
m in polynomial time using so-called lattice reduction techniques, see Micciancio
and Goldwasser [MG02]. This observation was made by Håstad in the late 1980s.
This attack is a concern if the messages are related in a known way. In this case,
they should not be encrypted with many RSA keys of the form (ni, e). A recom-
mended countermeasure, which prevents mounting this attack in practice, is to pad
the messages with pseudorandom strings prior to encryption, see, e.g., [KR95].

Forging RSA Signatures

We present a chosen-plaintext attack that is based on the fact that the RSA encryption
function is a homomorphism: If (n, e) is the public key and m1 and m2 are two
messages, then

me
1 ·me

2 ≡ (m1 ·m2)
e mod n. (7.33)

Another congruence that can easily be verified is

(m · re)d ≡ md · r mod n. (7.34)

The congruences (7.33) and (7.34) can be used to mount an attack on the RSA
digital signature scheme, see Figure 7.3 in Section 7.1.2. Given previous message-
signature pairs 〈m1, sigA(m1)〉, 〈m2, sigA(m2)〉, . . . , 〈mk, sigA(mk)〉, Erich can
use the congruences (7.33) and (7.34) to compute a new message-signature pair
〈m, sigA(m)〉 by

m = re
k∏

i=1

mei

i mod n;

sigA(m) = r

k∏
i=1

(sigA(mi))
ei mod n,

where r and the ei are arbitrary. Hence, Erich can forge Alice’s signature without
knowing her private key, and Bob will not detect the forgery, since

m ≡ (sigA(m))e mod n.
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The above attack looks like a known-plaintext attack at first glance. However, note
that, in (7.33), even if m1 and m2 are meaningful plaintexts, m1 ·m2 usually is not.
Thus, Erich can forge Alice’s signature only for messages that may or may not be
useful. However, he might choose the messages mi so as to generate a meaningful
message m with a forged digital signature. This chosen-plaintext attack can again
be avoided by pseudorandom padding techniques that destroy the algebraic relations
between messages.

Pseudorandom padding is also a useful countermeasure against the following
chosen-ciphertext attack: Erich intercepts some ciphertext c, chooses r ∈ N at ran-
dom, and computes c · re mod n, which he sends to the legitimate receiver Bob.
By (7.34), Bob will decrypt the string ĉ = cd · r mod n, which is likely to look like
a random string. Erich, however, if he were to get his hands on ĉ, could obtain the
original message m by computing

m = r−1 · cd · r mod n,

i.e., he multiplies by r−1, the inverse of r modulo n.

7.5 Exercises and Problems

Exercise 7.1 (a) Prove that for the values of ϕ(n) = 660 and e = 7 in Example 7.2,
the extended Euclidean Algorithm from Figure 2.2 yields indeed the private key
d = 283, which is the inverse to 7 mod 660.

(b) For the cleartext from Table 7.1 in Example 7.2, determine the encoding of the
ciphertext by letters from Σ = {A, B, . . . , Z} for each of the 17 blocks.

(c) Decipher all 17 blocks of the ciphertext from Table 7.1 using (7.4), and show
that the original cleartext is obtained.

Exercise 7.2 Prove that the RSA digital signature protocol from Figure 7.3 works.

Exercise 7.3 Prove that there exist infinitely many prime numbers.

Hint: First, show that every integer n ≥ 2 has a prime divisor. Use this result to
show that the assumption that there are only finitely many prime numbers leads to a
contradiction.

Exercise 7.4 (a) Show that 2 is a Fermat witness for each n ≤ 340.

Hint: Write a program to check this property on a computer.

(b) Show that 2 is a Fermat liar for 341.

(c) Prove that for each odd composite number n, the numbers 1 and n − 1 trivially
are Fermat liars for n.

(d) What is the running time of the Fermat test from Figure 7.5? Prove your answer.

Exercise 7.5 Look at the proof of Lemma 7.8, which uses the following assertion:
a ∈ Z∗

n if and only if there exists some b ∈ Zn with a · b ≡ 1 mod n. Prove
this assertion. Hint: By definition, a ∈ Z∗

n means that gcd(n, a) = 1. Recall that
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the extended Euclidean Algorithm computes a linear combination of the given two
numbers, a and n, by determining numbers x and y with gcd(n, a) = x · n + y · a.

Exercise 7.6 Prove Lemma 7.11: The order of any finite group is divided by the
order of each of its subgroups.

Hint: Given a subgroup H = (H, ◦) of a finite group G = (G, ◦), define x ∼=H y if
and only if y−1 ◦ x ∈ H . Prove that:

(a) ∼=H is an equivalence relation, and

(b) for each x ∈ G, there exists a bijection between H and the equivalence class of
x with respect to ∼=H .

Using (a) and (b), show that the order of G equals the number of equivalence classes
of ∼=H times the order of H.

Exercise 7.7 The proof of Theorem 7.19 in particular requires certain basic number-
theoretical facts and lemmas, some of which are listed below.

(a) Prove Lemma 7.13: Every Carmichael number is the product of at least three
distinct prime factors.

Hint: The proof of this lemma is not quite easy. Among other arguments, it
involves applications of the Chinese Remainder Theorem and of the Binomial
Theorem, similar to the proof of Lemma 7.26. Lemma 7.13 can be found, for
example, as Lemma 5.1.8 in Dietzfelbinger’s book [Die04].

(b) Prove Lemma 7.14: Every prime number n has only two square roots of 1 mod-
ulo n, namely ±1 mod n. Hint: Use the fact that an integer a is a square root
of 1 modulo n if and only if n divides (a− 1)(a + 1).

(c) Prove Lemma 7.18: If there exists an MR-witness for n, then n is composite.
Hint: Look at the proof of Theorem 7.19.

(d) Show that the Miller–Rabin test from Figure 7.6 runs in time O(N3) on inputs
of length N .

(e) Amplify the success probability of the Miller–Rabin test so as to achieve an error
arbitrarily close to zero. In particular, letting q be a nondecreasing polynomial
such that q(n) ≥ 2 for each n, show that Primes is in coRPq , where the class
RPq is defined in Definition 6.5.

Hint: See the proof of Theorem 6.6.

Exercise 7.8 (a) Show that each of the following numbers is an MR-witness for 561:

52, 59, 62, 65, 70, 71, 74, 80, 83, 86, 89, 92, 95, 98, 100, 325, 556.

(b) Show that each of the following numbers is an MR-liar for 561:

103, 256, 305, 458, 511.

(c) Create a table similar to Table 7.5 for the composite number 325 = 52 · 13.
Show that both 32 and 318 are MR-liars for 325, yet their product 32 · 318 ≡
101 mod 325 is an MR-witness for 325. Similarly, show that also 293 is an
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MR-liar for 325, yet the product 293 · 318 ≡ 224 mod 325 is an MR-witness
for 325. Can you find further counterexamples to the (incorrect) claim that the
set MR-Liars325 is a subgroup of Z∗

325?

Hint: Another example for n = 325 can be found in Table 5.3 of [Die04].

(d) Can you find similar counterexamples as in (c) for the Carmichael number 561?

Exercise 7.9 (a) Use the properties of the Jacobi symbol stated in Proposition 7.22
to design a polynomial-time algorithm for computing the Jacobi symbol.

(b) Prove that for each odd positive integer n,(
n− 1

n

)
= (−1)(n−1)/2.

(c) Evaluate the following Jacobi symbols:(
4335
6399

)
,

(
2222
1111

)
,

(
1234
9876

)
,

(
2365
7882

)
,

(
9275
6273

)
, and

(
4367
5932

)
.

(d) Prove that every SS-liar for n ≥ 3 is also a Fermat liar for n.

Exercise 7.10 The factoring problem can be defined both as a functional problem,
as in Definition 7.28, and as a decision problem. There are different ways of doing
so. For example, define the factoring problem as a decision problem by

Factoring = {〈n, k〉 | n has no prime factor that is less than or equal to k},

where n and k are again represented in binary.

(a) Prove that the functional version factoring from Definition 7.28 and the
above language version Factoringof this problem are polynomial-time Turing-
reducible to one another:

Factoring ∈ Pfactoring and factoring ∈ FPFactoring.

(b) How many queries suffice in these reductions?

(c) Prove that the factoring problem, suitably formalized as a language problem, is
in NP.

Exercise 7.11 (a) Factor n = 321 + 1 = 10460353204 by trial division.

(b) Use Pollard’s p− 1 method from Figure 7.8 to factor n = 1241143.

(c) Prove that one execution of Pollard’s p − 1 method from Figure 7.8 (not tak-
ing account of the recursion or of the restart with a new bound) runs in time
O(B log BN2 + N3), where B is the bound chosen and N is the length of the
integer n to be factored.

Hint: Consider the algorithms invoked in one run of Pollard’s p− 1 method. In
particular, how often is the “square-and-multiply” algorithm invoked? What is
its running time? What time is needed to compute the greatest common divisor?
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Exercise 7.12 (a) Factor n = 7429 by the quadratic sieve method. Hint: Use the
factor base B = {−1, 2, 3, 5, 7} and apply the method from Section 7.3.3.

(b) Let n = 106, so s = �√n� = 10. Choose the factor base B = {−1, 2, 3, 5, 7},
and let σ(x) = (x + 10)2 − 106. As in Table 7.9, for each prime p in B, apply
the sieve with p to the sieve interval S = {−10,−9, . . . ,−1, 0, 1, . . . , 9, 10}.
In particular, show that we obtain equations for σ(6) and σ(10) that, when mul-
tiplied, yield a congruence of the form (7.23), which has squares on both sides.
Why are the resulting numbers a and b not suitable to factor n?

(c) Make bibliographic inquiries to find out the prime factors of the Fermat number
F11 = 2211

+ 1. Who was the first to discover this factorization and when?

Exercise 7.13 Let n = 35 be the RSA modulus from Example 7.36, so ϕ(n) = 24.
Prove that every possible choice e of the encryption exponent equals the inverse of e
modulo 24. Thus, the encryption exponent and the decryption exponent are identical
in this case, and RSA with these parameters in fact is a symmetric cryptosystem.

Exercise 7.14 (a) Write a program in pseudocode that implements Wiener’s attack
presented in Section 7.4. Hint: See Wiener [Wie90] or Stinson [Sti02].

(b) Verify that the continued fraction expansion of e/n = 0.78240528549 stated
in (7.32) from Example 7.39 is correct.

(c) Compute the remaining 11 convergents, C11 through C21, of the continued
fraction expansion of e/n = 47318087/60477719, which were omitted in Ta-
ble 7.13 from Example 7.39.

Problem 7.1 (Decreasing the Error of the Miller–Rabin Test)
Prove that the Miller–Rabin test from Figure 7.6 has an error probability of at
most 1/4, by doing a more careful analysis.

Hint: It is enough to prove that if n ≥ 3 is an odd composite number, then there are
at most (n − 1)/4 MR-liars for n in Z∗

n. So assume that a is an MR-liar for n, i.e.,
a satisfies condition (7.8): am ≡ 1 mod n, or it satisfies condition (7.9): for some
j ∈ {0, 1, . . . , k − 1}, a2jm ≡ −1 mod n.

If a satisfies (7.8), then −a satisfies (7.9). So, let jmax be the largest j for which
there exists an a ∈ Z∗

n satisfying (7.9). Let k = 2m·jmax . Consider the prime power
factorization of n =

∏
pep , where ep ≥ 1 and the product is taken over all prime

factors p of n. Define the following four subsets of Z∗
n:

A = {a ∈ Z∗
n | an−1 ≡ 1 mod n};

B = {a ∈ Z∗
n | ak ≡ ±1 mod pep for each prime factor p of n};

C = {a ∈ Z∗
n | ak ≡ ±1 mod n};

D = {a ∈ Z∗
n | ak ≡ 1 mod n}.
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Note that A ⊂ B ⊂ C ⊂ D ⊂ Z∗
n. In particular, every MR-liar a belongs to C.

Show that each of A, B, C, and D is a subgroup of Z∗
n. By Lemma 7.11, the group

order of C divides ϕ(n). To show that there are at most (n − 1)/4 MR-liars for n
in Z∗

n, prove that ϕ(n)/||C|| ≥ 4.

Problem 7.2 (Primality Problem)
Prove that Primes is in P. Hint: See Section 7.2.4 and [AKS02]. Another rec-
ommended source for this proof is [Die04]. This problem is very difficult to solve.

Problem 7.3 (Factoring n Using a Known RSA Decryption Exponent)
Let (n, e) be a public RSA key, and let d be the corresponding private RSA key.
Design an efficient (randomized) Las Vegas algorithm that factors n with probability
at least 1/2, provided that the input 〈n, e, d〉 satisfies ed ≡ 1 mod ϕ(n).
Hint: See Stinson [Sti02].

7.6 Summary and Bibliographic Remarks

General Remarks: For their fundamental contributions to public-key cryptography,
Rivest, Shamir, and Adleman received the Turing Award in 2002. The importance
of RSA can be seen from the fact that probably no cryptography textbook written
since the late 1970s has omitted presenting RSA. Primality tests and factoring meth-
ods are also presented in many books on cryptography; see, e.g., Stinson [Sti02],
Salomaa [Sal96], Goldreich [Gol01], and Buchmann [Buc01]. Koblitz [Kob97] fo-
cuses on the algebraic aspects of cryptography. One of the most profound and up-to-
date sources on primality testing is Dietzfelbinger’s book [Die04], which provides
both randomized primality tests, such as the Miller–Rabin test, and a comprehensive
presentation of Agrawal, Kayal, and Saxena’s proof that Primes is in P [AKS02].
D. Bernstein [Ber04] gives a comprehensive taxonomy of the currently best primality
tests.

Specific Remarks: The idea of public-key cryptography was first published by Diffie
and Hellman in their pathbreaking paper [DH76]. The very first concrete public-key
cryptosystem that appeared in the open literature is RSA. Both the RSA cryptosystem
and the related digital signature scheme, presented in Section 7.1, are due to Rivest,
Shamir, and Adleman [RSA78]. Decades later, in December of 1997, the British
Government Communications Headquarters (GCHQ) revealed that Ellis, Cocks, and
Williamson, employed at the Communications Electronics Security Group of the
GCHQ, had independently and even earlier discovered the principle of public-key
cryptography, the cryptosystem now called RSA, and the secret-key agreement pro-
tocol now called Diffie–Hellman, which will be presented in Section 8.1.

Ellis came up with the principal idea for public-key cryptosystems as early as
1969. Cocks invented the system now called RSA in 1973, about four years before
Rivest, Shamir, and Adleman found it independently in 1977. And Williamson dis-
covered the mathematical principles on which the Diffie–Hellman protocol rests at



358 7. RSA Cryptosystem, Primality, and Factoring

about the same time as Diffie and Hellman [DH76]. Strangely enough, while Diffie–
Hellman predates RSA, the corresponding findings were obtained in reverse order
at the GCHQ. The interesting story of these secret developments in the nonpublic
sector is told in more detail by Singh [Sin99] and others.

Based on Miller’s [Mil76] ideas for a deterministic algorithm for the primal-
ity problem, Rabin [Rab80] developed the randomized algorithm now known as
the Miller–Rabin test, which is shown in Figure 7.6. Independently, Solovay and
Strassen [SS77] developed their Monte Carlo primality test, see Figure 7.7. For more
information on the primality problem and primality testing, see, e.g., Adleman and
Huang [AH87, AH92a], D. Bernstein [Ber04], and Dietzfelbinger [Die04].

Pollard’s p−1 method can be found in [Pol74]. The quadratic sieve, which is pre-
sented in Section 7.3, is due to Pomerance. Dixon’s random squares method [Dix81]
is presented in Stinson [Sti02], for example. The number field sieve, a more recent
and even more successful sieving method for factoring, was developed in the late
1980s based on an idea of Pollard, see Lenstra and Lenstra [LL93]. The elliptic
curve method for factoring integers is due to H. Lenstra [Len87]. Exercises 7.11(a),
7.11(b), and 7.12(a) are taken from Buchmann [Buc01].

It was mentioned in Section 7.3 that the factoring problem is a candidate of
a problem that seems to be neither in P nor NP-complete, just as the graph iso-
morphism problem. However, the current evidence against NP-completeness for the
factoring problem is different from that against NP-completeness for the graph iso-
morphism problem. The currently strongest results suggesting that Factoring is
unlikely to be NP-complete are due to Fellows and Koblitz [FK92] and to Kayal and
Saxena [KS04]. Fellows and Koblitz show that the factoring problem is in UP∩coUP.
Cai and Threlfall [CT04] show that also the quadratic residue problem introduced in
Definition 2.43 is in UP ∩ coUP.

Kayal and Saxena prove that the factoring problem reduces to the problem of
counting the automorphisms in rings (and various related problems) under polynomial-
time randomized Turing reductions with zero error probability. In particular, de-
noting the counting problem for ring automorphisms by #RA, they prove that
Factoring is in ZPP#RA, and they also show that #RA is in FPAM∩coAM. It follows
that Factoring is in ZPPAM∩coAM.

The superencryption attack is due to Simmons and Norris [SN77]. Wiener’s at-
tack can be found in [Wie90]; the sketch of its idea presented in Section 7.4 is
based on Stinson’s presentation in [Sti02]. A solution to Problem 7.3 can also be
found in [Sti02]. Boneh and Durfee [BD00] improved Wiener’s attack to be effec-
tive for each private key d < n0.292. A generalized Wiener attack on RSA is due
to Blömer and May [BM04]. Their method of factoring the RSA modulus n is suc-
cessful whenever the public key (n, e) satisfies ex + y ≡ 0 mod ϕ(n) for 3x < 4

√
n

and |y| ∈ O(n−3/4ex). The generalization of the low-exponent attack presented
in Section 7.4 is due to Håstad [Hås88]. This attack was later improved by Cop-
persmith [Cop97]. Bleichenbacher [Ble98] proposed an adaptive chosen-ciphertext
attack against protocols based on RSA. May [May04] showed that computing the se-
cret RSA key is equivalent to factoring under polynomial-time deterministic Turing
reductions. More precisely, he designed a deterministic polynomial-time algorithm
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for factoring a given RSA modulus n, provided that the prime factors p and q of n
are of the same bit size and that the public RSA exponent e and the private RSA key
d are known, where e, d < ϕ(n). Previously, the equivalence of factoring and com-
puting the secret RSA key was known to hold only for polynomial-time randomized
Turing reductions [RSA78].

For further background on the security of the RSA system, on potential attacks
proposed to break this system, and on effective countermeasures to prevent these at-
tacks, the reader is referred to the survey papers by Moore [Moo92], Shamir [Sha95],
Kaliski and Robshaw [KR95], Boneh [Bon99], and Rothe [Rot02].
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Other Public-Key Cryptosystems and Protocols

This chapter presents various important cryptosystems and cryptographic protocols.
Most of these cryptosystems are public-key, though we start in Section 8.1 by in-
troducing the Diffie–Hellman secret-key agreement protocol that is very useful in
symmetric cryptography. Diffie and Hellman’s protocol solves the problem of shar-
ing a joint secret key in a symmetric cryptosystem via an insecure channel. It is the
first such protocol in the open literature, see the bibliographic remarks in Section 7.6.
As already mentioned, Diffie and Hellman’s work also opened the door to public-key
cryptography, which no longer requires that Alice and Bob agree on a joint secret key
before exchanging encrypted messages.

The security of the Diffie–Hellman protocol is based on the assumption that com-
puting discrete logarithms is a hard problem. Many other protocols and cryptosys-
tems use the same assumption as well. In particular, Section 8.2 presents the ElGamal
public-key cryptosystem and the ElGamal digital signature protocol whose security
is likewise based on the hardness of the discrete logarithm problem.

In Section 8.3, Rabin’s cryptosystem is presented. This public-key cryptosys-
tem assumes that factoring large integers n and computing square roots modulo n
are both computationally hard tasks. Unlike the RSA or ElGamal systems, Rabin’s
cryptosystem is provably secure under the assumption that the factoring problem is
computationally intractable.

In Section 8.4, we return to the notion of Arthur-Merlin games introduced in
Section 6.3. As noted there, Arthur-Merlin games are closely related to the theory of
interactive proof systems, which is important both in complexity theory and for cryp-
tographic applications. In particular, zero-knowledge protocols are interactive proof
systems that can be used for authentication. Section 8.4 presents a zero-knowledge
protocol for the graph isomorphism problem, which is also studied in Section 6.5.

Section 8.5 discusses a public-key cryptosystem due to Merkle and Hellman,
which is based on an NP-complete problem. Finally, Section 8.6 presents Rabi,
Rivest, and Sherman’s secret-key agreement and digital signature protocols. The se-
curity of their protocols is based on complexity-theoretic (i.e., worst-case) one-way
functions with certain useful algebraic and security properties. In particular, these
protocols require two-argument one-way functions that are commutative, associa-
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tive, and “strongly noninvertible.” We also discuss the issue of constructing such
functions under appropriate complexity-theoretic assumptions.

8.1 Diffie–Hellman and the Discrete Logarithm Problem

Public-key cryptosystems are usually less efficient than symmetric cryptosystems.
Suppose that, for the sake of efficiency, Alice and Bob want to use a symmetric
cryptosystem, so encryption and decryption is done using the same key. How can
Alice and Bob agree on such a joint secret key, without meeting in private prior to
exchanging encrypted messages and without using an expensive secure channel for
key distribution? If they were to agree on a shared secret key to be used in future
communications by first sending it over an insecure channel, properly encrypted by
means of their symmetric cryptosystem, then which secret key could they use in
order to encrypt this message? This paradoxical situation is known as the secret-key
agreement problem.

Key distribution for symmetric systems is an issue, and it is the more demanding,
the more users are participating in the same system. It often happens in cryptographic
applications that one party wants to send the same message to several other parties,
sometimes to several hundred or even more parties. Just think of a military scenario
in which the message “ATTACK AT SIX A.M. SKIPPING BREAKFAST” is to be
sent to the soldiers of the Sixth Infantry Regiment. Or think of a scenario in which all
CIA agents worldwide are to be informed about the details of a terroristic assassina-
tion plan that could be uncovered, in order to coordinate appropriate countermeasures
to prevent it on time.

The secret-key agreement problem has been considered unsolvable since the be-
ginnings of cryptography. Thus, it caused much surprise when Diffie and Hellman
came up with an ingenious, simple idea to solve it. Using their secret-key agree-
ment protocol, Alice and Bob can agree on a joint secret key by exchanging some
messages. Eavesdropper Erich, however, does not have a clue about their key, even
though he knows every single bit exchanged, provided that he cannot solve the dis-
crete logarithm problem.

8.1.1 Diffie and Hellman’s Secret-Key Agreement Protocol

Figure 8.1 shows the Diffie–Hellman secret-key agreement protocol. It is based on
the following number-theoretical notions and facts introduced in Section 2.4.1:

• A primitive element γ of n is defined to be a generator of the multiplicative
group Z∗

n of order ϕ(n), see Definition 2.40. That is,

〈γ〉 = {γi | 0 ≤ i < ϕ(n)} = Z∗
n.

Recall that for each prime number p, Z∗
p is a group of order ϕ(p) = p − 1 and

has exactly ϕ(p− 1) primitive elements; see Example 2.41.
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• Let p be a prime number, and let γ be a primitive element modulo p. The modular
exponential function with base γ and modulus p is introduced in Definition 2.42
by

expγ,p(a) = γa mod p,

and its inverse function is called the discrete logarithm. For α = expγ,p(a), we
write a = logγ α mod p.

Step Alice Erich Bob

1 Alice and Bob agree on a large prime p and a primitive element γ of p;
p and γ are public

2 chooses a large random number a,
keeps it secret, and computes

α = γa mod p

chooses a large random number b,
keeps it secret, and computes

β = γb mod p

3 α ⇒
⇐ β

4 computes her key kA = βa mod p computes his key kB = αb mod p

Fig. 8.1. Diffie–Hellman secret-key agreement protocol

The Diffie–Hellman protocol from Figure 8.1 works, since

kA = βa = γba = γab = αb = kB

in the arithmetics modulo p. Thus, Alice and Bob indeed compute the same key.
Using the “square-and-multiply” algorithm from Figure 7.2 in Section 7.1 so as to
perform exponentiation fast, both Alice and Bob can efficiently determine this key.
Recall that βa mod p requires a−1 multiplications if performed naively, yet no more
than 2 log a multiplications if “square-and-multiply” is used.

Example 8.1 (Diffie–Hellman Protocol). Suppose that Alice und Bob have chosen
the prime number p = 17 and now want to choose a primitive element of 17. Recall
that γ is a primitive element of p if and only if γ generates Z∗

p, i.e.,

Z∗
p = {γi | 0 ≤ i < p− 1}.

Every element x ∈ Z∗
p can be uniquely written as x = γi for some i, 0 ≤ i < p− 1.

Recall from Definition 2.34 that the order of an element x of the group Z∗
p is the

smallest positive integer k such that xk = 1. Thus, the order of x = γi is

p− 1
gcd(p− 1, i)

. (8.1)
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It follows that x itself is a primitive element of p if and only if gcd(p − 1, i) = 1,
and hence there are exactly ϕ(p− 1) primitive elements of p.

Note that Z∗
16 = {1, 3, 5, 7, 9, 11, 13, 15}, so ϕ(16) = 8 is the number of prim-

itive elements modulo 17. It can be verified that 3 is a primitive element of 17,
since 3 generates Z∗

17 = {1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6}. The re-
maining primitive elements modulo 17 can be determined as follows. First, compute
all successive powers of 3 modulo 17, as shown in Table 8.1. By (8.1), an element
3i mod 17 is primitive if and only if gcd(16, i) = 1. Table 8.1 shows these primitive
elements in gray boxes.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3i mod 17 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

Table 8.1. Computing the primitive elements modulo 17

Suppose that Alice and Bob choose the primitive element γ = 12 of 17, see
Exercise 8.1(a). Further, Alice chooses the secret number a = 10 at random. She
wants to send the number α = 1210 mod 17 to Bob. Applying the “square-and-
multiply” algorithm from Figure 7.2, she first computes the binary expansion of the
exponent, 10 = 21 + 23, and then the values 122i

mod 17 for 0 ≤ i ≤ 3, see
Table 8.2.

1220
mod 17 1221

mod 17 1222
mod 17 1223

mod 17 α = 1210 mod 17

12 8 13 16 9

Table 8.2. Computing α = 1210 mod 17 for the Diffie–Hellman protocol

Multiplying the values in the gray boxes of Table 8.2, she obtains

α = 1210 ≡ 9 mod 17

and sends α = 9 to Bob. Meanwhile, Bob has chosen his secret exponent b = 15
and has computed his value β = 1215 ≡ 10 mod 17 by the same procedure, see
Exercise 8.1(b). Bob sends β = 10 to Alice. Now, Alice and Bob compute

kA = 1010 ≡ 2 mod 17 and kB = 915 ≡ 2 mod 17

to determine their joint secret key, kA = 2 = kB .

Erich, however, encounters difficulties when trying to determine Alice and Bob’s
secret key, provided that their numbers are chosen large enough. (Needless to say,
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the numbers in the above toy example are much too small to resist a brute-force
attack.) If he was eavesdropping carefully on their communication—and Erich is
infamous for being an alert eavesdropper—then all he knows are the public values p
and γ and the communicated values α and β. In order to compute the secret values
a and b from α and β, it seems that he has to solve the discrete logarithm. However,
the discrete logarithm is considered to be a hard problem, see Section 8.1.2. That is
why expγ,p, the modular exponential function, is considered to be a candidate of a
one-way function, a function that is easy to compute but hard to invert.

To avoid confusion, we mention that Definition 3.78 in Section 3.6.2 introduces
the notion of (complexity-theoretic) one-way functions in the worst-case complexity
model. In contrast, expγ,p is suspected to be hard to invert even on average, a more
challenging and more appealing feature of one-way-ness required in cryptographic
applications. Things are bad. To this day, it is not known whether or not one-way
functions do exist, not even in the less challenging worst-case model. Things are
worse. Although we do not know if there is any one-way function, many cryptosys-
tems and protocols use presumed one-way functions as their cryptographic primi-
tives, and thus their security is based merely on the assumption, or the hope, that
these functions indeed are one-way.

Since the discrete logarithm problem seems to be hard, the above direct attack
on the Diffie–Hellman secret-key agreement protocol is not a real concern currently,
provided that the prime p and the private exponents a and b are chosen large enough.
In particular, these exponents should be at least 2160. The next section will present
algorithms for computing the discrete logarithm and will discuss the above direct
attack, which is related to the so-called “Diffie–Hellman problem.”

In addition to this most obvious attack, there are other, indirect attacks on Diffie–
Hellman in which the cryptanalyst is not just a passive eavesdropper who tries to
break the protocol by determining the secret key from the values α and β. For exam-
ple, Diffie–Hellman is vulnerable to the “man-in-the-middle” attack, an active attack
in which the attacker tries to modify the protocol to his advantage. Suppose that
Erich, the man in the middle, intercepts Alice’s number α = γa mod p sent to Bob,
and he intercepts Bob’s number β = γb mod p sent to Alice. Erich then replaces α
and β by his own values and forwards αE = γe mod p to Bob and βE = γe mod p
to Alice, where e is Erich’s private exponent. According to the protocol, Alice and
Bob now compute the keys

kA = (βE)a mod p and kB = (αE)b mod p,

which they presume to share with their respective partners. However, kA in fact is a
key that Alice shares with Erich, who will use the same key in future communications
with her, pretending to be Bob. He can determine this key by computing

kE = αe = γae = γea = (βE)a = kA

in the arithmetics modulo p. Similarly, Erich can determine the key kB to be used in
future communications with Bob, where Erich pretends to be Alice. The man-in-the-
middle attack is related to the issue of authentication, which will be discussed later
in Section 8.4.
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8.1.2 Discrete Logarithm and the Diffie–Hellman Problem

Consider the Diffie–Hellman protocol, and suppose that Erich knows the values p, γ,
α, and β as defined in Figure 8.1, yet he does not know the secret exponents a and b.
His aim is to determine Alice and Bob’s joint secret key,

kA = kB ≡ γab mod p.

This problem, called the Diffie–Hellman problem, is formally defined below as
a functional problem. Equivalently, it can be formalized as a decision problem,
Diffie-Hellman, which is equivalent to the functional version diffie-hellman
(to be defined below) under polynomial-time Turing reductions, see Exercise 8.2(a).
However, the functional version is more important for cryptographic applications.

Similarly, the discrete logarithm problem from Definition 2.42 can be formalized
equivalently as a decision problem, see Exercise 8.2(b). Again, the functional ver-
sion is cryptographically more relevant. We define the functional discrete logarithm
problem below for arbitrary multiplicative groups, thus generalizing Definition 2.42.
We assume that groups are suitably represented by a generator, see Section 2.4.2.

Definition 8.2 (Discrete Logarithm and Diffie–Hellman Problem).

• The functional discrete logarithm problem, denoted by dlog, is defined as fol-
lows: Given a multiplicative group (G, ·), an element γ ∈ G of order n, and an
element α ∈ 〈γ〉, compute the unique element a with 0 ≤ a ≤ n− 1 such that

a = logγ α.

(Equivalently, given γ and α, compute the unique element a with γa = α.)
• The functional Diffie–Hellman problem, denoted by diffie-hellman, is defined

as follows: Given a multiplicative group (G, ·), an element γ ∈ G of order n, and
two elements α and β in 〈γ〉, compute an element δ ∈ 〈γ〉 such that

logγ δ ≡ (logγ α)(logγ β) mod n.

(Equivalently, given γa mod n and γb mod n, compute γab mod n.)

If Erich were able to compute discrete logarithms efficiently, he would be able to
solve the Diffie–Hellman problem, since he could determine Alice’s private exponent
a = logγ α mod p from p, γ, and α, and he could determine Bob’s private exponent
b = logγ β mod p from p, γ, and β. Thus, computing discrete logarithms is no easier
than solving the Diffie–Hellman problem. This argument can easily be generalized
from Z∗

p to arbitrary multiplicative groups and thus proves the following fact.

Fact 8.3 The Diffie–Hellman problem reduces to the discrete logarithm problem un-
der polynomial-time Turing reductions. That is, diffie-hellman ∈ FPdlog.

The converse question of whether the discrete logarithm problem is at least as
hard as the Diffie–Hellman problem remains an unproven conjecture. The Diffie–
Hellman protocol currently has no proof of security, not even in the sense that it is
as hard as the discrete logarithm, which itself is a problem whose precise complexity
is an open issue. The remainder of this section briefly discusses some algorithms for
the discrete logarithm problem.
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Exhaustive Search Algorithm

The first observation is that the discrete logarithm problem can be solved by exhaus-
tive search: Given γ and α as in Definition 8.2, successively compute

γ, γ2, γ3, . . . ,

until the unique exponent a with γa = α is found. This can be done by computing
γi = γ · γi−1 for 1 < i < n. Hence, assuming that executing one group operation
costs constant time, this naive brute-force algorithm requires time O(n), which is
exponential in the length of n and thus exponential in the input length.

Shanks’ Baby-Step Giant-Step Algorithm

Figure 8.2 presents Shanks’ baby-step giant-step algorithm, which is more efficient
than the above exhaustive search algorithm for the discrete logarithm problem. How-
ever, Shanks’ algorithm gains this speed-up only at the cost of using more memory.

SHANKS(G, n, γ, α) {
// G is a multiplicative group, γ ∈ G is a primitive element of order n, and α ∈ 〈γ〉

s := �√n �;
for (i = 0, 1, . . . , s − 1) { add (γis, i) to a list L1; }
Sort the elements of L1 with respect to their first coordinates;
for (j = 0, 1, . . . , s − 1) { add (αγ−j , j) to a list L2; }
Sort the elements of L2 with respect to their first coordinates;
Find a pair (δ, i) ∈ L1 and a pair (δ, j) ∈ L2, i.e., find two pairs with identical first

coordinates;
return “logγ α = is + j” and halt;

}

Fig. 8.2. Shanks’ baby-step giant-step algorithm

In order to compute logγ α for given values α and γ, where γ is a primitive
element of order n, Shanks’ algorithm first determines s = "√n #. If we now set

a = is + j, 0 ≤ j < s,

we have

α = γa = γis+j . (8.2)

We want to determine a = logγ α. Equation (8.2) implies αγ−j = (γs)i. The pairs
(αγ−j , j) with 0 ≤ j < s are the elements of the list L2, sorted with respect to
the first coordinates, which represent the “baby steps.” If the pair (1, j) is in L2 for
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some j, we are done, since αγ−j = 1 implies α = γj , so setting a = j solves the
discrete logarithm problem in this case. Otherwise, we determine

δ = γs

and search for a group element δi, 1 ≤ i < s, occurring as the first coordinate of
some element in L2. The elements (γs)i = γis are collected in the list L1, again
sorted with respect to the first coordinates, and represent the “giant steps.” Once a
pair (γis, i) is found in L1 such that (γis, j) occurs in the list L2 of baby steps, we
have solved the discrete logarithm problem, since

αγ−j = δi = γis

implies α = γis+j , so a = logγ α = is + j.

Example 8.4 (Shanks’ Algorithm). Suppose we want to find a = log2 47 mod 101
in the group Z∗

101, using Shanks’ algorithm. That is, p = 101, γ = 2, and α = 47
are given. Note that 101 is a prime number and 2 is a primitive element of 101, see
Exercise 8.3(a). Since n = p−1 = 100 is the order of 2, we have s =

⌈√
100

⌉
= 10.

It follows that γs mod p = 210 mod p = 14. Now, the sorted lists L1 and L2 can be
determined as shown in Table 8.3.

L1 (1, 0) (14, 1) (95, 2) (17, 3) (36, 4) (100, 5) (87, 6) (6, 7) (84, 8) (65, 9)

L1 sorted (1, 0) (6, 7) (14, 1) (17, 3) (36, 4) (65, 9) (84, 8) (87, 6) (95, 2) (100, 5)

L2 (47, 0) (74, 1) (37, 2) (69, 3) (85, 4) (93, 5) (97, 6) (99, 7) (100, 8) (50, 9)

L2 sorted (37, 2) (47, 0) (50, 9) (69, 3) (74, 1) (85, 4) (93, 5) (97, 6) (99, 7) (100, 8)

Table 8.3. Computing the sorted lists L1 and L2 for Shanks’ algorithm

Since (100, 5) is in L1 and (100, 8) is in L2, we obtain a = 5 · 10 + 8 = 58. It
can be verified that 258 mod 101 = 47, as desired.

The first for loop in Figure 8.2 can be implemented so as to first compute γs

and then raising its powers by multiplying by γs. Similarly, the second for loop
in Figure 8.2 is performed by first computing the inverse element γ−1 of γ in the
group and then computing its powers. Both for loops require time O(s). Using an
efficient sorting algorithm such as quicksort, the lists L1 and L2 can be sorted in
time O(s log s). Finally, the two pairs whose first coordinate occurs in both lists can
be found in time O(s) by simultaneously passing through both lists. Summing up,
Shanks’ algorithm can be implemented to run in timeO(s) = O(

√
n) and to require

the same amount of space, where logarithmic factors are neglected as is usually done
in the analysis of discrete logarithm algorithms.

Although Shanks’ algorithm is more efficient than the exhaustive search algo-
rithm, it is not an efficient algorithm. There are many other algorithms for the dis-
crete algorithm problem, some of which are better than Shanks’ algorithm. Among
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the most popular such algorithms are Pollard’s ρ algorithm, the Pohlig–Hellman al-
gorithm, the index calculus method, and variants thereof. The index calculus method
is particularly suitable for computing the discrete logarithm in Z∗

p for primes p and is
closely related to factoring methods such as the quadratic sieve or the number field
sieve, see Sections 7.3.3 and 7.3.4. For a detailed description and analysis of these al-
ternative discrete logarithm algorithms, the reader is referred to, e.g., Stinson [Sti02]
and Buchmann [Buc01]. None of the known discrete logarithm algorithms is effi-
cient. The precise complexity of dlog remains an open research question.

8.2 ElGamal’s Protocols

The Diffie–Hellman protocol can be modified so as to yield either a public-key
cryptosystem or a digital signature protocol. These modifications are due to ElGa-
mal [ElG85]. The security of ElGamal’s protocols is again based on the presumed
hardness of computing discrete logarithms. The number-theoretical notions needed
for these protocols are explained in Section 8.1.

8.2.1 ElGamal’s Public-Key Cryptosystem

Figure 8.3 shows the single steps of the ElGamal public-key cryptosystem. A more
detailed description and explanation of these steps is in order.

Step Alice Erich Bob

1 Alice and Bob agree upon a large prime p and a primitive element γ of p;
p and γ are public

2 chooses a large random number b
as his private key and computes

β = γb mod p

3 ⇐ β

4 chooses a large random number a
and encrypts the message m by:

α1 = γa mod p

α2 = mβa mod p

5 (α1, α2) ⇒
6 decrypts by computing

α2 (α1)
−b mod p

Fig. 8.3. ElGamal’s public-key cryptosystem
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Step 1: Preparation. As in the Diffie–Hellman protocol, Alice and Bob agree upon
a large prime number p such that the discrete logarithm problem is intractable
in Z∗

p. They also agree upon a primitive element γ of p. Both p and γ are public.
Step 2: Key Generation. Bob generates his private key b at random and computes

his public key by β = γb mod p.
Step 3: Communication. Bob’s public key β is now known to Alice.
Step 4: Encryption. As usual, messages are encoded block-wise, where any block

is represented by an element of the plaintext space Z∗
p. Suppose that Alice wants

to send the message block m ∈ Z∗
p to Bob. The ciphertext space is Z∗

p×Z∗
p, and

the two components of the ciphertext c = (α1, α2) encrypting m are computed
by:

α1 = γa mod p (8.3)

α2 = mβa mod p. (8.4)

The encryption function E(p,γ,β,a)(m) = (α1, α2) is defined according to (8.3)
and (8.4). Alice “masks” her plaintext m by multiplying it by her “Diffie–
Hellman key” βa ≡ γba mod p. The value of α1 = γa mod p is also part of
the ciphertext in order to allow decryption by the legitimate receiver Bob.

Step 5: Communication. Alice sends the ciphertext c = (α1, α2) to Bob.
Step 6: Decryption. The decryption function is given by

D(p,γ,b)(α1, α2) = α2 (α1)
−b mod p. (8.5)

According to (8.5), Bob uses his private key b to first compute γ−ab mod p from
α1 = γa mod p. Then, multiplying α2 by γ−ab, he removes the “mask” βa from
the plaintext. Summing up, Bob decrypts the ciphertext c by computing

α2 (α1)
−b ≡ mβa (γa)−b ≡ mγbaγ−ab ≡ m mod p

and thus obtains the original plaintext m.

Example 8.5 (ElGamal’s Public-Key Cryptosystem). Suppose that Alice and Bob
agree on the prime number p = 101 and on the primitive element γ = 8 of 101. Bob
chooses his private key to be b = 12 and computes his public key

β = 812 mod 101 = 78.

Then, Alices chooses her private exponent to be a = 33 and computes

βa = 7833 mod 101 = 92.

Suppose that Alice wishes to send the message m = 53. To encrypt m, she computes

α1 = γa mod p = 833 mod 101 = 51
α2 = mβa mod p = 53 · 92 mod 101 = 28
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and sends the ciphertext c = (51, 28) to Bob. On the other side of town, Bob receives
c and decrypts it by computing

α2 (α1)
−b ≡ 28 (51)−12 ≡ 28

(
51−1

)12 ≡ 28 · 212 ≡ 28 · 56 ≡ 53 mod 101,

yielding the original plaintext m = 53 as desired.

ElGamal’s system modifies the Diffie–Hellman protocol in the following way.
While in the Diffie–Hellman scheme Alice and Bob simultaneously compute and
send their “partial keys” α and β, respectively, they do so sequentially in the ElGamal
protocol. That is, Alice must wait for Bob’s value β to be able to compute her second
component of the ciphertext, α2, in which her message m is “masked” by βa.

Another difference between the two protocols is that Bob generates his public
key β once and for all in the ElGamal protocol. Thus, he can use β for more than one
communication with Alice, and also for users other than Alice who might want to
send him encrypted messages. However, Alice (or any other user who wants to send
a message to Bob) has to generate her secret exponent a and thus her α1 = γa mod p
anew again and again every time she communicates with Bob, just as in the Diffie–
Hellman protocol.

Before discussing security issues related to ElGamal’s cryptosystem in the forth-
coming Section 8.2.3, we now introduce the ElGamal digital signature scheme.

8.2.2 ElGamal’s Digital Signature Scheme

The ElGamal public-key cryptosystem from Figure 8.3 can be modified so as to yield
a digital signature scheme, which is presented in Figure 8.4. A particularly efficient
variant of this protocol, due to an ingenious idea of Schnorr [Sch90], is now the
United States Digital Signature Standard, see [Nat91, Nat92]. The single steps of
the ElGamal digital signature protocol are now described in detail.

Step 1: Preparation. Alice and Bob agree on a large prime number p, chosen so that
the discrete logarithm problem is infeasible in Z∗

p, and on a primitive element γ
of p. Both p and γ are public.

Step 2: Signing the message. Suppose that Bob wants to send Alice some mes-
sage m. As in the ElGamal cryptosystem, Bob chooses his private exponent b
and computes β = γb mod p. In addition, he now chooses a secret number
s coprime with p − 1, keeping b and s secret. To sign m, Bob first computes
σ = γs mod p and a solution ρ to the congruence

bσ + sρ ≡ m mod p− 1 (8.6)

using the extended algorithm of Euclid, see Figure 2.1. Then, his signature for
m is defined by sigB(m) = (σ, ρ).

Step 3: Communication. Along with his message m, Bob sends his digital signa-
ture sigB(m) = (σ, ρ) and the value β to Alice.
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Step Alice Erich Bob

1 Alice and Bob agree upon a large prime p and a primitive element γ of p;
p and γ are public

2 chooses two large random numbers
b and s with gcd(s, p − 1) = 1, and
computes his signature for message
m by sigB(m) = (σ, ρ), where

β = γb mod p

σ = γs mod p

ρ = (m − bσ)s−1 mod (p − 1)

3 ⇐ 〈m, β, sigB(m)〉
4 verifies Bob’s signature

by checking

γm ≡ βσσρ mod p

Fig. 8.4. ElGamal’s digital signature scheme

Step 4: Verifying the signature. Alice checks the validity of the signature by veri-
fying the congruence

γm ≡ βσσρ mod p. (8.7)

By Fermat’s Little Theorem (see Corollary 2.39) and by (8.6), we have that

γm ≡ γbσ+sρ ≡ βσσρ mod p.

Thus, as desired, (8.7) verifies correctly that Bob’s signature is valid, which shows
that the ElGamal digital signature protocol works. Let us look at a small example.

Example 8.6 (ElGamal’s Digital Signature Protocol). Let p = 1367 be a given
prime number, and let γ = 2 be a given primitive element of 1367. Suppose that Bob
chooses the private exponents b = 513 and s = 129; note that gcd(129, 1366) = 1.
First, Bob computes

β = 2513 mod 1367 = 307 and σ = 2129 mod 1367 = 652.

Suppose that Bob wants to sign the message m = 457. Bob has to solve the congru-
ence

513 · 652 + 129ρ ≡ 457 mod 1366

for ρ. Using the extended algorithm of Euclid from Figure 2.1, he determines the
inverse element s−1 = 593 of s = 129 modulo 1366, and thus he obtains the solution

ρ = (457− 513 · 652)593 mod 1366 = 831.
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Now, Bob’s signature for m = 457 is given by sigB(457) = (652, 831), and he
transfers the triple 〈457, 307, (652, 831)〉 to Alice. On the other side of town, Alice
checks whether the signature is valid by verifying the congruence

2457 ≡ 386 ≡ 231 · 1345 ≡ 307652 · 652831 mod 1367. (8.8)

As usual, Alice employs the “square-and-multiply” algorithm from Figure 7.2 to
compute the values γm, βσ , and σρ in the arithmetics modulo p, see Table 8.4.

20 21 22 23 24 25 26 27 28 29

2 4 16 256 1287 932 579 326 1017 γm ≡ 386 mod p

307 1239 8 64 1362 25 625 1030 108 728 βσ ≡ 231 mod p

652 1334 1089 732 1327 233 976 1144 517 724 σρ ≡ 1345 mod p

Table 8.4. Verifying Bob’s signature in ElGamal’s digital signature protocol

The gray boxes of this table contain the values to be multiplied according to the
binary expansion of the exponents:

m = 457 = 20 + 23 + 26 + 27 + 28;
σ = 652 = 22 + 23 + 27 + 29;
ρ = 831 = 20 + 21 + 22 + 23 + 24 + 25 + 28 + 29.

8.2.3 Security of ElGamal’s Protocols

In this section, we discuss security issues related to ElGamal’s protocols. Just as
with the Diffie–Hellman protocol, the security of the ElGamal cryptosystem from
Figure 8.3 and of the ElGamal digital signature scheme from Figure 8.4 relies on
the hardness of the discrete logarithm problem. In other words, if Erich can compute
discrete logarithms efficiently, then he can break the ElGamal protocols. All he has
to do to break, for example, the ElGamal system from Figure 8.3 is to compute Bob’s
private key

b = logγ β mod p

from Bob’s public key β and the public prime p with its public primitive element γ.
On the other hand, it is not known if computing discrete logarithms and breaking

either of the ElGamal protocols are equally hard problems. However, it can be shown
that breaking the ElGamal public-key cryptosystem is computationally equivalent to
the Diffie–Hellman problem diffie-hellman introduced in Definition 8.2.

Breaking ElGamal and the Diffie–Hellman Problem

Definition 8.7 (Problem of Breaking ElGamal). Define the functional problem
of breaking ElGamal, denoted by break-elgamal as follows: Given 〈p, γ, β, α1, α2〉,
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where p is a prime number, γ is a primitive element of p, and β, α1, and α2 are de-
fined as in Figure 8.3 for any message m, compute m.

Theorem 8.8. The problem of breaking ElGamal and the Diffie–Hellman problem
are equivalent under polynomial-time Turing reductions. That is,

diffie-hellman ∈ FPbreak-elgamal and break-elgamal ∈ FPdiffie-hellman.

Proof. Suppose that eavesdropper Erich has an algorithm, D, for solving the
Diffie–Hellman problem. He wants to use D to break ElGamal’s cryptosystem. Let
p be a prime number, and let γ be a primitive element of p. As in Figure 8.3, for
any message m, let β, α1, and α2 be the transmitted values, which Erich knows. On
input 〈p, γ, β, α1, α2〉, he wishes to compute the corresponding message m. Looking
at Figure 8.3, note that α1 = γa mod p and β = γb mod p. Using his algorithm D,
Erich can compute γab mod p from α1 and β. Note further that

α2 = mβa ≡ mγab mod p.

Hence, using the extended algorithm of Euclid from Figure 2.1, Erich can recover
the message m by computing α2γ

−ab mod p = m.
Conversely, suppose that Erich has an algorithm, E, for breaking the ElGamal

cryptosystem. Let p, γ, β, α1, and α2 be given as in Figure 8.3, for an arbitrary
message m. Using E, Erich can determine m from 〈p, γ, β, α1, α2〉. To solve the
Diffie–Hellman problem, given α1 = γa mod p and β = γb mod p, he runs E on
input 〈p, γ, β, α1, 1〉 for the specific value of α2 = 1, obtaining some corresponding
message m. It follows that

mβa ≡ mγab ≡ 1 mod p.

Thus, in order to determine γab = m−1 mod p, it is enough to compute the inverse
element of m modulo p, using the extended algorithm of Euclid from Figure 2.1.

Bit Security of Discrete Logarithms

We have seen that both the Diffie–Hellman protocol and ElGamal’s protocols are
secure only if it is computationally hard to compute discrete logarithms. We have
also noted that the discrete logarithm problem is widely considered to be hard, even
though an actual proof of its hardness remains elusive. In this section, we consider
restricted variants of the discrete logarithm problem, which ask to determine individ-
ual bits of a discrete logarithm. Specifically, we consider the following problem and
study the question of whether it is easy or hard.

Definition 8.9 (Discrete Logarithm Bit Problem). Define the (functional) dis-
crete logarithm bit problem, denoted by dlogbit as follows: Given 〈p, γ, α, i〉,
where p is a prime number, γ is a primitive element of p, α ∈ Z∗

p, and i is an in-
teger with 1 ≤ i ≤ "log(p − 1)#, compute the ith least significant bit in the binary
representation of logγ α mod p.
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Example 8.10 (Discrete Logarithm Bit Problem). In Example 8.4, Shanks’ algo-
rithm was used to compute log2 47 mod 101 = 58. Every element of Z∗

101 can be
represented in binary using no more than "log 100# = 7 bits. In particular, since
58 = 25 + 24 + 23 + 21, the binary representation of 58 is bin(58) = 111010 and
has six bits, dropping leading zeros. The least significant bit of bin(58) is the right-
most zero. In general, the least significant bit of bin(n) is the coefficient of 20 in the
binary expansion of n. This bit determines the parity of n: it is one if n is odd, and it
is zero if n is even. Suppose that an instance 〈101, 2, 47, i〉 of dlogbit is given for
1 ≤ i ≤ 7. Table 8.5 shows the function values of dlogbit(〈101, 2, 47, i〉) for the
possible values of i, where leading zeros are not being dropped.

i 1 2 3 4 5 6 7

dlogbit(〈101, 2, 47, i〉) 0 1 0 1 1 1 0

Table 8.5. An instance of the discrete logarithm bit problem

We now show that the discrete logarithm bit problem can be efficiently solved
for instances with i = 1. In other words, computing the parity of discrete logarithms
is easy. Recall the notion of quadratic residues modulo a prime number and Euler’s
criterion from Definition 2.43 and Theorem 2.44 in Section 2.4.1.

Theorem 8.11. If 〈p, γ, α, 1〉 is an instance of the discrete logarithm bit problem,
then dlogbit(〈p, γ, α, 1〉) can be evaluated in polynomial time.

Proof. Let 〈p, γ, α, 1〉 be a given instance of the discrete logarithm bit problem,
i.e., p is prime, γ is a primitive element of p, α ∈ Z∗

p, and the least significant bit of
the binary representation of logγ α mod p is to be evaluated.

Define the function s : Z∗
p → Z∗

p by

s(w) = w2 mod p.

Recall from Definition 2.43 that QR is the set of quadratic residues modulo an integer,
i.e., QR = {(x, n) | x ∈ Z∗

n, n ∈ N, and x ≡ w2 mod n}. Define

QRp = {w2 mod p | w ∈ Z∗
p}.

Note that s(w) = s(p− w), since p ≡ 0 mod p. Note further that

x2 ≡ w2 mod p ⇐⇒ p divides (x− w)(x + w)
⇐⇒ x ≡ ±w mod p.

Hence, every z ∈ QRp has exactly two preimages with respect to s. It follows that

||QRp|| = p− 1
2

.
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In other words, exactly half of the elements of Z∗
p are quadratic residues modulo p

and the remaining half of the elements of Z∗
p are quadratic nonresidues modulo p.

Since γ is a primitive element of p, γa ∈ QRp if the exponent a is even. Since
the (p− 1)/2 elements γ0, γ2, . . . , γp−3 are pairwise distinct, they are precisely the
elements of QRp, i.e.,

QRp = {γ2i mod p | 0 ≤ i ≤ (p− 3)/2}.
It follows that an element α is a quadratic residue modulo p if and only if logγ α is
even. That is, the least significant bit of the binary representation of logγ α is zero if
and only if α ∈ QRp, which by Euler’s criterion is equivalent to α(p−1)/2 ≡ 1 mod p.
Hence, we have

dlogbit(〈p, γ, α, 1〉) = 0 ⇐⇒ α(p−1)/2 ≡ 1 mod p.

Since α(p−1)/2 ≡ 1 mod p can be efficiently computed using fast exponentiation
(see Figure 7.2), Euler’s criterion provides an efficient algorithm for evaluating
dlogbit(〈p, γ, α, 1〉).

Now, consider the problem of computing dlogbit(〈p, γ, α, i〉) for values i > 0.
Writing p − 1 = r2q , where r is odd, it can be shown that dlogbit(〈p, γ, α, i〉) is
easy to compute for all i ≤ q. In contrast, computing dlogbit(〈p, γ, α, q + 1〉) pre-
sumably is a hard task: it is at least as hard as solving the general discrete logarithm
problem in Z∗

p. The proof of Theorem 8.12 is left to the reader as Problem 8.1.

Theorem 8.12. Let 〈p, γ, α, i〉 be an instance of the discrete logarithm bit problem,
and let p− 1 = r2q for some odd number r. Then,

• for each i ≤ q, dlogbit(〈p, γ, α, i〉) can be evaluated in polynomial time, and
• logγ α mod p can be computed in FPdlogbit(〈p,γ,α,q+1〉).

Breaking the ElGamal Digital Signature Scheme

In Section 4.1, several types of attacks on a cryptosystem were introduced in order
to characterize different levels of security (or vulnerability) of the cryptosystem. In
particular, we distinguish ciphertext-only attacks, known-plaintext attacks, chosen-
plaintext attacks, chosen-ciphertext attacks, and key-only attacks. Examples of these
types of attacks are provided in Chapters 4 and 7.

When breaking a cryptosystem, a cryptanalyst usually aims at determining the
private key used and the plaintext encrypted. When trying to break a digital signature
scheme, however, a cryptanalyst usually pursues a different goal, namely, forging
signatures of signed messages. The following specific types of forgery are commonly
distinguished:

• Total break: The cryptanalyst is able to determine the private key of the sender
in a digital signature scheme; e.g., Bob’s secret numbers b and s in the ElGamal
digital signature scheme presented in Figure 8.4, or Alice’s secret key d in the
RSA digital signature scheme presented in Figure 7.3. Using this private key,
cryptanalyst Erich can create a valid signature for any message of his choice.
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• Selective forgery: The cryptanalyst is able to create, with nonnegligible proba-
bility of success, a valid signature for some message chosen by somebody else.
That is, if Erich intercepts a message m that was previously not signed by Bob,
he is able to create a valid signature for m with a certain success probability.

• Existential forgery: The cryptanalyst is able to create a valid signature for at
least one message that was previously not signed by Bob. Here, no specified
probability of success is required.

Again, one can distinguish several levels of security for a digital signature
scheme, depending on what information is available to the cryptanalyst during the
attack. In particular, the following types of attacks are commonly considered:

• Key-only attack: Cryptanalyst Erich only knows Bob’s public key.
• Known-message attack: Erich knows some pairs of messages and correspond-

ing signatures in addition to the public key.
• Chosen-message attack: Erich knows the public key and obtains a list of Bob’s

signatures corresponding to a list of messages he has chosen at will.

The terms “known-plaintext attack” and “chosen-plaintext attack” are sometimes
used in place of “known-message attack” and “chosen-message attack,” respectively.
An example of a chosen-plaintext attack on the RSA digital signature scheme can be
found in Section 7.4.

Turning now to the security of the ElGamal digital signature scheme, what pos-
sibilities does an attacker like Erich have to forge Bob’s signature under this scheme,
without knowing Bob’s private exponents b and s? Of course, Erich knows Bob’s
public key β = γb mod p, where γ is a primitive element of the prime number p.
Suppose that m is the message Erich wants to sign with a forged signature that looks
like Bob’s signature. According to the protocol from Figure 8.4, Erich has to choose
some elements σ and ρ satisfying

σ = γs mod p

ρ = (m− bσ)s−1 mod (p− 1).

The order in which σ and ρ are chosen does matter here. Suppose that Erich chooses
σ first and then the corresponding ρ. By (8.7), he must solve the discrete logarithm
logσ β−σγm mod p in this case.

On the other hand, if Erich prefers to choose ρ first and then the corresponding σ,
he faces the problem of solving the ElGamal verification condition (8.7)

γm ≡ βσσρ mod p

for the unknown σ. This problem is not known to have an efficient algorithm either.
However, it does not seem to be closely related to other thoroughly investigated
problems such as the discrete logarithm problem. Thus, it might well be that there
exists such an efficient solution to this problem that just eluded us so far. It might also
be the case that there is some clever way of determining σ and ρ simultaneously so
that (σ, ρ) is a valid signature for m that Alice would have to accept when verifying
it using Bob’s public key β.
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Finally, Erich might try to choose σ and ρ simultaneously and then try to solve
(8.7) for the unknown value m. In this case, he again faces the problem of computing
a discrete logarithm, namely logγ βσσρ mod p. This approach has the disadvantage
that, depending on the choice of σ and ρ, the message signed may not be meaning-
ful. Again, since solving discrete logarithms is considered to be hard, this is not a
practical attack.

However, Erich is able to create a valid ElGamal signature for a random mes-
sage m, by choosing σ, ρ, and m simultaneously. Thus, this key-only attack allows
an existential forgery. This attack works as follows. Let x and y be integers with
0 ≤ x ≤ p− 2 and 0 ≤ y ≤ p− 2. Writing σ as σ = γxβy mod p implies that the
ElGamal verification condition (8.7) is of the form

γm ≡ βσ (γxβy)ρ mod p,

which is equivalent to

γm−xρ ≡ βσ+yρ mod p. (8.9)

Now, (8.9) is true if and only if the following two congruences are satisfied:

m− xρ ≡ 0 mod (p− 1); (8.10)

σ + yρ ≡ 0 mod (p− 1). (8.11)

Given x and y and assuming that gcd(y, p − 1) = 1, the congruences (8.10)
and (8.11) can easily be solved for ρ and m, and we obtain:

σ = γxβy mod p;
ρ = −σy−1 mod (p− 1);

m = −xσy−1 mod (p− 1).

By way of construction, (σ, ρ) is a valid signature for the message m.

Example 8.13 (Key-Only Attack on ElGamal’s Digital Signature Protocol). As in
Example 8.6, let p = 1367 be a given prime number, and let γ = 2 be a given prim-
itive element of 1367. Bob’s private exponents are b = 513 and s = 129, which
Erich does not know. However, Erich does know Bob’s public value β = 307. Sup-
pose he chooses x = 33 and y = 77. Using the extended Euclidean algorithm from
Figure 2.2, he checks that gcd(77, 1366) = 1 and determines the inverse element
y−1 = 479 of y modulo p− 1. Then, Erich computes:

σ = 233 · 30777 ≡ 497 · 545 ≡ 199 mod 1367;
ρ = −199 · 479 ≡ 299 mod 1366;

m = −33 · 199 · 479 ≡ 305 mod 1366.
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Hence, (199, 299) is a valid signature for the message 305. As a check, note that
Alice will verify it using the condition (8.7):

2305 ≡ 1307 ≡ 1033 · 786 ≡ 307199 · 199299 mod 1367,

and will thus accept Erich’s forgery. It is not certain, though, that 305 indeed is a
message that Erich would wish to send to Alice with Bob’s forged signature.

Another existential forgery of ElGamal signatures can be achieved using a
known-message attack. Suppose that Erich knows a previous signature (σ̂, ρ̂) for
some message m̂. He can then sign new messages forging Bob’s signature. As usual,
let p be a prime number with primitive element γ, and let β be Bob’s public key. Let
x, y, z ∈ Zp−1 be chosen such that gcd(xσ̂ − zρ̂, p− 1) = 1. Erich computes:

σ = σ̂xγyβz mod p;
ρ = ρ̂σ(xσ̂ − zρ̂)−1 mod (p− 1); (8.12)

m = σ(xm̂ + yρ̂)(xσ̂ − zρ̂)−1 mod (p− 1).

The reader should check that the ElGamal verification condition (8.7),

γm ≡ βσσρ mod p,

is satisfied, see Exercise 8.7(a). Hence, (σ, ρ) is a valid signature for the message m.
Here is a small example to illustrate.

Example 8.14 (Known-Message Attack on ElGamal’s Digital Signature Protocol).
As in Examples 8.6 and 8.13, Bob chooses the prime number p = 1367, the primitive
element γ = 2 of 1367, and the public key β = 307. Suppose that Erich knows Bob’s
signature (σ̂, ρ̂) = (652, 831) for the message m̂ = 457, see Example 8.6. Erich
chooses the integers x = 17, y = 65, and z = 29. Using the extended Euclidean
Algorithm from Figure 2.2, he checks that

gcd(xσ̂ − zρ̂, p− 1) = gcd(645, 1366) = 1,

and he computes the inverse element 645−1 mod 1366 = 665. Using (8.12), Erich
now computes:

σ = 65217 · 265 · 30729 ≡ 1260 · 1158 · 105 ≡ 976 mod 1367;
ρ = 831 · 976 · 645−1 ≡ 800 mod 1366;

m = 976 · (17 · 457 + 65 · 831) · 645−1 ≡ 976 · 314 · 665 ≡ 922 mod 1366.

Hence, (976, 800) is a valid signature for the message 922, as can be checked by the
ElGamal verification condition (8.7):

2922 ≡ 942 ≡ 1250 · 27 ≡ 307976 · 976800 mod 1367.

Thus, Alice accepts Erich’s forged signature.
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Both of the above attacks on the ElGamal signature scheme yield an existential
forgery. It is currently not known whether these attacks can be strengthened to yield
even selective forgeries. Therefore, mounting these attacks is not a practical threat for
the ElGamal digital signature scheme. As a countermeasure to prevent these attacks,
one can make use of a cryptographic hash function as sketched below.

The principle of hashing has already been explained in Section 6.5, in a com-
pletely different context. In cryptography, a hashing function h : Σ∗ → T can
be used to produce a “message digest” of prespecified length from any given mes-
sage of arbitrary length. A common choice of the length of the hash values in T is
160 bits. If Bob wishes to sign a message m, he first computes the message digest
t = h(m), which is an element of the hashing table T . Then, he computes his sig-
nature s = sigB(t) for t, using a digital signature scheme such as ElGamal, and
sends (m, s) to Alice. To verify the signature, she first reconstructs the message di-
gest t = h(m), using the public hashing function h, and then checks the validity of
the signature s for t.

To prevent existential forgeries by key-only or known-message attacks, hashing
functions are required to have certain properties so as to be considered cryptographi-
cally secure. For example, suppose that Erich mounts a known-message attack. Thus,
he already knows some pair (m, s), where m is a message previously signed by Bob
and s is the signature for the message digest t = h(m) generated from m by some
hashing function h. Since h is public, Erich can determine t. He might then try to find
some other mesage m̃ �= m such that h(m̃) = h(m). This would enable him to forge
Bob’s signature for the message m̃, since the pair (m̃, s) contains a valid signature s
for m̃. This type of attack can be prevented by requiring the hashing function used
to be “collision-free” on the relevant domain in the sense that it is computationally
infeasible to determine, given m, some message m̃ with m̃ �= m and h(m̃) = h(m).

We conclude this section by remarking that, in order to avoid Erich totally break-
ing the ElGamal digital signature scheme, some care must be taken in choosing the
parameters of this scheme. In particular, Bob’s secret exponent s (see Figure 8.4)
must never be revealed. If Erich knows s, then it is a matter of routine for him to
compute, using (8.6), Bob’s secret exponent b from m and the signature (σ, ρ) by

b ≡ (m− sρ)σ−1 mod p− 1.

This known-message attack results in a total break of the ElGamal digital signature
scheme, and Erich can henceforth forge Bob’s signature at will. Similarly, a known-
message attack can be mounted so as to totally break the ElGamal scheme if the
same value s is used twice for signing distinct messages, see Exercise 8.8.

8.3 Rabin’s Public-Key Cryptosystem

In 1979, Rabin developed a public-key cryptosystem that is based on the difficulty of
computing square roots modulo some integer n. His cryptosystem is provably secure
against chosen-plaintext attacks, assuming that the factoring problem is computa-
tionally intractable, i.e., assuming that it is hard to find the prime factors of n = pq.
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8.3.1 Rabin’s Cryptosystem

Figure 8.5 presents the single steps of Rabin’s cryptosystem, which are now ex-
plained in more detail.

Step Alice Erich Bob

1 chooses two large random primes, p and q
with p ≡ q ≡ 3 mod 4, keeps them secret,
and computes his public key n = pq

2 ⇐ n

3 encrypts the message m by

c = m2 mod n

4 c ⇒
5 decrypts c by computing

m =
√

c mod n

Fig. 8.5. Rabin’s public-key cryptosystem

Step 1: Key Generation. Bob randomly chooses two large prime numbers p and q,
which satisfy p ≡ q ≡ 3 mod 4. The pair (p, q) is his private key. He then
computes the modulus n = pq, his public key.

Step 2: Communication. Bob’s public key n is now known to Alice.
Step 3: Encryption. Given the public key n, Alice computes her ciphertext c by

squaring her message m modulo n, i.e., the encryption function En : Z∗
n → Z∗

n

is defined by
En(m) = c = m2 mod n.

Step 4: Communication. Alice sends the ciphertext c to Bob.
Step 5: Decryption. The decryption function is given by

D(p,q)(c) =
√

c mod n. (8.13)

It is not clear yet how the private key (p, q) is used for decryption. Note that,
in general, computing square roots modulo some integer with unknown prime
factors is considered to be a hard problem. However, since Bob knows the prime
factors p and q of n, he can make use of the fact that determining m by (8.13) is
equivalent to solving the following two congruences for the values mp and mq:

(mp)2 ≡ c mod p; (8.14)

(mq)2 ≡ c mod q. (8.15)
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By Euler’s criterion (see Theorem 2.44), Bob can efficiently decide whether or
not c is a quadratic residue modulo p, and also whether or not c is a quadratic
residue modulo q. However, Euler’s criterion does not actually find these square
roots. Fortunately, using the assumption that p ≡ q ≡ 3 mod 4, Bob can do the
following. First, he computes

mp = c(p+1)/4 mod p and mq = c(q+1)/4 mod q.

Note that c must be a square root modulo p, provided that c is a valid ciphertext,
i.e., provided that c was created by proper encryption of some message. Again by
Euler’s criterion, c is a square root modulo p if and only if c(p−1)/2 ≡ 1 mod p.
Hence,

(±mp)
2 ≡

(
±c(p+1)/4

)2

≡ c(p+1)/2 ≡ c(p−1)/2c mod p ≡ c mod p,

which proves (8.14). Thus,±mp are the two square roots of c modulo p. Analo-
gously,±mq are the two square roots of c modulo q, which proves (8.15). Then,
using the Chinese Remainder Theorem, Bob determines the four square roots of
c modulo n. To this end, he first uses the extended Euclidean Algorithm from
Figure 2.2 to compute integer coefficients zp and zq such that

zpp + zqq = 1.

Finally, applying Theorem 2.46, he computes

s = (zppmq + zqqmp) mod n and t = (zppmq − zqqmp) mod n.

It can be checked that±s and±t are the four square roots of c modulo n. Which
one yields the “right” plaintext, is not immediately clear, see Remark 8.15.1.

Remark 8.15. 1. Note that encryption in Rabin’s system is not injective. That is,
since n is the product of two prime numbers, every ciphertext c has four square
roots modulo n; cf. Lemma 7.14 and the subsequent paragraph. Thus, Rabin’s
system has the disadvantage, that decryption recovers not only the original plain-
text, but also three other square roots of c that hopefully are “sufficiently mean-
ingless” so as to be eliminated. Other than that, one way for Bob to tell the
“right” decryption apart from these three “wrong” decryptions is to give the
plaintext a special structure identifying the original plaintext. For example, one
might repeat one specified block of plaintext, e.g., attach to m the last 64 bits
of m. However, in this case the proof that breaking the Rabin system is computa-
tionally equivalent to the factoring problem is no longer valid, see Theorem 8.18.

2. Rabin’s system also works for prime factors that are not so-called Blum numbers,
i.e., if one does not require that p ≡ q ≡ 3 mod 4. However, the usage of Blum
numbers simplifies the analysis of this system. For example, if p ≡ 1 mod 4,
then there is no known deterministic polynomial-time algorithm for computing
the square roots modulo p, which is needed for efficient decryption, even though
there is an efficient randomized Las Vegas algorithm for this problem. Finally,
note that in Rabin’s system it would also be possible to use Zn instead of Z∗

n as
the message and ciphertext space.
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Example 8.16 (Rabin’s Public-Key Cryptosystem). Suppose that Bob chooses the
prime numbers p = 43 and q = 47. Note that 43 ≡ 47 ≡ 3 mod 4. He then
computes the Rabin modulus n = pq = 2021. To encrypt the message m = 741,
Alice computes

c = 7412 = 549081 ≡ 1390 mod 2021

and sends c = 1390 to Bob. To decrypt the ciphertext c, Bob first determines the
following values:

mp = 1390(43+1)/4 = 139011 ≡ 10 mod 43;

mq = 1390(47+1)/4 = 139012 ≡ 36 mod 47,

using fast exponentiation from Figure 7.2. Now, using the extended Euclidean Algo-
rithm from Figure 2.2, he computes the integer coefficients zp = −12 and zq = 11
satisfying zpp+zqq = −12 ·43+11 ·47 = 1. Finally, by Theorem 2.46, he computes

s = zppmq + zqqmp = −12 · 43 · 36 + 11 · 47 · 10 ≡ 741 mod 2021;
t = zppmq − zqqmp = −12 · 43 · 36− 11 · 47 · 10 ≡ 506 mod 2021.

As can easily be checked, the four plaintexts that are encrypted to the same ciphertext
c = 1390 are ±s and ±t, i.e., 741, 1280, 506, and 1515.

8.3.2 Security of Rabin’s System

Suppose Erich is able to factor the Rabin modulus n. He thus obtains Bob’s private
key and can decipher any message sent to Bob. That is, breaking the Rabin system is
computationally no harder than solving the factoring problem. Conversely, we show
that factoring large integers is no harder than breaking the Rabin system, so these
are equally hard problems. Thus, Rabin’s cryptosystem has a proof of security that is
based on the assumption that factoring is computationally intractable. In this regard,
Rabin’s system is superiour to other public-key systems such as RSA or ElGamal.

This result is proven by a polynomial-time randomized Turing reduction from
the factoring problem to the (functional) problem of breaking Rabin’s system. The
latter problem is formally defined in Definition 8.17, where

QRn = {x2 mod n | x ∈ Z∗
n}

denotes the set of quadratic residues modulo n as in Section 8.2.3.

Definition 8.17 (Problem of Breaking Rabin). Define the functional problem of
breaking Rabin, denoted by break-rabin as follows: Given 〈n, c〉, where n is the
product of two (unknown) prime numbers in 3 + 4Z and c ∈ QRn, compute some
m ∈ Z∗

n such that c = m2 mod n.

Randomized algorithms, including Las Vegas algorithms, were introduced in
Section 6.2.1. In particular, the class ZPP contains precisely those decision prob-
lems solvable by polynomial-time randomized algorithms with zero error probabil-
ity, a.k.a. Las Vegas algorithms; see Definition 6.8. The randomized Turing reduction
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we are about to construct in Theorem 8.18 is such a Las Vegas algorithm. However,
it does not concern decision problems but functions: it reduces the functional fac-
toring problem to the functional problem break-rabin. For simplicity, we restrict
ourselves to the case that the integer n to be factored in fact is a Rabin modulus. Note
that this restriction of the factoring problem is no easier than the general factoring
problem.

Theorem 8.18. There is a polynomial-time Las Vegas algorithm RANDOM-FACTOR

that, given any integer n = pq with p ≡ q ≡ 3 mod 4, uses its function oracle
break-rabin to find the prime factors of n with probability at least 1/2.

Proof. Let n = pq be the Rabin modulus to be factored, where p ≡ q ≡ 3 mod 4.
Figure 8.6 presents the algorithm RANDOM-FACTOR with oracle break-rabin.

RANDOM-FACTORbreak-rabin(n) { // Rabin modulus n = pq with p ≡ q ≡ 3 mod 4
Randomly choose a number x ∈ Z∗

n under the uniform distribution;
c := x2 mod n;
m := break-rabin(〈n, c〉);

// query the oracle about 〈n, c〉 to obtain an answer m with c := m2 mod n
if (m ≡ ±x mod n) return “failure” and halt;
else

p := gcd(m − x, n);
q := n/p;
return “p and q are the prime factors of n” and halt;

}

Fig. 8.6. Factoring a Rabin modulus using an oracle to break Rabin’s system

On input n, RANDOM-FACTOR with oracle break-rabin randomly picks an
element x ∈ Z∗

n and squares it modulo n to obtain c ∈ QRn. Then, the algorithm
queries its oracle break-rabin about the pair 〈n, c〉 and obtains the answer m, which
is one of the square roots of c modulo n. The two square roots m and x of c modulo n
need not be identical. However, m and x must satisfy either one of the following two
cases.

Case 1: m ≡ ±x mod n. Then, we have either m = x or m + x = n. Thus,
gcd(m−x, n) is either n or 1. In both cases, the algorithm does not find a prime
factor of n and returns “failure.”

Case 2: m ≡ ±αx mod n, where α is a nontrivial square root of 1 mod n.
In this case, m2 ≡ x2 mod n and m �≡ ±x mod n. Thus, gcd(m − x, n) is
either p or q, which yields the factorization of n.

To estimate the success probability of RANDOM-FACTOR, let x be any element ran-
domly chosen in Z∗

n under the uniform distribution. Let α be a nontrivial square root
of 1 mod n. Consider the set
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Rx = {±x mod n} ∪ {±αx mod n}.
Squaring any element r of Rx yields the same c = r2 = x2 mod n. In particular, the
oracle answer m = break-rabin(〈n, c〉) is an element of Rx, and is independent of
which of the four elements of Rx in fact was chosen to yield c. In Case 2 above, we
noted that the algorithm finds the prime factors of n if and only if m ≡ ±αx mod n.
For fixed m, the probability that an x ∈ Rx with m ≡ ±αx mod n was chosen
is 1/2. Hence, the success probability of RANDOM-FACTOR is 1/2.

By the techniques of Section 6.2, the success probability of RANDOM-FACTOR

can be amplified so as to be arbitrarily close to one.
Theorem 8.18 has two interesting consequences. On the one hand, it says that

Rabin’s cryptosystem cannot be broken by a chosen-plaintext attack if factoring is
computationally infeasible. This can be seen as an advantage of the Rabin system.

Corollary 8.19. Assuming that large integers cannot be factored by an efficient ran-
domized algorithm with nonnegligible probability of success, Rabin’s cryptosystem
is secure against chosen-plaintext attacks.

On the other hand, it follows from Theorem 8.18 that the Rabin system is inse-
cure against chosen-ciphertext attacks. The scenario of a chosen-ciphertext attack is
that a cryptanalyst has temporary access to the decryption device. Thus, choosing
some ciphertext c at will, he learns the corresponding plaintext m. This can be seen
as having an efficient algorithm (as opposed to a hypothetical oracle) for comput-
ing break-rabin. By Theorem 8.18, the attacker can take advantage of this fact as
follows. He chooses some plaintext x at random, computes c = x2 mod n, and de-
crypts c to obtain a square root m of c modulo n. As in the proof of Theorem 8.18,
he can factor the Rabin modulus n with high probability, and obtains the private key.

Corollary 8.20. Rabin’s cryptosystem is insecure against chosen-ciphertext attacks.

The following toy example illustrates Theorem 8.18 and its corollaries.

Example 8.21 (Factoring by Breaking Rabin’s System). Let n = 23 · 7 = 161 be
the given Rabin modulus. Suppose Erich does not know the prime factors 7 and 23.
However, he has the oracle break-rabin (alternatively, he has an efficient algorithm
for computing break-rabin) and can thus determine square roots modulo 161. Us-
ing the algorithm RANDOM-FACTOR from Figure 8.6, Erich randomly picks x = 13;
note that gcd(161, 13) = 1, so 13 ∈ Z∗

161. He then computes c = 132 mod 161 = 8.
The four square roots of 8 mod 161 are R13 = {13, 36, 125, 148}. Let m be the
oracle answer for the query 〈161, 8〉, i.e., m = break-rabin(〈161, 8〉). For each
possible answer m ∈ R13, we determine gcd(m− x, n).

If m = 13 then gcd(m − x, n) = gcd(0, 161) = 161. And if m = 148 then
gcd(m−x, n) = gcd(135, 161) = 1. In both cases, RANDOM-FACTOR fails to find
the prime factors of 161. But if m = 36 then gcd(m− x, n) = gcd(23, 161) = 23,
and if m = 125 then gcd(m − x, n) = gcd(112, 161) = 7. In these two cases,
RANDOM-FACTOR succeeds and provides Erich with the prime factors of 161. Thus,
Erich has a fifty percent chance of factoring n.
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8.4 Arthur-Merlin Games and Zero-Knowledge

“There are known knowns. These are things we know that we know. There are known
unknowns. That is to say, there are things we know we don’t know. But, there are also
unknown unknowns. These are things we don’t know we don’t know,” a U.S. Secre-
tary of Defense is quoted as saying. One might add, “And there is zero-knowledge.
These are things we know that somebody else knows, and we provably cannot know
what they are.” In this section, we introduce this notion that concerns the issue of
proving knowledge of a secret, without revealing it. Zero-knowledge is closely re-
lated to authentication, a central task in cryptography as noted in Section 4.1.

Consider, for example, the man-in-the-middle attack against the Diffie–Hellman
protocol mentioned in Section 8.1. This attack is possible because Alice did not
prove her identity to Bob before executing the protocol and Bob did not verify that
Alice indeed is the person she claims to be. That is why Erich, the malicious man
in the middle, can pretend to be Alice when communicating with Bob. Similarly, he
can pretend to be Bob in the communication with Alice who did not verify Bob’s
authenticity either. This section presents a zero-knowledge protocol that Alice and
Bob can use to avoid Erich’s trap.

To authenticate her identity, Alice might wish to use some private information—
some personal secret—that no one knows but her. Suppose that a trusted third party
certifies that Alice alone knows her secret. For example, she uses her PIN (her per-
sonal identification number) at the cash machine of her bank for authentication. But
here is the catch: If she proves her identity to Bob by telling him her secret, she has
given it away! It is no longer a secret! Using Alice’s secret, Bob would be able to
pretend to be Alice when communicating with Charlie, a third party. How can Alice
prove she has a secret without conveying any bit of information about it? This is what
zero-knowledge is all about.

The question just raised is this: How can Alice use her secret to prove her identity
beyond any doubt, in such a way that Bob can verify her authenticity but does not
learn her secret? Prover and verifier are the adversaries in an interactive proof sys-
tem, a notion introduced in Section 6.3 in the specific form of Arthur-Merlin games.
Comparing both terminologies, Merlin corresponds to the prover and is represented
by an NP machine, and Arthur corresponds to the verifier and is represented by a
BPP machine. The idea of zero-knowledge is illustrated by the following short story.

Story 8.22 (Zero-Knowledge Protocol) Arthur and Merlin again play one of
their games. This time, Arthur wishes to verify Merlin’s identity, as he is uncertain of
whether he is talking with Merlin or with some other wizard who merely pretends to
be Merlin. To verify Merlin’s identity, Arthur challenges him for a proof of his secret,
a magic spell that puts a dangerous, fire-breathing dragon to sleep. Merlin alone
knows this spell. The dragon lives in a secret, subterranean labyrinth, shown in Fig-
ure 8.7, that may be entered only by Arthur’s permission. The dragon sits there right
in the middle between the Holy Grail and the One Ring That Rules Them All. So, if
the labyrinth is entered through the left entrance and the dragon is awake, one can
get only the Holy Grail and not the Ruling Ring. If the labyrinth is entered through
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the right entrance and the dragon is awake, one can get only the Ruling Ring and not
the Holy Grail. The only way from the Holy Grail to the Ruling Ring or vice versa
passes by the dragon and can be used only if the dragon sleeps. (As you may know,
dragons never sleep, except when they are compelled to by a magic spell.)

left
entrance

right
entrance

Dragon

The Holy Grail The One Ring

Saruman

Arthur

main entrance

Fig. 8.7. Arthur’s labyrinth

The Arthur-Merlin game is as follows. First, Merlin enters through the main
entrance, closes this door, and chooses either the left or the right entrance to the
labyrinth. Arthur now follows him through the main entrance and does not know
whether Merlin has used the left or the right entrance. He challenges Merlin by
requesting to see either the Holy Grail or the Ruling Ring. If Merlin has used the left
entrance and Arthur wishes to see the Holy Grail, Merlin just takes it and leaves the
labyrinth. Similarly, Merlin has no problem to authenticate himself if he has used
the right entrance and Arthur requests to see the Ruling Ring. On the other hand,
if Merlin has used the left entrance and Arthur requests to see the Ruling Ring, or
if Merlin has entered through the right entrance and Arthur wishes to see the Holy
grail, Merlin (and Merlin alone) is able to authenticate himself by using his magic
spell to put the dragon to sleep.

Meanwhile, Saruman the White, the malicious wizard of Orthanc, has also
reached Camelot. He has had a hard time in Orthanc lately, but he managed to
escape from there. Now, after having suffered defeat by Gandalf, he is out for re-
venge and needs the power of the Ruling Ring more than ever. He has heard rumors
that Arthur keeps it in his secret labyrinth. Using his magic, Saruman therefore ap-
pears disguised as Merlin in Camelot and requests entry to the hidden labyrinth.
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He is much less powerful a wizard than Merlin and, sure enough, he does not know
his secret spells. In fact, Saruman’s magic power can bring about no more than the
computing power of a polynomial-time randomized Turing machine. Still, he wishes
to steal the Ruling Ring and therefore he pretends to know Merlin’s secret.

When Saruman chooses the left or the right entrance to the labyrinth, he does not
know Arthur’s challenge in advance. Thus, all he can do is toss a coin. If the outcome
(heads for left and tails for right, say) is in his favor, he uses the entrance correspond-
ing to Arthur’s subsequent request and succeeds. In this case, Arthur is taken in by
him. However, if Saruman’s random choice is unlucky, he cannot fool Arthur. For
example, if Saruman enters the labyrinth through the right entrance but Arthur re-
quests to see the Holy Grail, then Saruman loses. He cannot pass the dragon, since
he does not know Merlin’s secret spell for putting the dragon to sleep. By repeatedly
challenging Saruman for a proof of Merlin’s secret, Arthur will detect the attempted
fraud with high probability. The first time Saruman fails to present the Holy Grail or
the Ruling Ring, Arthur knows for sure that he is not Merlin.

The authentication procedure described in the story above has nothing to do with
zero-knowledge as yet; it is just an ordinary “challenge-and-response”authentication
protocol. Before formally defining zero-knowledge, we provide Goldreich, Micali,
and Wigderson’s zero-knowledge protocol for GI, the graph isomorphism problem,
as an example. Recall that GI is in NP ∩ coAM, see Lemma 6.44.

Example 8.23 (Zero-Knowledge Protocol for Graph Isomorphism).
As in Story 8.22, Merlin wants to authenticate himself by proving knowledge of his
secret. Merlin has the power of an NP machine, and his secret is the isomorphism
between two large isomorphic graphs. Since GI is not known to be polynomial-time
solvable, not even via randomized algorithms, it may be assumed that neither Arthur
nor the fraudulent wizard Saruman are able to discover Merlin’s secret.

Merlin can easily create his secret, and he does not even need his full NP power.
He first chooses a large graph G0 with n vertices and a permutation π ∈ Sn at ran-
dom. Then, he computes the graph G1 = π(G0). That is, G0 and G1 are isomorphic
graphs and π is an isomorphism between them. Merlin makes the pair (G0, G1) pub-
lic, and he keeps the isomorphism π ∈ ISO(G0, G1) secret. Suppose that Gandalf, a
trusted third party, certifies that (G0, G1) indeed was created by Merlin. Figure 8.8
presents a challenge-and-response authentication protocol between Arthur and Mer-
lin. We will show later that this protocol has the zero-knowledge property in addition.

Sure enough, Merlin cannot just send π to Arthur because then he would have
given his secret away. Rather, to prove that G0 and G1 indeed are isomorphic, Merlin
randomly chooses a permutation µ ∈ Sn and a bit m ∈ {0, 1} under the uniform dis-
tribution, and he computes the graph H = µ(Gm). That is, m determines which of
G0 or G1 is to be permuted by µ to yield H , a graph isomorphic to Gm via µ. Merlin
sends H to Arthur, who chooses a random bit a ∈ {0, 1} under the uniform distri-
bution. Arthur then sends a to Merlin as his challenge, requesting Merlin to respond
with an isomorphism α between Ga and H . Arthur accepts Merlin’s response α if
and only if α(Ga) = H . This protocol works, since Merlin knows his secret isomor-
phism π ∈ ISO(G0, G1), his random bit m ∈ {0, 1}, and his random permutation
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Step Merlin Saruman Arthur

1 chooses a large graph G0 with n ver-
tices and a permutation π ∈ Sn at
random, and computes G1 = π(G0);
(G0, G1) is public and π is secret

2 (G0, G1) ⇒
3 chooses a permutation µ ∈ Sn and a

bit m ∈ {0, 1} at random, and com-
putes H = µ(Gm)

4 H ⇒
5 chooses a bit a ∈ {0, 1} at

random and requests an iso-
morphism in ISO(Ga, H)

6 ⇐ a

7 computes α ∈ ISO(Ga, H) by:
if a = m then α = µ;
if 0 = a �= m = 1 then α = πµ;
if 1 = a �= m = 0 then α = π−1µ

8 α ⇒
9 verifies that α(Ga) = H

and accepts accordingly

Fig. 8.8. Zero-knowledge protocol for graph isomorphism

µ ∈ ISO(Gm, H). Thus, he can easily determine an isomorphism α ∈ ISO(Ga, H),
which he uses for authentication; see Figure 8.8 and Exercise 8.10. Since G0 and G1

are isomorphic, Arthur accepts with probability one.1

Now, suppose that Saruman, disguised as Merlin, executes the protocol from Fig-
ure 8.8 with Arthur. Saruman knows the public pair (G0, G1) of isomorphic graphs
but not Merlin’s isomorphism π, which is kept secret during the protocol. Still, he
wishes to pretend to be Merlin. He randomly chooses a permutation σ ∈ Sn and his
bit s ∈ {0, 1}, and computes the graph HS = σ(Gs). Then, Saruman sends HS to
Arthur and receives Arthur’s challenge a. If he is lucky and s = a, then Saruman
wins. However, if s �= a, the computation of α = πσ or α = π−1σ would require
knowledge of π. Since computing an isomorphism is too hard even for randomized
polynomial-time algorithms, Saruman cannot determine π if the graphs G0 and G1

are chosen large enough.
Without knowing π, he can only guess. His chances of hitting a bit s with s = a

are at most 1/2. Of course, Saruman can always guess and thus his probability of
success is exactly 1/2. If Arthur challenges him sufficiently often, say in k indepen-
dent rounds of this protocol, the cheating probability can be made as small as 2−k.

1 The case of nonisomorphic graphs does not occur in this protocol. On the other hand, the
protocol from Figure 8.8 can be modified such that Arthur and Merlin decide the prob-
lem GI, cf. Lemma 6.44. The pair (G0, G1) is their input then and is not chosen by Merlin.
If G0 and G1 are nonisomorphic, Arthur rejects Merlin’s false proof with probability 1/2.
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Already for k = 20, this probability is negligible: Saruman’s probability of success
is then less than one in one million.

Unlike other challenge-and-response authentication protocols, zero-knowledge
protocols have an important additional property: One can prove with mathematical
rigor that the protocol does not leak any information about the secret. In other words,
even though the verifier Arthur will eventually be convinced that the prover Merlin
knows his secret, neither Arthur nor an eavesdropper can learn anything about Mer-
lin’s secret. We now formally define the zero-knowledge property. Recall from Sec-
tion 6.3 the notion of Arthur-Merlin games and the Arthur-Merlin hierarchy, denoted
by AMH. In the context of cryptographic authentication, an Arthur-Merlin game is
dubbed an Arthur-Merlin protocol.

Definition 8.24 (Zero-Knowledge Protocol). Let L ∈ AMH be accepted by some
Arthur-Merlin protocol (M, A), where M represents an NP machine and A repre-
sents a polynomial-time randomized Turing machine. We say that (M, A) is a zero-
knowledge protocol for L if and only if there exists a polynomial-time randomized
Turing machine S, called the simulator, such that

• (S, A) simulates the original protocol (M, A), and
• for each x ∈ L, the tuples (m1, m2, . . . , mk) and (s1, s2, . . . , sk) that describe

the information conveyed in (M, A) and in (S, A), respectively, are identically
distributed over the coin tosses in (M, A) and in (S, A), respectively.

Regarding Definition 8.24, note that Merlin’s nondeterministic choices can also
be viewed as random choices or “coin tosses.” Note further that the notion defined
above is called “honest-verifier perfect zero-knowledge” in the literature. That is,
(a) it is assumed that the verifier Arthur is honest and does not try to tamper with
the protocol in order to change it to his advantage, and (b) the definition requires
that the information conveyed in the simulated protocol perfectly coincides with the
information conveyed in the original protocol. Assumption (a) may be somewhat too
idealistic in real-world cryptographic applications. Requirement (b) may be some-
what too strict; weaker requirements might work as well. That is why there also exist
other, less restrictive, types of zero-knowledge, see the remarks in Section 8.8.

Continuing Story 8.22, we now show that Arthur and Merlin’s challenge-and-
response authentication protocol indeed has the zero-knowledge property.

Story 8.25 (Zero-Knowledge Protocol—Continued) It took Arthur three chal-
lenges to eventually detect Saruman’s fraud and to uncover his true identity. The
king was filled with anger at the way he had almost been tricked. Enraged, he nearly
decapitated the whining wizard. But then he calmed down, and decided to use Saru-
man to prove that the protocol he used to execute with Merlin has the zero-knowledge
property. Saruman agreed submissively and gratefully.

Thus, Arthur and Saruman again execute several rounds of the protocol. Arthur
carefully records this simulated protocol. His record of the protocol shows Saruman
entering through the main entrance and closing the door—thus, Arthur does not
see whether he uses the left or the right entrance to the labyrinth. Next, his record
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shows Arthur’s challenge requesting either the Holy Grail or the Ruling Ring, and
Saruman’s response yielding either success or failure. If Saruman is lucky and meets
Arthur’s challenge, then this round of the protocol looks just like the original protocol
with Merlin, who never fails. If Saruman has bad luck and fails, this round of their
protocol looks different from the original protocol. However, whenever the wizard
fails, they simply omit this round of the protocol in the record.

Then, Arthur goes to Lancelot to show him this record of the simulated proto-
col and a record of a previous original protocol between him and Merlin. He asks
Lancelot to look at both records and to tell which was the original protocol with Mer-
lin and which was the faked one with Saruman. Of course, Lancelot cannot tell them
apart; all he can see in the records is Arthur’s challenge and the wizard’s successful
response in each round, since Saruman’s failures have been carefully deleted.

But if Saruman is able to generate a faked Arthur-Merlin protocol that cannot be
distinguished from the original one, Arthur concludes, then the protocol has leaked
no information whatsoever about Merlin’s secret. Remember that Saruman does not
know Merlin’s secret. That is, he could not put any information about Merlin’s secret
into the simulated protocol. If there is nothing to put in, there can be nothing to take
out.

Continuing Example 8.23, we now show that Goldreich, Micali, and Wigderson’s
protocol for the graph isomorphism problem has the zero-knowledge property.

Example 8.26 (Zero-Knowledge Protocol for Graph Isomorphism—Continued).
Look at Figure 8.8, which shows the original protocol between Arthur and Merlin.
Saruman is just an eavesdropper there who seeks to impersonate Merlin, and we have
seen that his chances of successfully deceiving Arthur are small.

Step Saruman Arthur

1 & 2 Merlin’s pair (G0, G1) of isomorphic graphs is public information

3 chooses a permutation σ ∈ Sn and
a bit s ∈ {0, 1} at random, and com-
putes H = σ(Gs)

4 H ⇒
5 chooses a bit a ∈ {0, 1} at

random and requests an isomor-
phism in ISO(Ga, H)

6 ⇐ a

7 if a = s, Saruman sends α = σ;
if a �= s, he deletes this round

8 α ⇒
9 a = s implies α(Ga) = H ,

thus Arthur accepts Saruman’s
false identity

Fig. 8.9. Simulation of the zero-knowledge protocol for graph isomorphism
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In order to show that the protocol from Figure 8.8 has the zero-knowledge prop-
erty, consider the protocol shown in Figure 8.9. This protocol simulates the original
protocol between Arthur and Merlin, where Saruman takes Merlin’s position. Note
that this simulated protocol is not executed for the purpose of authentication but is
used merely to prove that the original protocol is zero-knowledge.

In the simulated protocol, Saruman does not know Merlin’s secret isomor-
phism π, but he pretends to know it. Let us assume that Arthur and Saruman exe-
cute a number of rounds of the protocol, always using the same pair (G0, G1) of
isomorphic graphs, which is Merlin’s public information. That is, steps 1 and 2 are
skipped. Thus, the information conveyed in one round of the protocol has the form of
a triple, (H, a, α). Whenever Saruman happens to choose a random bit s with s = a,
he simply sends α = σ to Arthur and wins: Arthur must accept him as Merlin. On
the other hand, if s �= a then Saruman cannot fool Arthur and fails. However, that
is no problem for them. They simply delete this round from the protocol and restart.
In this way, they can produce a sequence of triples of the form (H, a, α) that are in-
distinguishable from the corresponding sequence of triples in the original protocol.
It follows that the protocol from Figure 8.8 has the zero-knowledge property.

Theorem 8.27 (Goldreich, Micali, and Wigderson).
The protocol from Figure 8.8 is a zero-knowledge protocol.

Step Merlin Saruman Arthur

1 chooses two large primes p and q and a
secret s ∈ Z∗

n, and computes n = pq and
v = s2 mod n

2 (n, v) ⇒
3 chooses r ∈ Z∗

n at random and computes
x = r2 mod n

4 x ⇒
5 chooses a bit a ∈ {0, 1} at

random
6 ⇐ a

7 computes y = r · sa mod n

8 y ⇒
9 verifies y2 ≡ x · va mod n

and accepts accordingly

Fig. 8.10. Fiat–Shamir zero-knowledge identification scheme

We conclude this section by presenting a zero-knowledge protocol, shown in Fig-
ure 8.10, that was developed by Fiat and Shamir in 1986. It is based on the number-
theoretical problem QR defined in Definition 2.43 from Section 2.4. The security of
this protocol rests on the assumption that computing square roots in Z∗

n and factoring
the modulus n are both infeasible tasks.
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Theorem 8.28 (Fiat and Shamir). The Fiat–Shamir identification scheme shown
in Figure 8.10 is a zero-knowledge protocol.

Exercise 8.11 asks the reader to prove that this protocol works correctly, that
impersonation by an eavesdropper can occur with probability 2−k only (under rea-
sonable assumptions), and that it has the zero-knowledge property.

Remark 8.29. Unlike digital signatures, which certify the authenticity of electroni-
cally transmitted documents such as emails or digital contracts, the authentication
protocols presented in this section can be used to authenticate individuals participat-
ing in a computer network or as parties in a cryptographic protocol. As mentioned
in Section 4.1, “individuals” here are not meant to be human beings only, but are
to be understood in a wider sense, including computers that automatically execute
protocols with other computers in a network.

8.5 Merkle and Hellman’s Public-Key Cryptosystem

This section presents a public-key cryptosystem that was proposed by Merkle and
Hellman in 1978. Although it was broken by Shamir in the early 1980s,2 it is still
worth studying it, since it is simple and elegant and particularly suitable for illustrat-
ing the basic design principles of public-key cryptography.

All public-key cryptosystems considered so far are based on the idea of trap-
door one-way functions. For example, the RSA public-key cryptosystem introduced
in Figure 7.1 of Section 7.1 employs the fact that modular exponentiation can be per-
formed efficiently using the “square-and-multiply” algorithm from Figure 7.2. Thus,
both encryption and authorized decryption are easy. In contrast, unauthorized de-
cryption seems to be hard, since computing m from e, n, and c = me mod n (i.e.,
extracting the eth root of c modulo n) and factoring the RSA modulus n both are
considered to be computationally infeasible tasks.

For efficient authorized decryption, it is important that Bob knows the prime
factors p and q of the RSA modulus n from which he can determine his private
decryption key. In other words, Bob has some trapdoor information that gives him
an advantage over the eavesdropper, who lacks this information.

Another example is the ElGamal public-key cryptosystem introduced in Fig-
ure 8.3 of Section 8.2. Again, encryption and authorized decryption are easy, where
the latter uses Bob’s private key b as trapdoor information. In contrast, unauthorized
decryption appears to be hard, since computing discrete logarithms is considered in-
feasible. Both computing discrete logarithms and extracting roots modulo an integer
can be viewed as inverses of the modular exponentiation function. The difference
between these two inverse functions is that root extraction for α = βa mod n means
computing the base β from α, a, and n, whereas the discrete logarithm of α requires
computing the exponent a given α, β, and n.

2 However, there are variants of this cryptosystem that are still unbroken to this date, see the
remarks in Section 8.8.
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The Merkle–Hellman cryptosystem is also based on the idea of trapdoor one-
way functions. In particular, its security rests on the hardness of the subset-of-sums
problem, denoted SOS and introduced in Definition 3.66 of Section 3.5.3. Recall
that SOS is a restricted variant of the knapsack problem, and we have seen in The-
orem 3.67 that SOS is NP-complete. Thus, there is no known deterministic or ran-
domized polynomial-time algorithm solving this problem. The trapdoor information
used here is that certain instances of SOS are nonetheless easy to solve.

Definition 8.30. Let 〈s, T 〉 be a given SOS instance, i.e., s = (s1, s2, . . . , sn) is a
sequence of positive integers (called the sizes) and T is a positive integer (called the
target sum). The sequence s of sizes is said to be superincreasing if and only if for
each i with 2 ≤ i ≤ n,

si >

i−1∑
j=1

sj .

Proposition 8.31 says that the subset-of-sums problem is efficiently solvable, pro-
vided that the given sequence of sizes is superincreasing. The easy proof of Proposi-
tion 8.31 is left to the reader as Exercise 8.12(a).

Proposition 8.31. For instances 〈s, T 〉 with a superincreasing sequence s of sizes,
the problem SOS can be solved in deterministic polynomial time.

Step Alice Erich Bob

1 chooses a superincreasing sequence of sizes,
s = (s1, s2, . . . , sn), a prime p >

Pn
i=1 si,

and a multiplier b ∈ Zp, and computes the vec-
tor t = (t1, t2, . . . , tn) by the linear modular
transformation

ti = bsi mod p;

t is public and s, p, and b are private
2 ⇐ t

3 encrypts the message
m = (m1, m2, . . . , mn)
as c =

Pn
i=1 miti

4 c ⇒
5 decrypts c by defining T = b−1c mod p and

solving the SOS problem for the instance 〈s, T 〉
Fig. 8.11. Merkle and Hellman’s public-key cryptosystem

Figure 8.11 shows the Merkle–Hellman system. To make unauthorized decryp-
tion even harder, one can apply a random permutation on the vector t in addition.
This public-key cryptosystem makes use of Proposition 8.31 as follows.
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Step 1: Key Generation. The legitimate receiver Bob chooses a superincreasing
sequence s of sizes, a multiplier b, and a prime number p. These values are his
private key, i.e., his trapdoor information. He then determines his public key,
which is a new vector t = (t1, t2, . . . , tn) obtained by the following linear mod-
ular transformation:

ti = bsi mod p.

Step 2: Communication. Bob’s public key t is now known to Alice.
Step 3: Encryption. If m = (m1, m2, . . . , mn) ∈ {0, 1}n is the message Alice

wishes to encrypt, she computes

c =
n∑

i=1

miti.

Step 4: Communication. Alice sends the ciphertext c to Bob.
Step 5: Decryption. When Bob receives the ciphertext c, 0 ≤ c ≤ n(p−1), he uses

his trapdoor information to invert the linear modular transformation previously
applied. In particular, he computes the target sum

T = b−1c mod p,

which can be used to recover the original message. Since s is a superincreas-
ing sequence of sizes, Bob can apply the algorithm from Proposition 8.31 to
efficiently solve the SOS problem for the instance 〈s, T 〉. Thus, he can easily
decrypt Alice’s message.

On the other hand, unauthorized decryption seems to be hard. An eavesdropper—
who lacks Bob’s trapdoor information and thus does not know how to invert the
linear modular transformation—is faced with an instance of the general SOS problem,
which is NP-complete. However, as mentioned previously, there do exist ways to
break the Merkle–Hellman system nonetheless, see Problem 8.2.

Example 8.32 (Merkle–Hellman Cryptosystem). Suppose that Bob chooses the su-
perincreasing sequence

s = (2, 3, 6, 12, 25, 51, 101, 203, 415),

the prime number p = 821, which satisfies p >
∑n

i=1 si, and the multiplier b = 444.
He then computes his public key

t = (67, 511, 201, 402, 427, 477, 510, 643, 356),

which is not superincreasing. Let m = (1, 0, 1, 1, 0, 1, 0, 0, 1) be the message Alice
wishes to encrypt. Knowing t, she computes the ciphertext

c = 67 + 201 + 402 + 477 + 356 = 1503
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and sends c to Bob. To decrypt c, he first applies the extended Euclidean Algorithm
from Figure 2.2 to compute the inverse of 444 modulo 821, which is b−1 = 723. He
then computes the target sum

T = 723 · 1503 mod 821 = 486.

Finally, using the algorithm from Proposition 8.31 (see Exercise 8.12(a)), Bob re-
covers the original message by solving the SOS instance 〈s, T 〉. Since his private
sequence s of sizes is superincreasing, he can do so efficiently.

8.6 Rabi, Rivest, and Sherman’s Protocols

Figure 8.12 presents another protocol for secret-key agreement, which was proposed
by Rivest and Sherman in 1984. It can be modified so as to yield a protocol for
digital signatures, see Exercise 8.13(a). This digital signature scheme was developed
by Rabi and Sherman [RS97]. The differences between the Diffie–Hellman and the
Rivest–Sherman secret-key agreement protocols are discussed in Section 8.8.

Step Alice Erich Bob

1 chooses two large random strings,
x and y, keeps x secret and com-
putes xσy

2 〈y, xσy〉 ⇒
3 chooses a large random string, z,

keeps z secret and computes yσz
4 ⇐ yσz

5 computes her key

kA = xσ(yσz)

computes his key

kB = (xσy)σz

Fig. 8.12. Rivest–Sherman secret-key agreement protocol

The Rivest–Sherman protocol in Figure 8.12 uses a “strongly noninvertible, asso-
ciative one-way function,” σ. Before providing formal definitions of these properties,
let us briefly give an intuitive idea and discuss the complexity model used. First, re-
call that a function is one-way if it is honest and easy to compute, but hard to invert.
To capture the notion of “noninvertibility,” various models have been proposed to
date.3 Depending on the model used, there are various candidates for one-way func-
tions some of which were mentioned in Section 8.5.

Definition 3.78 in Section 3.6.2 introduced the notion of a complexity-theoretic
one-way function in the worst-case model, and the present section focuses com-
pletely on this notion of one-way-ness. The average-case model is very important

3 In this section, “noninvertibility” usually refers to non-FP-invertibility, see Definition 3.78.
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in cryptographic applications as well as in complexity theory; for example, in rela-
tion to derandomization via pseudorandom generators. Nonetheless, the challenge
of proving that one-way functions exist remains an open problem even in the “less
challenging” worst-case model. Thus, it is reasonable to study which complexity-
theoretic assumptions are required to create various types of complexity-theoretic
one-way functions, as a first, modest step towards the creation of one-way functions
in the more demanding average-case model under appropriate assumptions.

Properties such as associativity make sense only for functions with two argu-
ments; let us assume that they map from Σ∗ × Σ∗ to Σ∗.4 We further assume that
one-way functions may be partial and may be many-to-one. That is, they are not
required to be total functions on Σ∗ × Σ∗, and they are not required to be injec-
tions. For two-argument functions, we use the infix notation (e.g., xσy) instead of
the prefix notation (e.g., σ(x, y)). Intuitively, a two-argument function σ is said to
be strongly noninvertible if, given some function value and one of the corresponding
arguments, it is hard to determine the other argument. This property is required of
the function σ used in Figure 8.12 in order to prevent the most obvious direct attack
that works as follows: If σ were not strongly noninvertible, an eavesdropper could
easily determine the secret strings x and z (and thus the secret keys kA and kB) from
the transmitted values y, xσy, and yσz.

Recall that the notion of honesty in Definition 3.78 is needed to prevent func-
tions from being trivially noninvertible. That is, a dishonest function like δ(x) =
0�log log max(|x|,2)� shrinks its input more than polynomially and is thus trivially non-
invertible. However, this artificial length-trick noninvertibility is of no help in cryp-
tography or complexity theory and is thus precluded in the definition of one-way
functions. The formal definition of strong noninvertibility requires an appropriate
variant of honesty called s-honesty. Intuitively, a strong inverter for a function σ
takes as inputs both a function value of σ and an argument of σ and computes the
corresponding other argument. Thus, to prevent σ from being trivially strongly non-
invertible, s-honesty requires that σ shrinks no argument more than polynomially in
relation to the length of the function value and to the length of the corresponding
other argument. Note that there exist dishonest functions that are s-honest, and there
exist honest functions that are not s-honest; see Exercise 8.13(b).

Definition 8.33 (Strong One-Way Function). Let σ : Σ∗ × Σ∗ → Σ∗ be any
partial function. Dσ denotes the domain of σ, and Rσ denotes the range of σ.

1. We say that σ is s-honest if and only if there exists a polynomial p such that
both (a) and (b) are true:
(a) For each x, z ∈ Σ∗ with xσy = z for some y ∈ Σ∗, there exists some string

ỹ ∈ Σ∗ such that xσỹ = z and |ỹ| ≤ p(|x|+ |z|).
(b) For each y, z ∈ Σ∗ with xσy = z for some x ∈ Σ∗, there exists some string

x̃ ∈ Σ∗ such that x̃σy = z and |x̃| ≤ p(|y|+ |z|).
4 The strings x, y, and z in Figure 8.12 can also be viewed as integers represented in binary.
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2. We say that σ is (polynomial-time) invertible with respect to the first argument
if and only if there exists an inverter g1 ∈ FP such that for each z ∈ Rσ and for
all x, y ∈ Σ∗ with (x, y) ∈ Dσ and xσy = z, we have xσg1(〈x, z〉) = z.

3. We say that σ is (polynomial-time) invertible with respect to the second argument
if and only if there exists an inverter g2 ∈ FP such that for each z ∈ Rσ and for
all x, y ∈ Σ∗ with (x, y) ∈ Dσ and xσy = z, we have g2(〈y, z〉)σy = z.

4. We say that σ is strongly noninvertible if and only if σ is neither invertible with
respect to the first argument nor invertible with respect to the second argument.

5. We say σ is strong if and only if σ is polynomial-time computable, s-honest, and
strongly noninvertible.

Associativity ensures that the Rivest–Sherman protocol works. Suppose for the
moment that the function σ from Figure 8.12 is total. Then, associativity of σ means
(xσy)σz = xσ(yσz) for all x, y, z ∈ Σ∗. This property guarantees that Alice and
Bob indeed compute the same secret key:

kA = xσ(yσz) = (xσy)σz = kB.

The above notion of associativity is meaningful for total functions, yet it is not
meaningful for nontotal two-argument functions. Consider the following attempt to
capture associativity for nontotal functions: σ is weakly associative if and only if

(xσy)σz = xσ(yσz) (8.16)

for all x, y, z ∈ Σ∗ such that xσy, yσz, (xσy)σz, and xσ(yσz) each are defined.
However, this definition attempt fails to do the job for nontotal functions. What is
wrong with it? Consider, for example, a function σ such that 0σ1 = 0 and 1σ0 = 1,
yet σ is not defined on the pair (0, 0). Then 0σ(1σ0) = 0σ1 = 0, yet σ is not defined
on ((0σ1), 0) = (0, 0). Thus, (8.16) has the form “undefined = 0.” But the weak
associativity above fails to evaluate (8.16) as being false for these values of x = 0,
y = 1, and z = 0.

When defining associativity for partial (including both total and nontotal) func-
tions, it seems more natural to require that both sides of (8.16) stand or fall together.
That is, either both sides of (8.16) should be defined and equal, or each side should be
undefined. This observation is related to Kleene’s careful distinction between “com-
plete equality” and “weak equality” of partial functions [Kle52, pp. 327–328]. This
natural behavior is achieved by the following definition of associativity and com-
mutativity, which both are based on Kleene’s “complete equality.” Commutativity is
needed to ensure that the Rivest–Sherman protocol from Figure 8.12 works for more
than two parties as well, see Exercise 8.13(c).

Definition 8.34 (Associativity). Let σ : Σ∗ ×Σ∗ → Σ∗ be any partial function.
Let⊥ be a symbol indicating, in the usage “xσy = ⊥,” that σ is undefined on (x, y).
Let Γ = Σ∗ ∪ {⊥} be an extension of Σ∗, and define an extension σ̂ : Γ × Γ → Γ
of σ by

xσ̂y =
{

xσy if x �= ⊥ �= y and (x, y) ∈ Dσ

⊥ otherwise.
(8.17)
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We say that σ is associative if and only if for each x, y, z ∈ Σ∗,

(xσ̂y)σ̂z = xσ̂(yσ̂z).

We say that σ is commutative if and only if for each x, y ∈ Σ∗,

xσ̂y = yσ̂x.

Now that all technical prerequisites are provided, we turn to the most natural
question arising from the protocol in Figure 8.12: Does there exist any total one-way
function σ that is strong and associative? No unconditional answer to this question
is known. After all, it is not known either whether or not any plain one-way func-
tion exists, dropping all the nice additional properties σ is required to have. How-
ever, we will now show that such a function σ with all the properties desired exists
exactly if a plain one-way function exists. That is, one can construct σ from any
given complexity-theoretic one-way function. First, recall the first two items of The-
orem 3.82: One-to-one one-way functions exist if and only if P �= UP. It is straight-
forward to analogously characterize many-to-one one-way functions by the condi-
tion P �= NP, as stated in Proposition 8.35. In the remainder of this section, the term
“many-to-one” is being dropped, i.e., whenever we speak of a one-way function, we
mean a one-way function that is allowed to be many-to-one.

Proposition 8.35. There exist one-way functions if and only if P �= NP.

We now characterize the type of one-way functions needed for the Rivest–
Sherman protocol.

Theorem 8.36. There exist total, strong, commutative, associative one-way functions
if and only if P �= NP.

Proof. By Proposition 8.35, the existence of total, strong, commutative, associa-
tive one-way functions immediately implies P �= NP. It remains to prove the con-
verse. So assume that P �= NP. Let L be some set in NP such that L �∈ P, and let M be
some given NPTM accepting L. For example, assuming P �= NP, any NP-complete
set can be chosen as L. Recall from Definition 5.23 in Section 5.2 that a witness for
“x ∈ L” is any string w ∈ Σ∗ encoding an accepting path of M on input x. For each
x ∈ L, the set of witnesses for “x ∈ L” is defined by

WitM (x) = {w ∈ Σ∗ | w is a witness for “x ∈ L”}.

For instance, the witnesses for elements in the NP-complete set SOS are shown in
Example 5.22 in Section 5.2. Note that WitM (x) is empty if and only if x �∈ L.

As a technical detail, we assume that, for each x ∈ L, any witness w for “x ∈ L”
is of length p(|x|) for some strictly increasing polynomial p, and the length of w is
strictly larger than the length of x. This assumption allows us to tell input strings in
L apart from their witnesses, a property that will be useful in our construction of the
total, strong, commutative, associative one-way function.
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The construction proceeds in two stages. First, we show how to construct a non-
total, strong, commutative, associative one-way function σ from L. Then, we claim
that σ can be extended to a total function that inherits all the other properties of σ.
The proof of this claim in the second stage of the construction is left to the reader
as Exercise 8.13(e). Before providing the formal details of the first stage of the con-
struction, which defines σ from L, we illustrate the idea by the following short story.

Story 8.37 At the police department of this small town, Officer Sigma is on duty
today. On her desk, there is a list L of the usual suspects and there are many reports
about crimes that happened recently. Some of the reports contain the description
of one of the usual suspects, say x, from the list L. Officer Sigma attaches a file
copy to it, so the report now has the form 〈x, x〉. Some reports contain the testimony
w of an eye witness who has seen this suspect x on the scene of a crime. Officer
Sigma attaches w to x, so the report now has the form 〈x, w〉. There are also many
other reports that contain neither the description of a suspect nor the testimony of a
witness.

Officer Sigma is more than qualified for her job. Two years ago, she graduated
from the Police Academy with distinction. That is why she can easily tell the descrip-
tion of a suspect from the testimony of a witness.5 That is, she can immediately tell
whether the report at hand is of the form 〈x, x〉 or 〈x, w〉. Better yet, Officer Sigma
can easily check how reliable a witness is. Before filing her report, she verifies each
witness testimony using a lie detector.

Every once in a while, Officer Sigma takes two reports from the desk, say a and b.
Holding a with her left hand and b with her right hand, she reads them both carefully.
She then chooses one of a and b to pass on to her boss, Sergeant Omega, and tosses
the other one. Occasionally, she tosses them both. How does Officer Sigma decide
which reports to pass on and which to throw out?

Whenever report a has the form 〈x, w1〉 and report b has the form 〈x, w2〉, Officer
Sigma chooses one of a and b to give to Sergeant Omega, tossing the other one. In
this case, both reports describe the same suspect x and there are two testimonies
attached to them, which may be identical. Officer Sigma always hands over the report
containing the shorter testimony.

Whenever one of the reports a and b has the form 〈x, x〉 and the other one has
the form 〈x, w〉 for the same suspect x and for a testimony w of a witness who has
seen x on the crime scene, Officer Sigma passes report 〈x, x〉 on to Sergeant Omega,
distractedly tossing 〈x, w〉 into the trashbin.6

Whenever the reports a and b are not of the form described in the above two
cases, Officer Sigma rigorously tosses them both.

Turning back to the formal proof of Theorem 8.36, let a, b ∈ Σ∗ be any two
given input strings for our function σ. Define σ by

5 Some of her colleagues at the police department keep confusing suspect descriptions and
witness testimonies, which explains in part why so few crimes can be solved in this town.

6 No wonder so few crimes are solved in this town.
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aσb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈x, min(w1, w2)〉 if a = 〈x, w1〉 and b = 〈x, w2〉
for some x ∈ Σ∗ and w1, w2 ∈ WitM (x)

〈x, x〉 if (a = 〈x, x〉 and b = 〈x, w〉)
or (a = 〈x, w〉 and b = 〈x, x〉)
for some x ∈ Σ∗ and w ∈ WitM (x)

undefined otherwise,

(8.18)

where min(w1, w2) denotes the lexicographical minimum of w1 and w2. It remains
to show that σ has the desired properties. It is a matter of routine to check that σ is
commutative, honest, s-honest, polynomial-time computable, and noninvertible, see
Exercise 8.13(d). In particular, σ is thus a one-way function.

We now prove that σ is strong. For a contradiction, suppose that there is a
polynomial-time inverter i with respect to the first argument of σ. That is, for each
string z in the range of σ and for each fixed first argument a ∈ Σ∗ for which
there exists a corresponding second argument b ∈ Σ∗ with aσb = z, we have that
aσi(〈a, z〉) = z. The inverter i can be used to decide the set L in polynomial time as
follows:

Step 1: Given any input string x, to decide whether or not x is in L, compute the
string u = i(〈〈x, x〉, 〈x, x〉〉).

Step 2: Compute the unique strings v and w for which 〈v, w〉 = u, i.e., v and w are
the projections of our pairing function at u.

Step 3: Accept x if and only if v = x and w ∈ WitM (x).

The above algorithm runs in polynomial time and thus shows that L is in P, which
contradicts our assumption that L �∈ P. Thus, σ is not invertible with respect to the
first argument. An analogous argument shows that σ is not invertible with respect to
the second argument either. It follows that σ is strongly noninvertible.

Finally, we prove that σ is associative. Let a, b, c ∈ Σ∗ be any fixed arguments
for σ. Consider the projections of our pairing function at a, b, and c, respectively:
a = 〈a1, a2〉, b = 〈b1, b2〉, and c = 〈c1, c2〉. Let k ∈ {0, 1, 2, 3} be the number
that counts how many of a2, b2, and c2 are elements of WitM (a1). For example, if
a2 = b2 ∈ WitM (a1), but c2 �∈ WitM (a1), then k = 2. As per Definition 8.34, we
have to show that

(aσ̂b)σ̂c = aσ̂(bσ̂c), (8.19)

where σ̂ is the extension of σ from that definition. There are two cases to distinguish.

Case 1: a1 = b1 = c1 and {a2, b2, c2} ⊆ {a1} ∪ WitM (a1). The intuition
in this case is that the number of witnesses occurring in the arguments of σ are
decreased by one as follows:
• If none of σ’s arguments contains a witness for “a1 ∈ A,” then σ is unde-

fined, so σ̂ outputs⊥.
• If exactly one of σ’s arguments contains a witness for “a1 ∈ A,” then σ—and

thus σ̂ as well—has the value 〈a1, a1〉.
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• If both of σ’s arguments contain a witness for “a1 ∈ A,” then σ̂ outputs
〈a1, w〉, where w ∈ {a2, b2, c2} is the lexicographically smaller of the two
witnesses.

From the above three subcases, we conclude the following:

• If k ∈ {0, 1} then (aσ̂b)σ̂c = ⊥ = aσ̂(bσ̂c).
• If k = 2 then (aσ̂b)σ̂c = 〈a1, a1〉 = aσ̂(bσ̂c).
• If k = 3 then (aσ̂b)σ̂c = 〈a1, min(a2, b2, c2)〉 = aσ̂(bσ̂c), where again

min(a2, b2, c2) denotes the lexicographically smallest of a2, b2, and c2.

Case 2: Either (a1 �= b1 or a1 �= c1 or b1 �= c1) or (a1 = b1 = c1

and {a2, b2, c2} �⊆ {a1} ∪ WitM(a1)). In either of these two subcases of
Case 2, one can verify that

(aσ̂b)σ̂c = ⊥ = aσ̂(bσ̂c).

In each of the above cases, (8.19) is satisfied. Hence, σ is associative. To complete the
proof of Theorem 8.36, it remains to show that σ can be extended to a total function
without destroying any of the other properties of σ, see Exercise 8.13(e).

Note that even if it were known that P �= NP—and thus total, strong, commu-
tative, associative one-way functions would exist by Theorem 8.36—it would not
follow that the Rivest–Sherman protocol from Figure 8.12 is secure. Exercise 8.13(f)
asks the reader to discuss the issue of security for this protocol.

8.7 Exercises and Problems

Exercise 8.1 Figure 8.1 presents the Diffie–Hellman protocol, see also Example 8.1.

(a) Verify that 12 is a primitive element of 17 by showing that 〈12〉 = Z∗
17.

(b) Verify Bob’s secret number β = 1215 ≡ 10 mod 17 from Example 8.1 using
the “square-and-multiply” algorithm from Figure 7.2.

(c) Execute the Diffie–Hellman protocol from Figure 8.1 for p = 17 and γ = 11,
where Alice chooses the secret exponent a = 5 and Bob chooses b = 7.

(d) Determine all primitive elements of the prime number 101 and execute the
Diffie–Hellman protocol from Figure 8.1 for some primitive element γ of 101,
and some private exponents a and b of your choice.

Exercise 8.2 (a) Define the Diffie–Hellman problem from Definition 8.2 as a deci-
sion problem, say Diffie-Hellman, and show that the two versions are equiva-
lent under polynomial-time Turing reductions:

• Diffie-Hellman ∈ Pdiffie-hellman and

• diffie-hellman ∈ FPDiffie-Hellman.

(b) Define the discrete logarithm problem from Definition 2.42 as a decision prob-
lem, say DLog, and show that the two versions are equivalent under polynomial-
time Turing reductions: DLog ∈ Pdlog and dlog ∈ FPDLog.



8.7. Exercises and Problems 403

Exercise 8.3 (a) Verify that 2 is a primitive element of 101, as claimed in Exam-
ple 8.4, and determine all other primitive elements of 101.

(b) Compute a = log27 89 mod 101, using Shanks’ algorithm from Figure 8.2.

(c) Compute a = log569 413 mod 809, using Shanks’ algorithm from Figure 8.2.

Exercise 8.4 Consider the ElGamal public-key cryptosystem from Figure 8.3.

(a) Let p = 101 be the prime number chosen, and suppose that Alice and Bob have
agreed on the primitive element γ = 27 of 101. Alice chooses the private ex-
ponent a = 23 and Bob chooses the private exponent b = 87. Using ElGamal’s
cryptosystem, encrypt the message m = 89 and show that decryption according
to (8.5) yields the original plaintext.

(b) Do the same as in (a) with the parameters p = 809, γ = 569, a = 227, b = 781,
and m = 801.

Exercise 8.5 Consider the ElGamal digital signature scheme from Figure 8.4.

(a) Choose the parameters p = 1367 and γ = 2 as in Example 8.6. Suppose that
Bob chooses his private exponents to be b = 711 and s = 117. Check that
gcd(s, p − 1) = 1. What is Bob’s signature for the message m = 828? Verify
that this signature is valid by checking (8.7).

(b) Execute the ElGamal digital signature scheme from Figure 8.4 with different
parameters of your choice.

Exercise 8.6 Look at the key-only attack on the ElGamal digital signature scheme
presented in Section 8.2.3.

(a) As in Example 8.13, choose the parameters p = 1367 and γ = 2. Suppose that
Erich does not know Bob’s private exponents b = 711 and s = 117 from Exer-
cise 8.5(a). However, he does know the corresponding public value β. Suppose
further that Erich chooses the values x = 67 and y = 99 in order to mount
the key-only attack from Example 8.13. Determine his signature and the corre-
sponding message.

(b) Execute the key-only attack from (a) with different parameters of your choice.

Exercise 8.7 Look at the known-message attack on the ElGamal digital signature
scheme presented in Section 8.2.3.

(a) Verify that the values σ, ρ, and m constructed in (8.12) indeed satisfy the ElGa-
mal verification condition (8.7): γm ≡ βσσρ mod p.

(b) Mount this known-message attack on the ElGamal digital signature scheme with
parameters of your choice.

Exercise 8.8 Mount a known-message attack so as to yield a total break of the El-
Gamal scheme, provided that the same value s (see Figure 8.4) is used twice for
signing distinct messages, m1 and m2.

Hint: Let γ be the primitive element of the prime number p used in the protocol, and
let β be Bob’s public key. Suppose that (σ, ρ1) is Bob’s signature for m1 and (σ, ρ2)
is Bob’s signature for m2. Writing σ = γs, we have
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βσσρ1 ≡ γm1 mod p and βσσρ2 ≡ γm2 mod p.

Find a way to determine the unknown value s, using the above congruences. Once s
is known, it can be used to determine Bob’s other private exponent, b, as explained
at the end of Section 8.2.3.

Exercise 8.9 Consider Rabin’s cryptosystem from Figure 8.5 in Section 8.3.

(a) Using the parameters from Example 8.16, suppose that Bob chooses the prime
numbers p = 43 and q = 47, so n = 2021 is the Rabin modulus. Determine the
Rabin encryptions of the following messages: m1 = 234, m2 = 1789, and m3 =
1989. For each of the corresponding ciphertexts ci, i ∈ {1, 2, 3}, determine all
plaintexts that are mapped to ci by the Rabin encryption function.

(b) Suppose you are Bob. Repeat (a) with different parameters of your choice.

(c) Suppose that Erich knows the Rabin modulus n = 13081. Apply the method of
Theorem 8.18 to determine the prime factors of n by a chosen-ciphertext attack;
see also Example 8.21.

Exercise 8.10 Look at Figure 8.8 in Example 8.23, which shows the zero-knowledge
protocol for GI.

(a) Prove that the isomorphism σ computed in Figure 8.8 indeed is in ISO(Ga, H),
as requested by Arthur.

(b) Execute this protocol for the graphs G0 = G and G1 = H and the isomorphism
π = (1 2 3 4 5

2 5 4 5 3) in ISO(G, H), where G and H are the graphs from Example 2.50
in Section 2.4. Use an isomorphism µ of your choice and consider every possible
combinations of the random bits m ∈ {0, 1} and a ∈ {0, 1}.

(c) Suppose you are Saruman and you do not know Merlin’s secret isomorphism π.
Ask somebody else to play Arthur’s role and execute this protocol with him.

(d) Repeat (b) using different graphs with 10 vertices of your choice.

(e) Modify the protocol from Figure 8.8 such that Saruman’s cheating probability
in one round of the protocol is at most 2−10.

Exercise 8.11 Look at Figure 8.10 in Section 8.4, which shows the Fiat–Shamir
zero-knowledge protocol for QR.

(a) Prove that this protocol works correctly.

(b) Assuming that it is infeasible to compute square roots modulo n and to factor
the modulus n, prove that an eavesdropper can impersonate as Merlin in this
protocol with probability 2−k only, for some fixed k.

(c) Prove that this protocol has the zero-knowledge property.

(d) Suppose that Merlin has chosen the prime numbers p = 43 and q = 47, so
n = 2021. His secret number is s = 97; note that gcd(2021, 97) = 1. According
to Figure 8.10, execute the Fiat–Shamir protocol for various values of r and a of
your choice.

Exercise 8.12 Consider the Merkle–Hellman cryptosystem in Section 8.5.
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(a) Prove Proposition 8.31. That is, design a deterministic polynomial-time algo-
rithm that solves the problem SOS for instances 〈s, T 〉 with a superincreasing
sequence s of sizes. As a check, verify that your algorithm, when applied to
the instance 〈s, T 〉 with s = (2, 3, 6, 12, 25, 51, 101, 203, 415) and T = 486,
recovers the original message m = (1, 0, 1, 1, 0, 1, 0, 0, 1), as claimed in Exam-
ple 8.32.

(b) Modify the Merkle-Hellman cryptosystem as follows: The public key is a super-
increasing sequence s = (s1, s2, . . . , sn) of sizes, and encryption is done via the
encryption function

Es(m) =
n∑

i=1

misi

mapping from {0, 1}n to {0, 1, . . .
∑n

i=1 si}. Since Es is injective, the algorithm
from Proposition 8.31 can be used for authorized decryption. What is wrong with
this simplification of the Merkle-Hellman cryptosystem?

(c) Suppose that Bob chooses the superincreasing sequence

s = (1, 3, 7, 15, 29, 57, 117, 235, 475, 940),

the prime number p = 1889, and the mulitplier b = 666. Encrypt the message
m = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1). As a check, decrypt your ciphertext to see if the
original message can be recovered.

Exercise 8.13 Consider Rivest und Sherman’s protocol for secret-key agreement
shown in Figure 8.12.

(a) Modify this protocol so as to create a protocol for digital signatures.

Hint: See Rabi and Sherman [RS97].

(b) Construct a dishonest, polynomial-time computable, two-argument function that
is s-honest, and construct an honest, polynomial-time computable, two-argument
function that is not s-honest.

Hint: See L. Hemaspaandra, Pasanen, and Rothe [HPR01].

(c) Suppose that the total, strongly noninvertible, associative one-way function σ
on which the protocol in Figure 8.12 is based in addition is commutative, i.e.,
for each x, y ∈ Σ∗, xσy = yσx. Modify both the secret-key agreement proto-
col from Figure 8.12 and the digital signature protocol from (a) to multi-party
protocols, i.e., to protocols for k ≥ 2 parties, not only for Alice and Bob.

Hint: See Rabi and Sherman [RS97].

(d) Look at the proof of Theorem 8.36. Prove that the function σ defined in (8.18) is
commutative, honest, s-honest, polynomial-time computable, and noninvertible.

Hint: See L. Hemaspaandra and Rothe [HR99].

(e) Show that the nontotal function σ defined in (8.18) can be extended to a total
function σt without destroying any of the other properties of σ. Specifically,
consider the following construction of σt : Σ∗ × Σ∗ → Σ∗. Let x̂ be a fixed
string not in L (and argue why such a string must exist). Let â = 〈x̂, 1x̂〉. Argue
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why â is neither of the form 〈x, x〉 for any x ∈ Σ∗, nor of the form 〈x, w〉 for
any x ∈ Σ∗ and any witness w ∈ WM (x). By (8.18), σ is defined neither on
(â, b) nor on (b, â) for any b ∈ Σ∗. Define the total extension σt to coincide with
σ on Dσ, and to map all pairs (a, b) �∈ Dσ to the “garbage” element â. Prove
that σt is a strong, commutative, associative one-way function.

Hint: See L. Hemaspaandra and Rothe [HR99].

(f) Discuss the security of the Rivest–Sherman protocol from Figure 8.12 under all
necessary aspects.

Hint: See L. Hemaspaandra and Rothe [HR99].

(g) Prove that no total, associative function can be injective.

Hint: See Rabi and Sherman [RS97].

Problem 8.1 (Bit Security of Discrete Logarithms)
Prove Theorem 8.12: Let 〈p, γ, α, 1〉 be an instance of the discrete logarithm bit
problem, and let p− 1 = r2q for some odd number r. Then,

(a) for each i ≤ q, dlogbit(〈p, γ, α, i〉) can be evaluated in polynomial time, and

(b) logγ α mod p can be computed in FPdlogbit(〈p,γ,α,q+1〉).
Hint for (b): Consider the case q = 1, i.e., p−1 = 2r for some odd number r. Thus,
p ≡ 3 mod 4. Show that if p is prime and p ≡ 3 mod 4, then every α ∈ QRp has the
two square roots ±α(p+1)/4. Moreover, show that if p ≡ 3 mod 4, then

dlogbit(〈p, γ, α, 1〉) �= dlogbit(〈p, γ, p− α, 1〉).
It follows that if α ≡ γa mod p for some unknown even exponent a, then either

α(p+1)/4 ≡ γa/2 mod p, or (8.20)

−α(p+1)/4 ≡ γa/2 mod p. (8.21)

Which of (8.20) or (8.21) is true can be tested efficiently by Theorem 8.11, provided
that the value of dlogbit(〈p, γ, α, 2〉) is known, since

dlogbit(〈p, γ, α, 2〉) = dlogbit(〈p, γ, γa/2, 1〉).
Exploit this property to design a polynomial-time algorithm that uses the oracle
dlogbit(〈p, γ, α, 2〉) to compute the binary representation of a = logγ α mod p.
The details of this proof can be found in Stinson [Sti02].

Problem 8.2 (Breaking the Merkle–Hellman Cryptosystem)
Break the basic Merkle–Hellman Cryptosystem from Figure 8.11 in Section 8.5.

Hint: See A. Shamir [Sha84] and also A. Shamir and Zippel [SZ80]. The crucial
idea of breaking the Merkle–Hellman cryptosystem is to apply H. Lenstra’s efficient
algorithm for integer programming with a fixed number of variables [Len83].
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Problem 8.3 (A Protocol Without Keys)
Your task in solving this problem is best understood by carefully reading the follow-
ing story.

Story 8.38 As is common among children of their age, Paula and Ella love to share
secrets.7 When Paula had to go to the hospital to be treated for severe pneumonia, the
two otherwise inseparable sisters were very unhappy. Fortunately, Paula recovered
quickly from her illness, but she had to stay in the hospital for another week. Ella
was not allowed to visit her sister—that’s the rule in the hospital’s intensive care
unit. Only her parents had permission to see Paula there. Still, Paula and Ella were
eager to communicate and to keep sharing secrets. The problem was that they had to
rely on their parents to pass them on, and it is common knowledge among children
that parents are never trustworthy when it comes to keeping a secret.

Step Ella Parents Paula

1 Ella buys a box B and two padlocks, x and y, asks her parents to
hand y over to Paula in the hospital, and keeps x for herself

2 locks the message m in the box B
using her padlock x

3 Bx ⇒
4 puts her padlock y on the box
5 ⇐ By

x

6 removes her padlock x

7 By ⇒
8 removes her padlock y and reads

the message m

Fig. 8.13. Paula and Ella’s no-key protocol

Here is their clever plan for how to share a secret while keeping it from their parents.
Look at Figure 8.13, which shows Paula and Ella’s protocol: Ella buys a box B and
two padlocks, x and y, asks her parents to hand y over to Paula in the hospital, and
keeps x for herself. Then, she writes the message m containing the secret she wishes
to share with Paula.8 She puts m into the box B, and locks the box with her padlock x.
The locked box is denoted by Bx. Her parents now take Bx along to the hospital and
hand it over to Paula, who doesn’t open it (well, she can’t, as she doesn’t have a
key for x), but locks it again using her padlock y. The double-locked box is denoted
by By

x , and the parents take it back home and hand it over to Ella, who removes
her lock x. Now, the box, By , is still locked with Paula’s padlock. At the parents’
next visit in the hospital, Paula receives By from them, waits until they have left, and

7 I must admit that these secrets were kept from me and I have no knowledge of their content.
8 Again, I unfortunately have no clue what this secret might be.
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then she removes her lock y, opens the box, and—bursting with anticipation—starts
reading Ella’s message.

Here is your task: Design a protocol based on Paula and Ella’s protocol from Fig-
ure 8.13. Unlike theirs, your protocol should not need boxes and padlocks, but should
use suitable mathematical notions and functions.

Hint: Note that whenever the parents had access to the box, it was locked, sadly
enough. Your protocol should also have the feature that whenever some information
is conveyed, the eavesdropper should not have a way to decipher it, under reasonable
complexity-theoretic assumptions. Note further that to execute this protocol, there
is no need for Ella and Paula to share a joint secret key. That is why this protocol,
which is based on an unpublished work of A. Shamir, is sometimes dubbed the “no-
key protocol.” It is enough for Paula and Ella each to have a private key, for locking
and unlocking just their own padlock. Finally, note that the order of locking and
removing the two padlocks does not matter here: Padlock x can be removed from
the box even though the box is still locked by y, which was put on after x. In other
words, these are symmetric operations in some sense. The function on which your
protocol should be based must include this feature as well. As a more specific hint,
recall the modular exponentiation function used in the Diffie–Hellman protocol from
Figure 8.1, which is symmetric in the exponents as well: γab ≡ γba mod p.

Oh... and if you happen to learn Ella and Paula’s secret in Story 8.38 somehow, please
let me know. I’m their father.

8.8 Summary and Bibliographic Remarks

General Remarks: As noted in Section 7.6, Diffie and Hellman laid the foundations
for public-key cryptography. Their path-breaking work [DH76] is a milestone in the
history of cryptography, not only since they were the first to discover a solution
to the secret-key agreement problem that is central to symmetric cryptography, but
also since they were the first to propose the idea of public-key cryptography. As
mentioned in Section 7.6, similar findings were obtained independently and even
earlier in the nonpublic sector. Most of the public-key cryptosystems and protocols
presented in this chapter can also be found in other textbooks on cryptography; see,
e.g., Stinson [Sti02], Buchmann [Buc01], Salomaa [Sal96], and Goldreich [Gol01].

Specific Remarks: The Diffie–Hellman secret-key agreement protocol presented in
Figure 8.1 can be found in [DH76]. ElGamal’s cryptosystem from Figure 8.3 and
the related digital signature scheme from Figure 8.4 are presented in [ElG85]. The
baby-step giant-step algorithm from Figure 8.2 for computing discrete logarithms is
due to Shanks [Sha54]. For more background and details on the discrete logarithm
problem, the reader is referred to the surveys by Odlyzko and LaMacchia [Odl85,
LO91, Odl00].

Schnorr [Sch90] proposed a modification of the ElGamal digital signature scheme
that led to the United States Digital Signature Standard, see [Nat91, Nat92]. Let p
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and q be primes with p ≡ 1 mod q; typically, p is represented in binary by a 1024
bit string and q is represented in binary by a 160 bit string. In this modification of
the ElGamal signature scheme, Bob signs a message of length log q by a signature of
length roughly 2 log q. Schnorr’s idea was to speed the computation up by working
in a subgroup of Z∗

p that has size q and for which computing discrete logarithms is
assumed to be hard.

Rabin’s cryptosystem was presented in [Rab79]. Williams [Wil80] and Kuro-
sawa, Ito, and Takeuchi [KIT88] proposed public-key cryptosystems that like Rabin’s
system are provably secure in the sense that breaking them is as hard as factoring.
Unlike Rabin’s system, however, decryption is unambiguous in their systems.

The notions of interactive proof systems and zero-knowledge protocols were
introduced by Goldwasser, Micali, and Rackoff [GMR89]. The related notion of
Arthur-Merlin games is due to Babai and Moran [Bab85, BM88]. Zachos and
Heller [Zac88, ZH86] and Boppana, Håstad, and Zachos [BHZ87] investigated these
notions early on.

Interactive proof systems, zero-knowledge, Arthur-Merlin games, and related no-
tions are studied in many research papers and textbooks, both in relation to cryp-
tography and to complexity theory. For example, a celebrated complexity-theoretic
result is due to A. Shamir [Sha92]: Interactive proof systems have precisely the
same computational power as polynomial-space Turing machines. Regarding cryp-
tographic applications of these notions, one of the most profound and compre-
hensive sources is Chapter 4 in Goldreich’s book [Gol01]. These important no-
tions are also presented in an abundance of survey papers and book chapters, for
example in those by Balcázar, Dı́az, and Gabarró [BDG90], Beutelspacher et al.
[Beu94, BSW01, Beu02], Bovet and Crescenzi [BC93], Buchmann [Buc01], Du and
Ko [DK00], Feigenbaum [Fei92], Goldreich [Gol88], Goldwasser [Gol89], Köbler,
Schöning, and Torán [KST93], Papadimitriou [Pap94], Rothe [Rot02, Rot04c], Stin-
son [Sti95], Schöning [Sch95b], Wechsung [Wec00], and Wegener [Weg03].

The particular notion of zero-knowledge introduced in Definition 8.24 is called
“honest-verifier perfect zero-knowledge,” which assumes (a) the verifier to be honest,
and (b) the probability distributions in the original and in the simulated protocol to
be perfectly identical. As mentioned immediately after this definition, assumption (a)
may be not realistic enough for most cryptographic applications, since a dishonest
verifier might alter the protocol to his own advantage. To avoid such behavior, one
can modify the definition of zero-knowledge by requiring that for each potential veri-
fier A there exists a simulator S such that the simulated protocol they jointly generate
cannot be distinguished from the original protocol. However, if the random bits are
public, then honest-verifier zero-knowledge protocols can always be transformed to
protocols that are zero-knowledge even in the presence of dishonest verifiers.

We further mentioned that assumption (b) may be too strict, and requirements
weaker than perfect zero-knowledge might work as well. Such weaker notions in-
clude “statistical zero-knowledge” (a.k.a. almost-perfect zero-knowledge) and “com-
putational zero-knowledge.” The former model requires that the information con-
veyed in the original and in the simulated protocol be indistinguishable by suitable
statistical tests. The latter model merely requires that the information conveyed in
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the original and in the simulated protocol be computationally indistinguishable, i.e.,
for each randomized polynomial-time Turing machine, the probability of detecting
differences in the corresponding distributions is negligibly small.

The zero-knowledge protocol for GI from Example 8.23 is due to Goldreich,
Micali, and Wigderson [GMW91]. They also proved one of the most important re-
sults on zero-knowledge: Every problem in NP has a computational zero-knowledge
protocol under the plausible assumption that there exist cryptographically secure
bit-commitment schemes. One of the key ideas in their proof is the design of a
computational zero-knowledge protocol for a well-known NP-complete problem,
3-Colorability, see Theorem 3.56. In contrast, Brassard and Crépeau [BC89]
provided evidence that such a strong claim is unlikely to hold in the perfect zero-
knowledge model of Definition 8.24.

The zero-knowledge protocol for QR from Figure 8.10 was proposed by Fiat and
Shamir [FS86]. The Fiat–Shamir protocol is particularly suitable for authentication
in large computer networks. It is a public-key protocol but more efficient than many
other public-key protocols. It can be implemented on a chip card. And it has the zero-
knowledge property. These advantages led to a rapid deployment of this protocol
in practical applications. For example, it is integrated in the “videocrypt” pay-TV
system [CH91]. Feige, Fiat, and Shamir [FFS88] improved the original Fiat–Shamir
zero-knowledge identification scheme to a zero-knowledge protocol in which not
only the secret square roots modulo n are not revealed, but also the information of
whether or not there exists a square root modulo n is not leaked.

The basic Merkle–Hellman cryptosystem from Figure 8.11 is due to Merkle
and Hellman [MH78]. As mentioned in the hint to solving Problem 8.2, their sys-
tem was broken in the early 1980s by A. Shamir [Sha84], see also A. Shamir
and Zippel [SZ80]. The iterated variant of the Merkle–Hellman system was bro-
ken by Brickell [Bri85], see also Adleman [Adl83] and Brickell, Lagarias, and
Odlyzko [BLO83, Bri83, Lag83].

Another variant of a knapsack-based public-key cryptosystem, proposed by Chor
and Rivest [CR88], resisted all attempts of breaking it for about a decade. For exam-
ple, Schnorr and Hörner’s attack [SH95] was partially successful; they broke the
Chor–Rivest cryptosystem in the dimensions 103 and 151. Their attack and vari-
ous other attacks on knapsack-based cryptosystems use lattice reduction algorithms
that improve the LLL algorithm by Lenstra, Lenstra, and Lovász [LLL82]. Lattice-
based techniques are particularly useful for breaking systems that are based on knap-
sacks (or subsets of sums) of low density. In contrast, the Chor–Rivest cryptosystem
is based on high-density knapsacks. Eventually, this system was broken by Vaude-
nay [Vau01] using algebraic methods. Among the knapsack-based and lattice-based
cryptosystems, the NTRU cryptosystem developed by Hoffstein, Pipher, and Silver-
man [HPS98] and related protocols [HPS01, HHGP+03] are currently still unbroken,
see also Coppersmith and A. Shamir [CS97].

Kellerer, Pferschy, and D. Pisinger have written an in-depth, very comprehensive
treatise on knapsack problems [KPP04], focusing on their algorithmic properties and
computational complexity. For more background and details on cryptosystems based
on subset of sums and knapsack problems, the reader is referred to Chapter 3 of
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Salomaa [Sal96]. In particular, it presents Shamir’s cryptanalytic attack on the basic
Merkle–Hellman cryptosystem, see also the survey by Brickell and Odlyzko [BO92].
Lagarias and Odlyzko [LO85] were among the first to solve subset sum problems
via lattice reduction techniques. For more background and details on the complexity
of lattice problems in general and in particular on their applications in cryptology,
the interested reader is referred to the book by Micciancio and Goldwasser [MG02]
and to the surveys by Cai [Cai99], Kumar and Sivakumar [KS01], and Nguyen and
Stern [NS01].

Different public-key cryptosystems whose security is based on NP-complete
problems were proposed by, e.g., Shamir [Sha83], Impagliazzo and Naor [IN96],
and Ajtai and Dwork [AD97]. Even, Selman, and Yacobi [ESY84, EY80] also stud-
ied cryptosystems that are NP-hard to break. Relatedly, they developed the theory of
“promise problems,” focusing on their applications in public-key cryptography, see
also Grollmann and Selman [GS88].

The secret-key agreement protocol from Figure 8.12 is attributed to Rivest
and Sherman in [RS97]. Rabi and Sherman proposed the related digital signature
scheme [RS97], see Exercise 8.13(a). Both protocols use a function σ that is spec-
ified merely by its properties: σ is supposed to be a total, strongly noninvertible,
commutative, associative one-way function. It is not known whether such functions
exist. Rabi and Sherman [RS97] proved that commutative, associative one-way func-
tions exist if and only if P �= NP. However, the functions they construct are neither
total9 nor strongly noninvertible, not even if one assumes P �= NP. They left open
the question of whether P �= NP is also sufficient for functions σ to exist that possess
all the properties required by the Rivest–Sherman and Rabi–Sherman protocols.

This question was solved by L. Hemaspaandra and Rothe [HR99], who proved
Theorem 8.36: Total, strongly noninvertible, commutative, associative one-way func-
tions exist in the worst-case model under the (unproven, yet plausible) assumption
that P �= NP. One-way functions with these properties have been thoroughly stud-
ied since, in a variety of contexts; see, e.g., the work by L. Hemaspaandra, Pasa-
nen, and Rothe [HPR01] and Homan [Hom04], and the survey by Beygelzimer et
al. [BHHR99]. It is important to note, however, that Theorem 8.36 is far from prov-
ing the Rivest–Sherman and Rabi–Sherman protocols secure. That is, these protocols
lack a proof of security, even if it were known that P �= NP, i.e., even if a function σ
with the desired properties were known to exist.

The security issues of the Rivest–Sherman and Rabi–Sherman protocols are dis-
cussed in more detail in [HR99], see also Exercise 8.13(f). In a nutshell, strong
noninvertibility merely precludes the obvious direct attack mentioned in Section 8.6
but does not preclude other potential types of attack. Further, noninvertibility and
strong noninvertibility are defined in the worst-case model, which is not suitable in
applied cryptography. For cryptographic applications, one would need to construct

9 Rabi and Sherman [RS97] propose a construction that they claim can be used to obtain
a total, associative one-way function from any given nontotal, (weakly) associative one-
way function. However, the proof of their claim is flawed: If their claim were true then the
unlikely collapse UP = NP would follow immediately [HR99].
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functions that are noninvertible and strongly noninvertible in the average-case com-
plexity model, under plausible assumptions. There do exist interesting results in com-
plexity theory that provide potential candidates for achieving this goal. In particular,
Ajtai [Ajt96] proved that certain variants of the NP-complete shortest lattice vector
problem are equally hard in the worst-case model and in the average-case model.
The public-key cryptosystem designed by Ajtai and Dwork [AD97] is based on this
worst-case/average-case equivalence.

Neither of the two secret-key agreement protocols presented in this chapter has
a proof of security to date, neither the Diffie–Hellman protocol from Figure 8.1 nor
the Rivest–Sherman protocol from Figure 8.12. One major difference between these
two protocols is that, unlike the Rivest–Sherman protocol that is based on an unspec-
ified function σ, the Diffie–Hellman scheme uses a concrete, specific function as its
key building block. Its security rests on the (unproven, yet plausible) assumption
that computing discrete logarithms is computationally intractable. However, break-
ing Diffie–Hellman is not known to be as hard as computing discrete logarithms.
Some progress has been made by Maurer and Wolf [MW99, MW00], who estab-
lished conditions for relating the hardness of breaking Diffie–Hellman to that of
computing discrete logarithms. Again, their results rest on unproven, yet plausible
assumptions: Breaking Diffie–Hellman and computing the discrete logarithm are
polynomial-time equivalent tasks in the underlying cyclic group G, assuming that
ν(p) is polynomial in log p, where ν(p) denotes the minimum of the largest prime
factors of d, taken over all numbers d in the interval [p− 2

√
p + 1, p + 2

√
p + 1].

The notion of complexity-theoretic (i.e., worst-case) one-way functions was in-
troduced by Grollmann and Selman [GS88]; see also Berman [Ber77], Brassard,
Fortune, and Hopcroft [BFH78, Bra79], and Ko [Ko85]. Complexity-theoretic one-
way functions of different sorts, and related notions, have been intensely studied
ever since; see, e.g., [AR88, Wat88, HH91, Sel92, RS93, HRW97b, RS97, HR99,
BHHR99, HR00, HPR01, RH02, FFNR03, HT03b, Hom04, HRS04]. For example,
worst-case one-way functions are closely related to the isomorphism conjecture, see
Conjectures 3.73, 3.79, and 3.80 in Section 3.6.2.

In another line of research, the existence of certain types of worst-case one-
way functions has been characterized in terms of suitable complexity class sepa-
rations. For example, the question of whether or not there exist one-way permuta-
tions (i.e., total, one-to-one, onto one-way functions) was raised by Grollmann and
Selman [GS88], studied by L. Hemaspaandra and Rothe [HR00, RH02], and finally
solved by Homan and Thakur [HT03b]: One-way permutations exist if and only if
P �= UP∩coUP. Fenner, Fortnow, Naik, and J. Rogers [FFNR03] proved that partial,
many-to-one, onto one-way functions exist if and only if P �= NP; related results were
independently obtained by L. Hemaspaandra, Rothe, and Wechsung [HRW97a].

As a final remark, Story 8.37 is inspired by a story told in [BHHR99], and
Story 8.38 is based on a true story.
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[Hač79] L. Hačijan. A polynomial algorithm in linear programming. Soviet Math. Dokl.,
20:191–194, 1979.

[Har69] F. Harary. Graph Theory. Addison-Wesley, 1969.
[Har74] F. Harary. A survey of the reconstruction conjecture. In Graphs and Combina-

torics, pages 18–28. Springer-Verlag Lecture Notes in Mathematics #406, 1974.
[Har78] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer

Science, 7(3):273–286, 1978.
[Har83a] J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible

computations. In Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science, pages 439–445. IEEE Computer Society Press, 1983.

[Har83b] J. Hartmanis. On sparse sets in NP−P. Information Processing Letters, 16(2):55–
60, 1983.
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[Köb95] J. Köbler. On the structure of low sets. In Proceedings of the 10th Structure in
Complexity Theory Conference, pages 246–261. IEEE Computer Society Press,
1995.

[Kob97] N. Koblitz. Algebraic Aspects of Cryptography, volume 3 of Algorithms and
Computation in Mathematics. Springer-Verlag, 1997.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag,
Berlin, Heidelberg, New York, 2004.



References 433

[KR95] B. Kaliski Jr. and M. Robshaw. The secure use of RSA. CryptoBytes, 1(3):7–13,
1995.

[Kre88] M. Krentel. The complexity of optimization problems. Journal of Computer and
System Sciences, 36:490–509, 1988.

[KRS88] B. Kaliski Jr., R. Rivest, and A. Sherman. Is the data encryption standard a
group? (Results of cycling experiments on DES). Journal of Cryptology, 1(1):3–
36, 1988.
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[Sch87] U. Schöning. Probabilistic complexity classes and lowness. In Proceedings of
the 2nd Structure in Complexity Theory Conference, pages 2–8. IEEE Computer
Society Press, June 1987.
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path in a 82

– edge set of a, see also E(·)
81

– isomorphic —s, see also∼= 43
– join of —s, see also �� 189,

243
– minimum degree of a, see also

min-deg(·) 97, 181
– network 172
– planar 248
– simple 43
– undirected 93

automorphism of an
see automorphism of a graph

chromatic number of an
see number, chromatic

clique of an 93
coloring of an 95
domatic number of an

see number, domatic
dominating set of an 96, 172
hamiltonian circuit in an 246
independence number of an

see number, independence
independent set of an 93
isomorphism between —s

see isomorphism between graphs
k-colorable 95
vertex cover of an 93

– vertex set of a, see also V (·)
81

graph accessibility problem, see
also GAP 55, 82, 82, 121

– alternating, see also AGAP 231
– restricted to acyclic graphs,

see also GAPacyclic 86, 86, 87,
116

graph automorphism problem,
see also GA 43, 309

graph isomorphism problem,
see also GI 5, 7, 55, 43, 106,
107, 117, 121, 122, 171, 241,
252, 257, 294–302, 305, 308–
310, 336, 388–392, 404, 410

– smallest solution of the 192
graph nonisomorphism problem,

see also GNI 296
Graph Reconstruction Conjecture 309,

310
graph three-colorability problem

see 3-Colorability
greatest common divisor, see also

gcd(·, ·) 10
Green, F. 308
Greibach, S. 66
Grollmann, J. 123, 411, 412
Große, A. VII, VIII, 122, 247, 252
group 37

– abelian 38
– commutative 38
– closure property of a 37
– inverse element in a 37
– neutral element of a 37
– order of a finite — 38
– order of a — element 37
– operation, see also ◦ 37
– permutation

see permutation group
– subgroup of a, see also ≤ 38

group axioms 37
Gundermann, T. 249, 250
Gupta, S. 308
Gurevich, Y. 249
Guruswami, V. 185, 188, 250
Guruswami–Khanna reduction

185, 189, 250

H
Halevi, S. 122, 247
Halldórsson, M. 8, 121, 251
halting problem 235
Han, Y. 307
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hamiltonian circuit problem 246
– for directed graphs 246
– for undirected graphs 246

Harary, J. 51
hardness see ≤log

m -hardness;
see ≤p

m-hardness;
see ≤p

T-hardness;
see ≤p

tt -hardness;
see BHk(NP)-hard;
see ∆p

2-hard;
see coNP-hard;
see NP-hard;
see Θp

2-hard
Hardy, G. 51
Hartmanis, J. 6, 108–111, 119, 122,

123, 125, 255
hashing

– universal 295, 309
hashing function 295

– family of —s 295
collision-free 295

Hassan, N. VII
Håstad, J. 307, 352, 358, 409
Hausdorff, F. 175, 249
Hausdorff hierarchy 175, 250

– see also boolean hierarchy , nor-
mal form

Hay, L. 216, 254
Heggernes, P. 250
Heller, H. 283, 307, 409
Hellman, M. 7, 357–362, 393, 408,

410, 411
Hemachandra, L.

see Hemaspaandra, L.
Hemaspaandra, E. VII, 119, 121,

218, 251–254, 256, 257, 310
Hemaspaandra, L. VII, 8, 62, 111,

118, 119, 122–125, 175, 216,
218, 249, 250, 252–258, 304,
307–310, 405, 406, 411, 412

Hempel, H. VIII, 218, 256, 257
Hennie, F. 70, 119
HH 232, 234, 235, 239, 240, 246
hierarchy

– alternating sums
see alternating sums hierarchy

– Arthur-Merlin
see Arthur-Merlin games

– boolean see boolean hierarchy
normal form see boolean hier-

archy normal form
– Chomsky

see Chomsky hierarchy
– counting

see counting hierarchy
– Hausdorff

see Hausdorff hierarchy
– high see high hierarchy
– low see low hierarchy
– nested difference

see nested difference hierarchy
– parallel query see query hierar-

chy over NP, parallel
– polynomial

see polynomial hierarchy
– query see query hierarchy over NP
– space see space hierarchy
– symmetric difference see

symmetric difference hierarchy
– time see time hierarchy
– truth-table query see query hi-

erarchy over NP, parallel
– union-of-differences

see Hausdorff hierarchy
High0 233, 294
High1 233
High2 294
high hierarchy, see also HH 6,

232, 234, 235, 239, 240, 246,
257

– first level of the see High1

– kth level of the see Highk

– second level of the see High2

– zeroth level of the see High0

Highk 232, 234, 235, 238, 240, 246
highness 232, 238, 257

see also high hierarchy
Hill cipher see cipher, Hill
Hinrichs, M. VIII
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Hoffman, C. 309
Hoffstein, J. 410
Hofmann, A. VIII
Holy Grail 4, 387
Homan, C. VII, 411, 412
Homer, S. 8, 118, 51, 123, 123, 255
honesty see function, honest
Hopcroft, J. 51, 99, 412
Hörner, H. 410
Huang, M. 358

I
IBM 169
id 41
id 41
idempotence 31
Immerman, N. 77, 119, 121
immunity 258
Impagliazzo, R. 411
impersonation attack see attack, im-

personation
implication, see also =⇒ 29, 30
impossibility theorem 206
independence number problems 202

– IN-Equ 202, 204, 245
– IN-Geq 202, 204, 245, 253
– IN-Odd 202, 204, 245, 253

independence of irrelevant alternatives
206

independent set problem, see also
IS 93, 94, 116

– approximation heuristics for the
254

information and coding theory see
theory, information and coding

integer linear programming
see linear programming
problem, integer

integer see number, integer
interactive proof system

see proof system, interactive
intruder-in-the-middle attack

see attack, man-in-the-middle
IP 244, 307, 308

– see also proof system, interactive

IS 93, 94, 116
ISO(·, ·) 43
isomorphism

– between boolean formulas 252
– between graphs,

see also ISO(·, ·) 43
– between sets 108

isomorphism conjecture 6, 108, 109,
110, 122, 125, 255, 412

Ito, T. 409
Iwama, K. 263, 306

J
Jacobi symbol, see also

(
m
n

)
40

Jacobson, N. 51
Jensen’s inequality 157, 158
Jerschow, Y. 4
Jha, S. 119
Jiang, Z. VII, 258
Johnson, D. 8, 62, 88, 99, 118, 120,

250
Jones, N. 121
Joseph, D. 110, 111, 122, 123
jump operator 235

K
κ(·) 103, 208
K 235, 236, 246
K(·) 236, 238, 246
Kn 236, 237, 238, 246
Kn(·) 236, 237, 238, 246
K-operator see K(·); see K

– iterated see Kn(·); see Kn

Kadin, J. 217, 218, 249, 254–256
Kahn, D. 168
Kann, V. 8, 251
Kaplan, H. 120
Karp, R. 99, 120, 254
Karp–Lipton Theorem

see Theorem, Karp–Lipton
Karpinski, M. 8, 251
Kaliski, B. 169, 359
Kasiski, F. 140, 141, 143, 145, 151,

163, 168
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Kasiski’s method 140, 141, 143, 145,
163
see also cryptanalytic attack, on
the Vigenère cipher

Kayal, N. 106, 118, 311, 335, 344,
357, 358

k-CNF 31
k-Colorability 95
Kellerer, H. 410
Kelly, P. 309
Kemenization

– local 254
Kemeny election system 253, 254
Kerckhoffs von Nieuwenhof, J. 129
Kerckhoffs’s Principle 129
key 127

– spurious 167
key equivocation 151, 155, 159, 160
key-only attack see attack, key-only
key space 127
key stream see cipher, stream
Khanna, S. 185, 188, 250, 251
Khuller, S. 252
Kiometzis, C. VIII
Kleene, S. 17, 51, 398
knapsack problem 5, 98, 104

– high-density 410
– low-density 410

known-plaintext attack see attack,
known-plaintext

Ko, K. 8, 118, 123, 257, 308, 409,
412

Köbler, J. 121, 216, 250, 254, 255,
257, 258, 305, 307–310, 409

Koblitz, N. 336, 357, 358
Königstein, G. VIII
Kortsarz, G. 121
Kozen, D. 257
Kratsch, D. VIII, 309
Krentel, M. 252, 254
k-SAT 83, 306
Kumar, R. 168, 254, 411
Kuroda, S. 77
Kurosawa, K. 409
Kurtz, S. 111, 122, 123, 308

Kurur, P. 299, 309

L
L 61, 69, 72, 81, 122, 193, 116, 244
L(·) 56, 25
L0 19, 20, 28
L1 see CS
L2 see CF
L3 see REG
Laaser, W. 121
Ladner, R. 106, 106, 121, 121, 241,

252
Lagarias, J. 410, 411
Lagrange, J. 39
Lagrange’s Theorem

see Theorem, Lagrange’s
LaMacchia, B. 408
Landers-Appell, C. VII
Landers-Appell, K. VII
Landry, F. 344
Lange, K. 257
language 16

– cardinality of a 16
– complement of a, see also 17
– concatenation of —es 17
– context-free, see also CF; L2 19,

20, 50
– context-sensitive, see also CS; L1

19, 20, 77
– ε-free iteration, see also + 17
– formal 16
– intersection of —es, see also ∩

17
– iteration of a, see also ∗ 17
– Kleene closure of a

see language, iteration of a
– nontrivial 78
– operation on —es 17
– recursively enumerable, see also

RE 27, 28
– reduction to a 254, 255
– redundancy of a 167, 169
– regular, see also REG; L3 19,

20, 50



462 Index

– sparse 109, 110, 119, 122, 123,
125, 218, 254, 257

– tally 71, 124, 125
binary representation of a, see

also Bin(·) 71
– tally encoding of a, see also

Tally(·) 71
– type 0, see also L0 19, 20, 28
– type of a 19
– union of —es, see also ∪ 17

Las Vegas algorithm see algorithm,
Las Vegas

lattice problem 352, 410, 412
– average-case hardness of —s 412
– worst-case hardness of —s 412

lattice reduction 352, 410, 412
lattice-based cryptography

see cryptography, lattice-based
Lautemann, C. 307
Legendre symbol, see also

(
m
n

)
40

legitimate deck see deck, legitimate
Legitimate-Deck 309, 310
Leibert, M. VII
Leiserson, C. 51
Le Lasseur, H. 344
Lenstra, A. 344, 358, 410
Lenstra Jr., H. 104, 344, 346, 358,

406, 410
LERC 298, 299–301
Levin, L. 88, 120
Lewis, P. 119
LH 232, 234, 235, 239, 240, 246
Lien, Y. 121
ILin 59
ILin(·) 59
Lindner, C. 4
linear bounded automaton 26
linear feedback shift register 151
linear programming problem 104,

249, 253, 253
– integer 104, 253

linear space
– deterministic see LINSPACE
– nondeterministic see NLINSPACE

linear speed-up theorem
see theorem, linear speed-up

linear tape-compression theorem
see theorem, linear tape-compres-
sion

linear time see LINTIME
Linial, N. 251
LINSPACE 61, 69, 115
LINTIME 61, 66
Lipton, R. 122, 247, 254
Lischke, G. VIII, 258
Liśkiewicz, M. 124
LLL algorithm 410
log 16
logarithm function

see function, logarithm
logarithmic space

– alternating see AL
– deterministic see L
– nondeterministic see NL

logic 4, 29–37, 51
– modal 254
– nonmonotonic 252
– predicate 34–37

first-order 37
second-order 37

– propositional 29–33
logr α mod p 39
Long, T. 123, 255, 257, 258
Longpré, L. 119, 255
Lovász, L. 249, 410
Low0 233
Low1 233
Low2 290, 292, 294, 296, 297
low-exponent attack 351, 358
low hierarchy, see also LH 6, 7,

171, 232, 234, 235, 239, 240,
246, 257, 258

– extended, see also ELowk 257,
– first level of the see Low1

– kth level of the see Lowk

– second level of the see Low2;
see also Σp

2 -low
– zeroth level of the see Low0
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Lowk 232, 234, 235, 238, 240, 246,
292

lowness 232, 238, 257, 262, 290,
292, 294–302, 306, 307, 309
see also low hierarchy;
see also self-lowness

Luby, M. 8, 168
Lund, C. 251
Lutz, D. VII
Lynch, N. 121, 252

M
MA 286, 287–290, 292, 303, 306,

307, 310
– see also Arthur-Merlin games

Mahaney, S. 109, 111, 122, 123,
255

majority quantifier
– see quantifier, polynomially length-

bounded, majority
– see ∃+

majority rule 207
– defeat according to the 207
– win according to the 207
– winner according to the

see Condorcet winner
Majority-SAT 274
MAM 286, 287, 288, 303

– see also Arthur-Merlin games
Manasse, M. 344
Manders, K. 257
man-in-the-middle attack

see attack, man-in-the-middle
many-one reducibility

see reducibility, many-one;
see ≤log

m ;
see ≤p

m

Markov chain 265, 266
marriage problem see matching

problem, bipartite
matching

– bipartite 98
– tripartite 99, 117

matching problem 98
– bipartite 98

– three-dimensional
see 3-DM

– tripartite see matching prob-
lem, three-dimensional

– two-dimensional
see matching problem, bipartite

matrix
– adjoint see adjoint matrix
– determinant of a, see also det

124, 138, 167
– inverse of a 138
– permanent of a,

see also perm(·) 124
Maurer, U. 412
Mauve, M. VIII
maximal non-hamiltonian circuit

problem 246, 249
– for directed graphs,

see also MNHC 246, 249
– for undirected graphs,

see also MDNHC 246
Max-SetPacking-Geq 208, 245
May, A. 358
Mayer, I. VIII
MEE-DNF 245, 251
Merkle–Hellman cryptosystem 361,

393–396, 405, 406, 410, 411
– iterated 410
– security of the see cryptana-

lytic attack, on Merkle–Hellman
Merkle, R. 361, 393, 410, 411
Merlin, see also

Arthur-Merlin games 4
Merz, J. VIII
message see plaintext
message authentication 130
message integrity 130
message space see plaintext space
Meyer, A. 107, 121, 251, 254
Meyer, G. 248
Micali, S. 307, 309, 388, 391, 392,

409, 410
Micciancio, D. 8, 168
Miller, G. 7, 311, 323–329, 335,

354, 356–358
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MILLER-RABIN 324
Miller–Rabin liar see MR-liar
Miller–Rabin test see primality test,

Miller–Rabin
Miller–Rabin witness

see MR-witness
mind-change technique 214
min-deg(·) 97, 181
Minimal-3-Uncolorability 248,

– restricted to planar graphs 248
Minimal-3-UNSAT 248, 247
minimum equivalent expression prob-

lem, see also MEE-DNF 171,
245, 251

MDNHC 246
MNHC 246, 249
mod see congruence modulo an

integer
modular see also function, logarithm,

discrete — with modulus p and
base r

Monien, B. 263, 265
monoalphabetic cryptosystem 131,

132, 134, 135, 140, 142, 167–
169

monoid 37
– abelian 38
– commutative 38

Monte Carlo algorithm
see algorithm, Monte Carlo

Moore, J. 359
Moran, S. 7, 307, 409
Morgenstern, C. 161
Morrison, M. 344
Mothers of Invention 163
Muchnik, A. 121
Motwani, R. 51, 251
MR-liar 325
MR-Liarsn 327, 355
MR-LIARSn 327, 328
MR-witness 325
Müller, H. VIII, 258
multiset 207

N
N 10
Nader, R. 206
Naik, A. 121, 123, 412
nail file see tools, nail file
Naor, M. 254, 411
Nasser, N. 250
natural see number, natural
Navajo code 169
NE 61, 71, 116, 124
negation, see also ¬ 29, 30
nested difference hierarchy 175, 176,

250, 250
– see also boolean hierarchy, nor-

mal form
network

– communication 172
– computer 172, 172

NEXP 61
NEXPSPACE 61
NFA 21, 22, 48
Nguyen, P. 168, 411
Niedermeier, R. 257
NIST 170, 408
NL 5, 61, 72, 76, 77, 81, 82, 84, 86,

116, 121, 122
NL-complete 82, 84, 86, 116, 121,

122
see also ≤log

m -completeness
NLINSPACE 61, 77, 115
Nöckel, B. VIII
nonapproximability 8, 121, 251, 254
nondeterministic polynomial time

see NP
nondictatorship 206
nonresidue

– quadratic, see also QNR 40
Norris, M. 347, 358
NOTM 28
NP 5, 61, 71, 72, 78, 106–110, 116,

118, 120, 122, 123, 125, 174,
176, 177, 179, 184, 191, 193–
196, 218, 232–236, 238, 241,
248, 253–256, 241, 243, 244,
246, 247, 271, 278–280, 292,
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294, 287, 290, 310, 355, 388,
399, 402, 410–412

– certificate of an problem
see witness

– P versus NP question 5, 106–
108, 120

– solution of an problem
see witness

– ≤p
tt -closure of,
see also PNP

tt 213, 254
NPC 193, 244
NP-complete 5, 6, 7, 88, 92, 93,

95, 97, 100, 103, 105, 106, 108,
109, 116, 120, 121, 236, 241,
243, 246–248, 253, 255, 335,
336, 358, 361
see also ≤log

m -completeness;
see also ≤p

m-completeness
– exact variant of — problems 6,

171, 173, 248
– see also theory of NP-complete-

ness
NP-hard 172, 185, 241, 249, 251–

253
NPNP, see also Σp

2 194, 195, 196,
245

NPOTM 28, 193
NPP 193, 244
NPPSPACE 193, 244
NPSPACE 61, 76
NSF VIII
NSpaceM (·) 58
NSPACE(·) 59, 66, 74, 77, 114, 228,

231
NTM 23, 56
NTimeM (·) 58
NTIME(·) 59, 66, 74, 114, 225, 228
NTRU cryptosystem 410
Nugent, R. VIII
number

– Blum 382
– Carmichael 321, 322, 323, 325,

327, 328, 354, 355
– chromatic, see also χ(·) 95

– domatic, see also δ(·) 97,
121, 172

– Fermat, see also Fm 344, 356
– Fibonacci, see also fn 12
– Gödel 27
– independence, see also α(·) 202
– integer, see also Z 10
– natural, see also N 10

binary representation of a,
see also bin(·) 17

– prime 38, 317
– primitive element of a 7, 362
– rational, see also Q 49
– real, see also R 49
– RSA-d 344, 345

number theory see theory, number

O
o(·) 60
O(·) 16, 34, 59
Õ(·) 262
Odd-k-SAT 213
Odd-Max-SAT 252
Odd-SAT 245
Odifreddi, P. 51
Odlyzko, A. 408, 410, 411
OFB 149, 165
Ogihara, M. VII, 8, 62, 109, 118,

121, 122, 124, 218, 250, 255,
256, 304, 307, 308

Ogiwara, M. see Ogihara, M.
one-time pad

see Vernam’s one-time pad
one-way conjecture 111
one-way function 2, 5, 8, 108, 110,

111, 123, 123,
– associative 398
– commutative 399
– polynomial-to-one 123
– one-to-one 123
– onto 113, 117
– strong 397, 398, 399, 405
– trapdoor 8, 393, 394
– worst-case 361, 365, 396, 411,

412
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one-way/isomorphism conjecture 111
one-way permutation 124
Orponen, P. 257
Ottmann, T. 51
output feedback mode see OFB

P
Πp

2 , see also coNPNP 194, 195,
196, 251, 252, 256, 283, 285,
288–290, 310

Πp,AM∩coAM
2 289

Πp
2 -complete 251, 252

Πp
3 280

Πp
i 194, 195, 196, 198, 200, 256

Πp
i -complete 200, 217, 218

ΠiSAT 200, 244
ΠiSAT formula 200
P 5, 6, 61, 70–72, 78, 106, 108,

109, 111–113, 116, 120–122, 174,
176, 177, 191, 193–196, 198,
231–233, 241, 244, 262, 271,
281, 292, 310, 335, 357, 358,
411, 412

– P versus NP question 5, 106–
108, 120

IP 25
P(·) 103
PC 193, 244
PNP, see also ∆p

2 194–196
PA[k] 213
PC[k] 213
PNP[k] 212, 213
PNP[O(1)] 212, 216
PNP[O(log)], see also Θp

2 202, 212,
216, 254, 255

PΣp
i−1[O(log)] 202

PA
k-tt 213

PC
k-tt 213

PNP
bf 253

PNP
btt 213, 216, 254

PNP
k-tt 213

P
Σp

i

k-tt 256
PC

tt 203
PNP

tt 213, 216, 253, 254

PNPNP

, see also ∆p
3 195, 256

PP 193, 244
PPP 308, 310
PPPPH

308
PPSPACE 193, 244
PSPP 293
Papadimitriou, C. 8, 51, 118, 173,

202, 248, 249, 252, 307, 308,
409

parallel access to NP, see also Θp
2 ;

PNP[O(log)]; PNP
tt 201, 203, 206,

208, 254
parallel oracle access 203
parallel time 228
Parberry, I. 308
Pareto Principle 206
partial order

– polynomially length-related 107
– polynomially well-founded 107

partial recursive function
see function, partial recursive

Pasanen, K. VII, 405, 411
Paterson, M. 107, 121
Paturi, R. 263, 306
Paula see Rothe, P.
Pavan, A. 124
P-complete 121, 122, 231, 232, 238,

239
PCP 251
PCP theorem see theorem, PCP
perfect secrecy 6, 151–155, 166
perm(·) 124
permanent of a matrix

see matrix, permanent of a
permutation, see also Sn 41

– composition of —s 41
permutation group 41

– complete right transversal in a
42

– generator of a 42
– identity of a, see also id 41
– (pointwise) stabilizer in a 42
– right co-set of a 42
– strong generator of a 42
– tower of stabilizers in a 42



Index 467

Petrank, E. 122, 247
Pferschy, U. 410
PH 125, 171, 194, 195, 196, 198,

200, 217, 218, 234, 244, 249,
252, 254–256, 310

PHT 217
Pipher, J. 410
Pisinger, D. 410
p-isomorphism, see also∼=p 108,

117
plaintext 127
plaintext space 127
Poe, Edgar A. 127, 167
Pollard, J. 337, 338, 343, 344, 346,

355, 358
POLLARD 337
Pollard’s p − 1 factoring algorithm,

see also POLLARD 337, 338,
343, 344, 346, 355, 358

IPol 59
IPol(·) 59
polyalphabetic cryptosystem 135, 136,

140, 163
polygamy 4, 99
POLYLOGSPACE 69, 115
polymer chemistry 124
polynomial hierarchy, see also PH

6, 125, 171, 194, 195, 196,
198, 200, 217, 218, 232, 234,
235, 240, 251, 252, 254, 257,
261, 277, 281, 286, 288, 294,
297, 307–309

– collapse of the 198, 217, 218,
234, 235, 240, 249, 252, 255–
257, 297

– downward collapse within the 256
– ith level of the, see also Σp

i ;
Πp

i ; ∆p
i ; Θp

i 194, 195, 196,
198, 200, 201, 217, 218, 232,
234, 237, 238, 240, 246, 256,
257

– second level of the, see also
Σp

2 ; NPNP; Πp
2 ; coNPNP; ∆p

2;
PNP; Θp

2 ; PNP[O(log)] 194, 195,

196, 212, 245, 251, 252, 256,
257

Polynomial Hierarchy Tower, see
also PHT 217

polynomial-size 254, 257
polynomial space

– deterministic see PSPACE
– nondeterministic see NPSPACE

polynomial time 61
– alternating see AP
– deterministic see P
– nondeterministic see NP
– probabilistic see PP

bounded-error — see BPP
one-sided error — see RP;

see coRP
stoic — see SPP
zero-error — see ZPP

– random see RP
– unambiguous see UP

Polytope(·) 249
Pomerance, C. 358
Porta, G. 168
Post, E. 121
Post’s problem 121
Potthoff, M. VIII
PP 6, 7, 124, 257, 261, 270, 271,

274, 277, 290–294, 298, 302,
303, 305–308, 310

PP-complete 7, 274
PP-low 293, 308, 310
PPpath 303, 305, 306
P-printability 123, 125
PPSPP 293
Pr(·) 46
Pr(· | ·) 46
Pratt, V. 118
predicate symbol 34
preference order 207
preference profile 207
prefix search 191, 220
primality problem, see also Primes

7, 62, 106, 118, 311, 317, 318–
321, 324, 326, 330, 333, 335,
336, 354, 357, 358
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primality test 7, 317–335
– Fermat, see also FERMAT 7,

319–323, 326, 353
– Miller–Rabin,

see also MILLER-RABIN 7,
311, 323–329, 354, 356, 358

– Solovay–Strassen,
see also SOLOVAY-STRASSEN

7, 311, 329–335, 358
prime number see number, prime
prime number theorem

see theorem, prime number
Primes 317
primitive element see number, prim-

itive element of a
private-key cryptography

see crytography, private-key
private-key cryptosystem

see cryptosystem, private-key
probabilistically checkable proof sys-

tem see proof system, proba-
bilistically checkable

probabilistic polynomial time see PP
– bounded-error see BPP
– one-sided error see RP; see coRP
– stoic see SPP
– zero-error see ZPP

probability, see also Pr(·) 46
– conditional, see also Pr(· | ·) 46

probability amplification 7, 272, 276
probability distribution 46

– uniform 46
probability space 46
probability theory

see theory, probability
problem of breaking ElGamal

see break-elgamal
problem of breaking Rabin

see break-rabin
projection theorem

see theorem, projection
promise class 55, 271, 273, 276,

292, 303, 308
promise problem 308, 309, 411
proof system

– interactive 2, 7, 251, 252, 256
see also Arthur-Merlin games

– probabilistically checkable,
see also PCP 251

prover 307
– see also proof system, interactive
– see also zero-knowledge protocol

proof verification 251
see also PCP

protocol
– authentication

see authentication protocol
– challenge-and-response see

challenge-and-responseprotocol
– digital signature

ElGamal see ElGamal digital
signature

Rabi–Sherman see Rabi–Sher-
man digital signature

RSA see RSA digital signature
– ElGamal

see ElGamal cryptosystem
– Merkle–Hellman see Merkle–

Hellman cryptosystem
– Rabin see Rabin cryptosystem
– RSA see RSA cryptosystem
– secret-key agreement

Diffie–Hellman
see Diffie–Hellman protocol

Rivest–Sherman
see Rivest–Sherman protocol

– Shamir’s no-key
see Shamir’s no-key protocol

– zero-knowledge
see zero-knowledge protocol

p-selectivity see set, p-selective
PSPACE 6, 61, 69, 72, 76, 78, 115,

193, 194, 200, 201, 228, 241,
244, 271, 308, 310

PSPACE-complete 200, 228, 244
public-key cryptography

see cryptography, public-key
public-key cryptosystem

see cryptosystem, public-key
Pumping Lemma



Index 469

– for context-free languages 50
– for regular languages 50

Q
Q 49
QBF 32
QBF 199, 200, 201, 228, 244
QBFsimple 244
(Q1 |Q2) 280
quadratic nonresidue

see nonresidue, quadratic
quadratic residue

see residue, quadratic
quadratic sieve see factoring

algorithm, quadratic sieve
QNR 40
QR 40, 375
QRp 375
quantified boolean formula,

see also QBF 32
– closed 32
– open 32
– in prenex form 33
– satisfiable 36
– simple, see also QBFsimple 244
– valid 36

quantified boolean formula problem
199

– with a bounded number of alter-
nations, see also ΣiSAT;
ΠiSAT 6, 200, 244

– with an unbounded number of al-
ternations, see also QBF 6,
199, 200, 201

quantifier
– existential, see also ∃;

∨
32

– polynomially length-bounded
existential, see also ∃p 190,

191, 196, 198
majority, see also ∃+ 280,

281–297, 303
universal, see also ∀p 190,

191, 196, 198
– universal, see also ∀;

∧
32

quantifier string 280

– sensible pair of —s 280
– complexity class defined by —s,

see also (Q1 |Q2) 280
query hierarchy over NP, see also

PNP[O(1)]; PNP[O(log)] 6, 212,
254

– kth level of the, see also PNP[k]

212, 213
– parallel, see also PNP

btt ; PNP
tt 212,

213, 254, 256
kth level of the,

see also PNP
k-tt 213

– truth-table see query hierarchy
over NP, parallel

query order 257

R
IR 25, 57
R 49
R(·) 28
Rabi, M. 361, 396, 405, 406, 411
Rabin cryptosystem 361, 380–385,

404, 409
Rabin, M. 7, 22, 52, 63, 311, 323–

329, 335, 354, 356–361, 380–
385, 404, 409

Rabin’s Theorem
see Theorem, Rabin’s

Rabi–Sherman digital signature 405
– security of the 411, 412

Rackoff, C. 123, 307, 409
Radziszowski, S. 310
Rajasethupathy, K. 254
RANDOM-FACTOR 384, 385
randomized algorithm

see algorithm, randomized
random polynomial time see RP
RANDOM-SAT 262, 266, 267, 268,

302, 306
random walk algorithm

see algorithm, random walk
random variable 47
Ranjan, D. 252
Rao, R. VII, 119
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rate of growth
see function, growth rate of a

rationals see number, rational
Razborov, A. 308
RE 27, 28, 121, 191, 235
real see number, real
real-time, see also REALTIME 53,

66, 117
REALTIME 61, 66
recursive enumerability see language,

recursively enumerable;
see also RE

recursive function theory
see theory, recursive function

recursively presentable 239, 240, 246
reducibility 5

– many-one
log-space see also ≤log

m 55,
79, 81, 82, 84, 86, 87, 121, 122,
193, 231, 232, 244, 252

polynomial-time, see also ≤p
m

55, 77, 78, 116, 120, 185, 193,
194, 236, 238, 239, 244, 246,
252, 255, 274, 278, 294, 297,
303, 309

– polynomial-time randomized
249, 254

– polynomial-time truth-table,
see also ≤p

tt 202, 203, 252,
255

disjunctive 255
– polynomial-time Turing

deterministic, see also ≤p
T 125,

193, 194, 238, 244, 246, 252,
254, 255, 308, 366, 374

nondeterministic, see also ≤NP
T

193, 193, 252, 244
positive, see also ≤p

pos-T 194,
252, 244

randomized 355, 358, 383
strong nondeterministic, see also
≤NP

sT 233, 236, 245, 246, 257
– see also γ-reducibility
– see also self-reducibility

reflexivity 50, 117

REG 19, 20, 50
Reingold, N. 306, 307
Reischuk, R. 8, 118
Reith, S. 256
rejecting computation

see Turing machine, computa-
tion of a, rejecting

– number of —s see rejM
rejM 291
relativization 258
relativized world

– see relativization
– see set, oracle

remainder class 50
residue

– quadratic, see also QR 40
– class of —s see remainder class

resource see complexity measure
resource function see complexity

class, resource function of a
Riege, T. VII, VIII, 4, 250
right co-set see permutation group,

right co-set of a
– see also LERC 42

Rijmen, V. 170
ring 38

– commutative 38
– invertibility in a 38
– one element of a 38
– zero element of a 38

ring automorphism 358
– counting problem for —s,

see also #RA 358
ring with one 38
Rivest, R. 51, 169, 311, 312, 357,

361, 396–399, 402, 405, 406,
410–412

Rivest–Sherman protocol 361, 396–
402

– security of the 411, 412
Robshaw, M. 359
Rogers, J. 111, 123, 412
Rogers Jr., H. 51, 108, 235, 257
Rohatgi, P. 249, 254
Rosen, A. 51
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Rossmanith, P. 257
Rothe, E. V, VIII, 70, 137, 165,

217, 407, 408
Rothe, I. V, VIII
Rothe, J. 119, 122–124, 168, 175,

206, 247, 250–254, 257, 258,
308, 359, 405, 406, 411, 412

Rothe, P. V, VIII, 70, 142, 165,
217, 407, 408

Royer, J. 111, 122, 123
Rozenberg, G. VIII
RP 6, 250, 255, 261, 268, 270, 271–

273, 277, 278, 290, 302, 303,
305, 307, 310, 323

RPpath 271, 303, 305, 306
RPq 272, 354
RSA cryptosystem 5, 7, 106, 311,

312–316, 320, 335–337, 344, 357,
361, 383, 393

– security of the see cryptana-
lytic attack, on RSA

RSA digital signature 7, 316, 353,
376

– forging —s 343
– security of —s see cryptana-

lytic attack, on RSA
RSA-d number see number, RSA-d
RSA superencryption 347, 356, 358
Rubinstein, R. 123
Rueppel, R. 168
Ruling Ring 4, 387
Russel, A. 255
Russo, D. 257, 308

S
Σ∗ 16
Σp

2 , see also NPNP 194, 195, 196,
245, 251, 252, 256, 257, 283,
285, 288, 289, 294, 297, 306,
309, 310

Σp,AM∩coAM
2 289, 292

Σp
2 -complete 200, 245, 251, 252

Σp
2 -low, see also Low2 289, 292

Σp
3 280

Σp
i 194, 195, 196, 198, 200, 201,

217, 218, 232, 234, 237, 238,
240, 246, 256, 257

Σp
i -complete 200, 237, 238, 246

ΣiSAT 200, 244
ΣiSAT formula 200
Sn 41
S≤n 109, 218
Sp

2 255
Saari, D. 206
Safra, S. 251
Salomaa, A. VIII, 8, 51, 134, 168,

307, 357, 408, 411
Saruman 387–392, 404
SAT 55, 83, 88, 107, 111–113, 218,

249, 261–268, 278
satisfiability problem 5, 55, 83, 88,

101, 109, 190, 199, 228, 236,
261–268, 278

– see 2-SAT
– see 3-SAT
– see 4-SAT
– see 5-SAT
– see 6-SAT
– see DNF-SAT
– see k-SAT
– see Majority-SAT
– see Minimal-3-UNSAT
– see Odd-k-SAT
– see Odd-Max-SAT
– see Odd-SAT
– see SAT
– see SAT-UNSAT
– see Threshold-SAT
– see Unique-SAT

SAT-UNSAT 218, 241, 241
Savitch, W. 74, 120, 121, 200, 227,

244
Savitch’s Theorem

see Theorem, Savitch’s
Saxe, J. 308
Saxena, A. VII
Saxena, N. 106, 118, 311, 335, 344,

357, 358
SCF 207
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Schaefer, M. 252
Schlüter, T. 4
Schneider, D. 4
Schneier, B. 8, 168
Schnorr, C. 121, 252, 371, 408–410
Schöning, U. VIII, 8, 51, 106, 121,

216, 232, 235, 236, 238, 240,
250, 254, 257, 263, 265, 289,
290, 297, 305–308, 409

Scott, D. 22, 52
Seara, C. 254
search engine 254
search reducing to decision 122
secret-key agreement 7, 8, 312, 357,

361, 362 see also
protocol, secret-key agreement

secret-key agreement problem 312,
362

selective forgery
see forgery, selective

self-avoiding walk problem 124
self-lowness 292, 293, 294, 305, 306,

308
self-reducibility 107, 109, 114, 121,

252
– disjunctive 108

self-reducibility tree 107
Selman, A. 8, 51, 118, 168, 121,

123, 124, 233, 252, 257, 258,
309, 411, 412

separation 258
– by immune sets see separation,

strong
– strong 258
– downward see upward collapse
– upward see upward separation

sequential space 228
set, see also language

– balanced-immune see balanced
immunity

– bi-immune see bi-immunity
– choice see choice set
– cofinite 240
– creative 110
– decidable 25, 191

– finite 108, 240
– immune see immunity
– isomorphic —s 108
– join of —s, see also ⊕ 258
– k-creative 110
– non-p-isomorphic —s 111
– nonsparse 109
– oracle 28, 190, 191

generic 258
random 258

– of strings up to length n,
see also S≤n 109, 218

– p-isomorphic —s
see p-isomorphism

– P-printable see P-printability
– p-selective 252, 257, 258
– power set of a, see also P(·)

103
– recursively enumerable 27, 28,

191, 235, 239
– self-reducible see self-reducibility
– sparse see language, sparse
– symmetric difference of —s,

see also ∆ 239
set class, see also complexity class

– closure of a
boolean 174, 258
under complement 174
under finite variations 239, 240,

246
under intersection 174, 241, 258
under union 174, 241, 258

– complex intersection of —es,
see also ∧ 174, 241

– complex symmetric difference of
—es, see also ∆ 256

– complex union of —es,
see also ∨ 174, 241

– co operator, applied to a,
see also coC 77, 174

SetCovering 103
set covering problem 98, 103
Sethupathy, P. 254,
SetPacking 103, 117
set packing problem 98, 103
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Sewelson, V. 119
Shamir, A. 244, 308, 311, 312, 357,

359, 392, 393, 406, 408–411
Shamir, R. 120
Shamir’s no-key protocol 407, 408
SHANKS 367, 368, 375, 403
Shanks, D. 367, 368, 375, 403, 408
Shannon, C. 6, 151, 153–155, 169
Shannon’s Theorem

see Theorem, Shannon’s
Sherman, A. 169, 361, 396, 398,

399, 405, 406, 411, 412,
Sheu, M. 258
shift cipher see cipher, shift
s-honesty see function, s-honest
shortest lattice vector problem 412
Shoenfield, J. 51
sieve of Eratosthenes 318, 336, 337
Silverman, J. 410
Simmons, G. 347, 358
Simon, J. 307, 308
simulated annealing 254
Singh, S. 2, 168, 169, 358
Sipser, M. 67, 120, 254, 307–309
Sipser’s Coding Lemma 309
Sivakumar, D. 168, 122, 124, 254,

411
small-message attack 348
Smolensky, R. 308
Soare, R. 257
social choice function, see also SCF

207
– Condorcet see Condorcet SCF

social choice theory see theory, so-
cial choice

Solovay, R. 258, 311, 329–335, 358
SOLOVAY-STRASSEN 330, 332
Solovay–Strassen liar see SS-liar
Solovay–Strassen test see primality

test, Solovay–Strassen
Solovay–Strassen witness

see SS-witness
SOS 104, 105, 117, 394, 395, 399,

405

– sizes of an — instance 104
– target sum of an — instance 104
– see also superincreasing sequence

Spaan, E. see Hemaspaandra, E.
Spielman, D. 307
space-constructible see function,

space-constructible
space function see function, space
spaceM (·) 56, 114
SpaceM (·) 56
space hierarchy 5, 67, 119
space hierarchy theorem

see theorem, space hierarchy
Spakowski, H. VII, VIII, 206, 251,

253, 254
spamming 254
sparse set see language, sparse
Speckenmeyer, E. 263, 265
SPP 125, 291, 292, 293, 294, 298,

302, 303, 306, 308–310
SPP 309
SPPSPP 293
SQUARE-AND-MULTIPLY 314
Srinivasan, A. 121
SS-liar 333
SS-Liarsn 333, 334
SS-witness 333
statistical physics 124
Stearns, R. 70, 119
Steiglitz, K. 118
Stein, C. 51
Stelzer, A. VIII, 4
Stephan, F. 252
Stern, J. 168, 411
Stinson, D. 8, 168, 169, 307, 343,

356–358, 369, 406, 408, 409
stochastic automaton

see finite automaton, stochastic
Stöcker, P. 4
Stockmeyer, L. 120, 250, 251, 257
Stoyan, D. VIII
Strassen, V. 311, 329–335, 358
strategic voting see election system,

manipulation of an
stream cipher see cipher, stream
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– easy 219
– empty, see also ε 16
– hard 219
– length of a, see also | · | 16
– operation on —s 17

concatenation of —s 17
Stromnes, M. VII
strong exponential-time hierarchy

– collapse of the 125
strong noninvertibility see one-way

function, strong
structure 35
subset-of-sums problem, see also

SOS 104, 105, 117, 394, 395,
399, 405

substitution attack
see attack, substitution

Sudan, M. 251
Sundaram, R. 255
superincreasing sequence 394, 395,

405
symmetric alternation, see also Sp

2

255
symmetric cryptography

– see cryptography, private-key
– see cryptography, symmetric

symmetric cryptosystem
– see cryptosystem, private-key
– see cryptosystem, symmetric

symmetric difference hierarchy 250
– see also boolean hierarchy, nor-

mal form
symmetry 50, 117
Szegedy, M. 251
Szelepcsényi, R. 77, 121

T
Θp

2 , see also PNP[O(log)] 202, 204,
208, 211, 212, 216, 245, 251,
253–255, 308, 310

Θp
2-complete 204, 208, 211, 245,

253, 254
Θp

2-hard 204, 208, 245, 251
Θp

i , see also PΣp
i−1[O(log)] 202

Takeuchi, M. 409
Tally(·) 71, 116
TALLY 71
tally set see language, tally
Tamaki, S. 263, 306
Tarjan, R. 120
Tarui, J. 308
tautology 30, 31, 49
tautology problem 245
tautology rule 31
Tchernin, A. 4
technique

– easy-hard
see easy-hard technique

– mind-change
see mind-change
technique

– Wagner see Wagner technique
Telle, J. 250
Tenenbaum, P. 4
term 35
Thakur, M. 412
theorem

– impossibility 206
– linear speed-up 5, 54, 59, 63,

64, 119
for nondeterministic classes 66

– linear tape-compression 5, 54,
63, 119

for nondeterministic classes 66
– PCP 251
– prime number 315, 317, 343
– projection 191
– space hierarchy 5, 67, 119
– time hierarchy 5, 70, 119
– uniform diagonalization 240

Theorem
– Bayes’s 46
– Borodin–Demers 123
– Cantor–Bernstein 108
– Chinese Remainder 41
– Cook–Levin see Theorem, Cook’s
– Cook’s 55, 88, 112, 113, 116,

120
– Euler’s 39
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– Fermat’s Little 39, 40, 314, 319,
320, 325, 326, 337, 372

– Friedberg–Muchnik 121
– Karp–Lipton 254, 255
– Lagrange’s 39
– Rabin’s 63
– Savitch’s 74, 200, 227, 244
– Shannon’s 153, 154
– Vieta’s 346

theory
– complexity 1–8, 53–125, 171–

259, 261–310, 317–345, 386–
402

– computability
see theory, recursive function

– graph 4, 9, 37–41, 51
– information and coding 6, 155
– learning 252
– number 4, 9, 37–41, 51
– probability 5, 9, 46–47, 51
– recursive function 2, 4, 9, 16–

28, 51, 108, 110, 191, 235, 252,
257, 258

– social choice 206, 253, 254
– of data compression 155
– of formal languages 9, 16–28,

51
– of NP-completeness 88–106,

120, 99, 116
thermodynamics 155

– second principle of 155
Thierauf, T. 252, 307
Threlfall, R. 358
Threshold-SAT 274
time-constructible see function,

time-constructible
time function see function, time
timeM (·) 56, 63, 114
TimeM (·) 56
time hierarchy 5, 70, 119
time hierarchy theorem

see theorem, time hierarchy
Toda, S. 124, 252, 257, 308
Tomaschewski, J. VIII
tools

– axe 54
– chain-saw 4, 54
– nail file 54
– see Turing machine

Torán, J. 121, 255, 257, 305, 307–
310, 409

Torenvliet, T. 121, 252, 253
total break 376
total function see function, total
total recursive function

see function, total recursive
Tovey, C. 253
transducer 239
transitivity 50, 117
transmitting group 172
trapdoor information 393, 394, 395
trapdoor one-way function

see one-way function, trapdoor
traveling salesperson problem, see

also TSP 248
traveling salesperson tour 248

– unique optimal 252
TRIAL-DIVISION 318, 319
Trick, M. 253
tripartite matching problem see

matching problem, three-dimen-
sional

Tripathi, R. 310
Triple-DES 170
triple encryption 145
Trithemius, J. 168
truth-table reducibility

– see reducibility, polynomial-time
truth-table

– see ≤p
tt

truth-table closure of NP see NP,
≤p

tt -closure of; see PNP
tt

TSP 248
TSP-Facet 247, 249
Turing, A. 2, 9, 22, 51
Turing Award 52, 119, 120, 357
Turing closure

– see complexity class, ≤p
T-closure

of a
– see PC
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Turing degree 121
Turing machine 2, 9, 22, 23, 24,

26–28, 48, 51, 53
– acceptance mode of a 54, 224
– alphabet of a

input 23
working 23

– alternating, see also ATM 6,
53, 54, 58, 106, 171, 221, 222,
223, 228, 257

accepting alternating subtree of an
221, 222

address register of an see Tur-
ing machine, alternating, index
tape of an

evaluation function of an, see
also eval(·) 221

index tape of an 224
language of an 222
semantics of an 221
syntax of an 221

– blank symbol of a,
see also � 23

– categorical see Turing machine,
unambiguous

– composition of —s, see also ◦
273

– computation of a 56
accepting 25
rejecting 25

– configuration of a 24, 56
accepting 221, 262
existential 221
final 24, 56
halting see Turing machine,

configuration of a, final
initial 24, 56
rejecting 221, 262
universal 221

– crossing sequence of a, see also
cs(·|·) 118

– deterministic, see also DTM
24, 54, 56

computation of a 56

– effective enumeration of —s see
Turing machine, Gödelization of
—s

– Gödelization of —s 27, 63, 68,
70, 239

– language of a, see also L(·)
25, 56

– multitape 54
– nondeterministic, see also NTM

23, 54, 56
computation of a 56

– normalized 270, 305
– one-way 53
– oracle 28, 190, 191

see also DOTM; NOTM
deterministic polynomial-time,

see also DPOTM 193
nondeterministic polynomial-time,

see also NPOTM 193
positive 244

– probabilistic 54, 269, 307
– randomized 388

see also Turing machine, prob-
abilistic

– semantics of a 24
– state of a 23

accepting 25, 221
existential 221
final 23
halting see Turing machine,

state of a, final
initial 23
rejecting 25, 221
universal 221

– syntax of a 23
– threshold 270, 307
– transition function of a 23
– two-way 54
– unambiguous 54, 111

Turing reducibility
– see reducibility, Turing
– see ≤p

T

U
Ulam, S. 309



Index 477

Ullman, J. 51
Umans, C. 251, 252
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unambiguous polynomial time see UP
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uniform diagonalization theorem see

theorem, uniform diagonalization
unique solution problem 248, 249
Unique-SAT 243, 249
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dard 7, 371, 408
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universal
– polynomially length-bounded

see ∀p

unsatisfiability rule 31
UP 5, 111, 112, 113, 117, 119, 123,

124, 175, 242, 250, 271, 292,
294, 305, 308, 310, 336, 358,
399, 411, 412
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upward separation 70, 71, 119, 124
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U.S. Secretary of Defense 386

V
V(·) 47
V (·) 81
Valiant, L. 111, 123, 124, 249, 308
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variance, see also V(·) 47
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Vazirani, V. 8, 248, 249, 251, 252,

308
VC 93, 116
Vereshchagin, N. 307
verifier 307, 409
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– see also proof system, interactive
– see also zero-knowledge protocol

Vernam, G. 151, 154

Vernam’s one-time pad 151, 154,
155
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– degree of a 181
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93, 116
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254

Vieta, F. 346
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see Theorem, Vieta’s
Vigenère, B. de 135
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see cipher, Vigenère
Vigenère square 136, 163
Vogel, J. VII, VIII, 206, 251, 253
Voigt, L. VIII
Vollmer, H. 8, 79, 118
von Haeseler, A. VIII
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voter 207
voting scheme see election system
voting system see election system
Vyskoč, J. 257
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Wagner, K. VIII, 8, 76, 118, 179,

180, 204, 216, 218, 249, 250,
253, 254, 256, 308

Wagner technique 179, 184, 188,
189, 203, 206, 251
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Wanke, E. VIII, 250
Watanabe, O. VII, 109, 119, 122,

123, 255, 257, 258
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see associativity, weak
website ranking 254

– manipulation of a 254
Wechsung, G. VII, VIII, 8, 76, 118,

119, 122–124, 171, 247, 249–
254, 256, 307, 308, 409, 412

Wegener, I. 8, 118
Wegman, M. 295, 309
Welsh, D. 8, 124, 168
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Wigderson, M. 309, 388, 391, 392,

410
Wiener, M. 348, 350, 356, 358
Wiener’s attack 348, 350, 356, 358
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witness 190, 214

– number of —es see accepting
computation, number of —s;
see accM ;
see also #P

– set of —es see witness set
WitM (·) 191
witness set, see also WitM (·) 191
Woeginger, G. 8, 251, 306
Wolf, S. 412
Wolfe, D. 248, 249
Wollermann, O. 4
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World War II 2, 166, 169
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see cryptography, worst-case
Wrathall, C. 251
Wright, E. 51

X
χ(·) 95
χB 202
X-3-Cover 103

– see also exact cover by 3-sets
problem

XP 308

Y
Yacobi, Y. 309, 411
Yamakami, T. 258
Yannakakis, M. 173, 248, 249
Yap, C. 218, 254
Young election system 206, 207,

208, 253
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211, 245

Young, H. 206–208, 253
Young, P. 110, 111, 122, 123
YoungRanking 208, 245
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208
Young voting scheme

see Young election system
Young winner 208
YoungWinner 206, 208, 211, 245
YScore(·, ·, ·) 208
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Z+ 248
Zn 38
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n 38
Zachos, S. 283, 307, 308, 409
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zero-knowledge 386–393, 409
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– perfect 390, 409
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404
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scheme
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ZPP 6, 255, 261, 268, 273, 274,

290, 303, 307, 310
ZPPAM∩coAM 358
ZPPNP 255, 256, 309
ZUP 308



Monographs in Theoretical Computer Science • An EATCS Series

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 1
2nd ed.

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 2

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 3

A. Nait Abdallah
The Logic of Partial Information

Z. Fülöp, H.Vogler
Syntax-Directed Semantics
Formal Models Based
on Tree Transducers

A. de Luca, S. Varricchio
Finiteness and Regularity
in Semigroups and Formal Languages

E. Best, R. Devillers, M. Koutny
Petri Net Algebra

S.P. Demri, E.S. Orlowska
Incomplete Information:
Structure, Inference, Complexity

J.C.M. Baeten, C.A. Middelburg
Process Algebra with Timing

L.A. Hemaspaandra, L. Torenvliet
Theory of Semi-Feasible Algorithms

E. Fink, D. Wood
Restricted-Orientation Convexity

Zhou Chaochen, M. R. Hansen
Duration Calculus
A Formal Approach to Real-Time
Systems

M. Große-Rhode
Semantic Integration
of Heterogeneous Software
Specifications



Texts in Theoretical Computer Science • An EATCS Series

J. L. Balcázar, J. Díaz, J. Gabarró
Structural Complexity I

M. Garzon
Models of Massive Parallelism
Analysis of Cellular Automata
and Neural Networks

J. Hromkovic
Communication Complexity
and Parallel Computing

A. Leitsch
The Resolution Calculus

A. Salomaa
Public-Key Cryptography
2nd ed.

K. Sikkel
Parsing Schemata
A Framework for Specification
and Analysis of Parsing Algorithms

H. Vollmer
Introduction to Circuit Complexity
A Uniform Approach

W. Fokkink
Introduction to Process Algebra

K. Weihrauch
Computable Analysis
An Introduction

J. Hromkovic
Algorithmics for Hard Problems
Introduction to Combinatorial
Optimization, Randomization,
Approximation, and Heuristics
2nd ed.

S. Jukna
Extremal Combinatorics
With Applications
in Computer Science

C.S. Calude
Information and Randomness
An Algorithmic Perspective, 2nd ed.

J. Hromkovic
Theoretical Computer Science
Introduction to Automata,
Computability, Complexity,
Algorithmics, Randomization,
Communication and Cryptography

K. Schneider
Verification of Reactive Systems
Formal Methods and Algorithms

S. Ronchi Della Rocca, L. Paolini
The Parametric Lambda Calculus
A Metamodel for Computation

Y. Bertot, P. Castéran
Interactive Theorem Proving
and Program Development
Coq'Art: The Calculus
of Inductive Constructions

L. Libkin
Elements of Finite Model Theory

M. Hutter
Universal Artificial Intelligence
Sequential Decisions
Based on Algorithmic Probability

G. Påun, G. Rozenberg,  A. Salomaa
DNA Computing
New Computing Paradigms
2nd corr. printing

J. Hromkovic, R. Klasing, A. Pelc,
P. Ruzicka†, W. Unger
Dissemination of Information
in Communication Networks
Broadcasting, Gossiping, Leader
Election, and Fault-Tolerance

 °

 °

 °

 °
 °  °



Texts in Theoretical Computer Science • An EATCS Series

P. Clote, E. Kranakis
Boolean Functions
and Computation Models

L. A. Hemaspaandra, M. Ogihara
The Complexity Theory Companion

W. Kluge
Abstract Computing Machines
A Lambda Calculus Perspective

R. Kurki-Suonio
A Practical Theory
of Reactive Systems
Incremental Modeling
of Dynamic Behaviors

J. Hromkovic
Design and Analysis of Randomized
Algorithms
Introduction to Design Paradigms

J. Rothe
Complexity Theory and Cryptology
An Introduction to Cryptocomplexity

 °



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




